

Rana, T., Imran, M. and Baz, A. (2020) A component model with verifiable
composition for the construction of emergency management systems. Arabian Journal
for Science and Engineering, 45, pp. 10683-10692.

(doi: 10.1007/s13369-020-04819-6)

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/221981/

Deposited on: 13 August 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1007/s13369-020-04819-6
https://eprints.gla.ac.uk/221981/
http://eprints.gla.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

A Component Model with Verifiable Composition for the
Construction of Emergency Management Systems

Tauseef Rana · Muhammad Ali Imran · Abdullah Baz

Received: date / Accepted: date

Abstract Construction of critical systems (e.g. disas-

ter/emergency management systems) demands extra ef-

forts from the developers as compared to non-critical

systems. A critical system may be comprised of hard-

ware communication infrastructure and the manage-

ment system software. Many of hardware failures or

in-capabilities can be handled by the resilient software

components. The management software’s main tasks

are to continuously collect data (from distributed sen-

sors), to predict possible threats, and to intimate the

right authorities for timely action to avoid/reduce the

damages of the threats. For the construction of such

systems, by reusing existing reliable software compo-

nents, a verifiable software composition mechanism is

highly desired. In this paper, we select a component

model (EX-MAN) from the component-based develop-
ment approaches for providing pre-defined exogenous

connectors. In this paper, at the methodological level,

we define an approach to verify the correctness of exoge-

nous connectors. To evaluate our approach, we design

an emergency management system in EX-MAN and im-

plement the system in our tool for EX-MAN.

Keywords Disaster Management System · Rapid

Development · Verification · Connectors · Sensors ·
Composition

T. Rana (Corresponding Author)
Department of Computer Software Engineering, MCS, Na-
tional University of Sciences and Technology (NUST)
Islamabad, Pakistan.
E-mail: tauseefrana@mcs.edu.pk

1 Introduction

Computer-based systems are used in all fields of life and

the users of these systems have dependability of differ-

ent scale on these systems. For high scale dependability,

some of the systems are referred to as critical systems.

Critical systems are broadly categorized into four dif-

ferent kinds [18]: (i) safety critical, (ii) mission critical,

(iii) business critical and (iv) security critical. A criti-

cal system is a pair (〈H,S〉) of hardware (H) and soft-

ware (S). In a system, both these elements may be dis-

tributed in different locations. The hardware part may

be comprised of many different devices/sensors with the

control software produced by many different vendors.

These days, a system with such heterogeneous devices

are referred as internet of things (IOT) [32,5].

For building a system by composing heterogeneous

components (hardware and/or software), a verifiable

software composition for the construction of such sys-

tems is highly desired [49]. Correctness by construction

is a system building strategy that goes inline with the

verifiable software composition [6,34,11]. In order to

check the structural and behavioural correctness of the

system architecture, checking the correctness by con-

struction property in a composition mechanism was

introduced in [11]. For the construction of such sys-

tems, the importance of composition mechanisms be-

come more demanding if these systems are evolving

[18]. In this paper, for such critical management sys-

tems, our focus is on the verifiable composition mecha-

nisms which can help us creating and maintaining such

systems; disaster management system (DMS [16]) and

emergency management systems are two examples of

these systems.

In the current world economy, devices/sensors in

IOT are playing a vital role. Hence, the need for a

2 Tauseef Rana et al.

system/software development method based on com-

mercial off-the-shelf (COTS) hardware/software com-

ponents is emerging [5]. From decades, efforts have been

made on optimizing the process of software develop-

ment for such systems. In this quest, a new development

paradigm; Component Based Development (CBD) has

emerged [50,47]. The rationale behind CBD is to con-

struct large software systems by reusing software com-

ponents that are already developed and stored in a

domain-specific repository of reusable components. Other

benefits that can be achieved by reusing already devel-

oped software components are; high productivity, low

cost, lesser time to market, and quality software. In

other words, the essence of CBD is to increase the pro-

ductivity and quality of the software systems by reduc-

ing the time and cost of development [24].

Currently, a number of component models are avail-

able [8]; among them, some are based on standard-

ized reuse based software architecture frameworks; such

as, Sun’s Enterprise Java Beans (EJBs) [9], OMG’s

CORBA Component Model (CCM) [15], and Microsoft’s

Component Object Model (COM) [46]. These frame-

works articulate the reuse of software artifacts (com-

ponents/connectors) across development groups. The

other class of component models is based on the use

of Architectural Description Languages (ADLs). Ex-

amples include Fractal, EAST Architecture Language

(EAST-ADL), and Architecture Analysis and Design

Language (AADL) [17,48,2]. All of these component

models cover a wide range of application domains; such

as, embedded systems including automotive software

systems and consumer electronics, and business domains;

such as, finance, telecommunication, healthcare, and

transportation [21,7,45,8]. Some other application do-

mains include avionic, reactive systems, safety-critical

systems, distributed and parallel systems [17,31]. Each

of these domains is highly demanding in a sense that

the software system to be constructed by composing al-

ready developed software components, using pre-defined

composition mechanisms, collectively meets the func-

tional and non-functional requirements of the system

[29,21,17,4,22].

In this paper, we select a component model named

Extended-X-MAN (EX-MAN) from [39,40]. This model

is based on X-MAN component model from [29]. EX-

MAN proposes a number of new features to address the

limitations of X-MAN. The selected component model

uses independent components to be composed by pre-

defined connectors for system construction [43]. EX-

MAN is a general purpose component model. In this

paper, we explore its usefulness for the construction of

critical systems. As the verification of partial and fi-

nal system is an important part for the construction

of critical system, we define the proposed methodology

for verifying composition in EX-MAN. Furthermore, in

this paper, we evaluate our defined methodology by ap-

plying it to verify the structural and behavioural cor-

rectness of a composite created in EX-MAN. We use

EX-MAN tool to build a disaster management system

(DMS) and verify our approach by verifying the struc-

tural/behavioural correctness of the system. Based on

the construction of DMS and its verification by using

our approach, we are confident for the usefulness of EX-

MAN for constructing critical systems. With this confi-

dence, we intend to invest time and resource to further

enhance EX-MAN to address its limitations in the way

of constructing critical systems.

The rest of the paper is organized in six sections.

Section 2 introduces a disaster management system and

describes a case study of this system. Section 3 de-

scribes component models for system construction in

CBD. The EX-MAN component model with a system-

atic composition mechanism is described in Section 4.

Next, in Section 5, the mechanism of composition veri-

fication is defined and described for EX-MAN. A disas-

ter management system from Section 2 is constructed

and implemented with a software tool for EX-MAN in

Section 6. Finally, the discussion and conclusion is pre-

sented in Section 7.

2 Disaster Management System

At a broad level, disasters may be categorized into two

types: (i) natural disasters and (ii) man-made disasters.

Natural disasters occur due to the natural processes on

Earth for no fixed reason or time of occurrence; this

category includes heavy rain, earthquakes, lightning,

avalanche etc. Man-made disasters occur due to delib-

erate actions or inabilities to perform certain tasks by

human beings. Some of the examples of these actions

would be cutting the trees at the banks of a canal which

can weaken the canal boundary which can cause floods

due to boundary breakage; floods in urban areas can

be devastating [19]. For the inability category, a person

working on a chemical/atomic plant mistakenly cause

a damage in the plant.

A computer based management system to monitor

and report any expected causes of a disaster is referred

to as the disaster management system (DMS). The pur-

pose of such a system is to convey the information to

the right authorities for correct and timely actions to

mitigate the damages of any disaster [23]. In this sec-

tion, we consider a wilderness weather station from [44]

example shown in Figure 1.

At the abstract level, the wilderness weather station

shown in Figure 1 is comprised of three main subsys-

A Component Model with Verifiable Composition for the Construction of Emergency Management Systems 3

(DMA)
and archiving

Data management
<<system>>

Weather station

<<system>>

(WS)(SM)

<<system>>

Station maintenance

Fig. 1 A wilderness weather station.

tems: (i) Station maintenance (SM), (ii) Weather sta-

tion (WS), and (iii) Data management and archiving

(DMA). There are many weather stations situated at

different far locations. These weather stations are main-

tained remotely. Data is collected from these stations

remotely and archived on regular basis.

The context diagram of weather system (to be devel-

oped) along with other systems is shown in Figure 2.

In this diagram, systems are shown in boxes and the

associations between them are shown with lines along

with the cardinality information on the associations.

This diagram shows that for each weather station (WS)

its environment includes a weather information sys-

tem (WIS), an on-board satellite communication sys-

tem (SCS) and a control system (CS). The cardinality

information shows that there are several weather sta-

tions, one control system, one general purpose weather

information system and one satellite communication

system.

Fig. 2 System context for weather station [44].

The further interaction details with the systems are

shown in Figure 3 with the help of a use case model.

A use case model represents the interaction with the

system; the ellipse shape represents a possible interac-

tion shown in the label in the ellipse shape and the

stick figure shows the external entity (a system or a

human user) involved in the interaction. The use case

represents that WS interacts with WIS for reporting

weather data and for reporting WS hardware status.

For the use case weather report, the description of the

use case is also shown in Figure 3.

Report Status

Report Weather

Fig. 3 Use case Diagram–Weather Information System

From the weather station information system use

case diagram shown in Figure 3, we consider the report

weather use case in this paper. The weather station col-

lects data from different sensors and instruments and

sends a summary data to the weather information sys-

tem on regular basis. In this sent summary, data for

minimum, maximum and average values for ground/air

temperatures, air pressures, and wind speed are in-

cluded. Moreover, the total rainfall and wind direction

with regular time intervals are sent. This data sum-

mary is sent via a satellite communication link with the

weather station. Usually, reports of data are requested

after every hour but this interval can vary from one

station to another.

3 Component Based Development

In CBD, a component model defines an atomic compo-

nent (a basic building block for reuse [38,1]), composi-

tion mechanisms to create composite components (for

reuse) and to construct systems (by reuse) for deploy-

ment. A component model should support: (i) the de-

velopment of loosely/uncoupled independent software

components, which when used in the construction of a

new software system, maximizes the separation of con-

cern [24], (ii) a composition mechanism, that enables

the software architects to compose these components

hierarchically to achieve compositionality [28] and (iii)

ways to construct domain specific software systems for

deployment to a certain environment.

In the light of aforementioned, a component model

should define the creation of basic/composite compo-

nents. For a system construction, components are de-

veloped using the specific domain knowledge. Currently

practiced component models can be categorized into

three groups where: (1) components are objects (e.g.

EJB [9] and COM [10]) composed by method call (di-

rect message passing), (2) components are UML compo-

nents [36] or architectural units (AU in architectural de-

scription languages (ADLs) [33]) composed by connect-

ing (indirect message passing) matching services/ports,

and (3) encapsulated components (e.g. web services [12]

and X-MAN components [30,25]) composed by coordi-

nation. Considering the DMS from Section 2, we show

(in Figure 4) a composite created in different categories

of component models. In Figure 4, two components to

measure ground temperature (GT) and air temperature

(AT) are composed using composition mechanisms from

the three categories of component models.

A generic component can be represented by UML

notation with provided (represented by a lollipop sym-

bol) and required (represented by a socket symbol) in-

terface of services as shown in Figure 4(b)(i). Objects

4 Tauseef Rana et al.

Encapsulated components
(c) Web services/(b) UML components/

Architectural units

direct message passing

(ii)

(i)

(a) Objects

indirect message passing

GA
GT

control and/or data
flow

coordination

ATGT

GT

GA
AT

GTAT

GA
AT

Fig. 4 Composites in CBD.

(with specified provide and unspecified require inter-

faces) are composed by method call (direct message

passing) as shown in Figure 4(a). UML components

(with specified provide and specified require interfaces)

shown in Figure 4(b)(i) or architectural units (with

specified out-port and specified in-port) shown in Fig-

ure 4(b)(ii) are composed by connecting (indirect mes-

sage passing) matching services/ports. Encapsulated com-

ponents (with specified provide and no require inter-

faces) are composed by coordination as shown in Fig-

ure 4(c). In the DMS composite, for reading values from

sensors, these are special components without any re-

quired interfaces (unspecified in objects, specified in

UML components and specified in-ports).

In Figure 4(a) and Figure 4(b), component GA (for

measuring ground and air temperatures)represents a

typical component with required interfaces in the re-

spective component model; this component is developed

to compose components GT and AT because there is

no explicit unit for composing components. Unlike this,

the composition in the third category (Figure 4(c)) are

composed by a separate program unit to be perform

coordination. By the required interfaces, GA compo-

nent shows a dependency on two components. Objects,

UML components and AUs have dependencies on other

objects in object based component models (as method

calls), on other components in UML and on other AUs

in ADLs, respectively. Hence, for composition, using a

component of these two categories means availability of

all dependent components.

In contrast, encapsulated components have no de-

pendencies. In the third category of component models,

there are no pre-defined fixed program units for coordi-

nation for the composition of web services. Web services

are composed by orchestration [13] to produce a work-

flow by using BPEL language [35]; orchestration is a

form of coordination [37,14], in which participants (web

services) are separated from the coordination mecha-

nism. In contrast, X-MAN defines a fixed set of exoge-

nous connectors for adapting and composition of com-

ponents.

Considering the distinguished feature of encapsu-

lated components and provision of exogenous connec-

tors, we select an enhanced version of X-MAN (EX-

MAN) [39,40] which overcomes many of the limitations

of X-MAN. In this paper, we define a methodology to

verify the correctness by construction with respect to

the static structural (interface generation) and the dy-

namic (control/date flow) behaviour correctness of ex-

ogenous connector.

4 EX-MAN Component Model

In this section, we describe EX-MAN model with the

help of a Bank system example shown in Figure 5. The

reason for the consideration of this example is the usage

of all kinds of model elements in one system example.

As the theme and objective of this paper is to verify the

composition for system construction, we do not cover all

details of EX-MAN; details of the model can be found

in [39].

The distinguishing feature of X-MAN is the use of

exogenous connectors to construct the communication

part of a system. In X-MAN, exogenous connectors are

defined at an abstract level and the exact behaviours of

these connectors are not fixed at the component model

level. The semantics of X-MAN exogenous connectors

are defined in different tools [26,27,48] in unspecified

ways. In order to address this issue, EX-MAN extends

the model with constraints written in a simple flow con-

straint language (FCL) specified for exogenous connec-

tors [42].

A system is a collection of components (shown in

the computation layer) and a multi-level hierarchy of

exogenous connectors (shown in the control layer). The

role of connectors is to pass the request and response

in the system. Exogenous connectors are either compo-

sition connectors (sequencer represented by SEQ, pipe

represented by PIPE and selector represented by SEL)

or adaptors (guard represented by G and loop repre-

sented by L). A component has an interface that lists

the computational services offered by the component.

A connector has no interface and in turn no service

to offer on its own. However, when connected to one

or more component(s), a connector’s interface offers ei-

ther the composite services (services of the composed

components; interface of SEQ1) or the adapted service

(service of the connected component; interface of G1).

Hence, a connector with an interface represents a com-

posite component or an adapted component in the sys-

tem. Some connectors have constraints as their prop-

erty. Based on a constraint, a connector has different

interfaces and makes different flows for control/data

in the system. Creating the interface of a connector is

A Component Model with Verifiable Composition for the Construction of Emergency Management Systems 5

component
interfaceComposition connectorLoop AdaptorGuard Adaptor

A (from repository)
Encapsulated component

A <constraint>

<connector>

(an EX-MAN feature)
FCL connector constraint

numbered request message,n numbered response message n

PIPE2

cshWithdraw{
 param0=L1.login.param2;

 param1=G1.readAmount.param0:

 param0=L1.login.param2 }

 param2=L1.login.param2;

 param0=L1.login.param0:

G1.readAmount::

G2.withdraw::

G3.confiscate::

PIPE1

 param1=SEQ1.getData.param1}

 CB.authorise::
 param0=SEQ1.getData.param0:

login{

5

CR
6

login{
 param2=true or
 iterate 3 times}

L1

Bank2--param0 startswith "222"}
Bank1--param0 startswith "111";

withdraw{

SEL1

param0=false}
confiscate{

G3
readAmount{
param0=true}

G1

withdraw{
param2=true}

G2

L1

PIPE1

2

3 12

13

G2
18

19

SEL1

22

23
14

G1
17

94

SEQ1

87

PR

20

Bank1
21 21

Bank2

20

24/181

0

PIPE2

L2

15

RA
1611

CB

10 15

CC
16

17
G3

14

level4

level3

level2

level1

Control Layer

level0

Layer
Computation

s readCard()

(s,i,b) login()

SEQ1

CR

PR

CB

i readPin()

(s,i) getData()

b authorise(s,i)

PIPE1,L1

Bank1,Bank2,

[i] readAmount(b)

RA

G1

i readAmount()

i withdraw(s,i)SEL1

cshWithdraw()

(s,i,b,[i],[i]) cshWithdraw()

confiscate(b)

[i] withdraw(s,i,b)

CC

PIPE2

L2

G2

G3

confiscate()

where: s=string,i=int and b=boolean.

InterfaceComponent

*

Fig. 5 An ATM system in EX-MAN

a static/structural feature and making a specific con-

trol/data flow to the connected component(s) is dy-

namic/behavioural feature of a connector. Components

and connectors in EX-MAN are passive elements; an

element becomes active to perform its designated role

once the control is provided by a service request.

In Figure 5, the system has four composition con-

nectors (sequencer SEQ1, selector SEL1, pipe PIPE1

and pipe PIPE2), five adaptor connectors (finite loop

L1, infinite loop L2, guard G1, guard G2 and guard

G3) and seven components (CR to read card number,

PR to read pin code, CB to authenticate ATM card,

RA to read withdraw amount, Bank1, Bank2 and CC

to confiscate card). Interface of pre-built components,

composites components (created by composition con-

nector) and adapted components (created by adaptors)

are shown in a table. FCL constraints of seven connec-

tors are also shown in Figure 5.

Sequencer and pipe connectors passes the control

(and data) to each connected components in sequence

from left to right. A pipe is a special sequencer that

can pass execution result of one component as input

data for later component executions. A selector passes

control to only one component. A finite loop connec-

tor passes control to its connected component for fixed

iterations and an infinite loop passes control to its con-

nected component indefinitely. Based on a fixed criteria,

a guard connector passes the control to its connected

component.

On receipt of request numbered 0 in Figure 5, the

first computation of CR component would execute to

read the ATM card value and then PR would receive a

request to read pin code. The results of these two com-

ponents are returned as one response numbered 9 by

SEQ1 connector. Connector PIPE1 passes the results

of these components as inputs to the service request to

CB for authentication. The constraint of PIPE1 connec-

6 Tauseef Rana et al.

tor simply provides mapping between the output values

received from the response of first component (com-

posed by SEQ1) to the service of second component

CB. Component CB returns boolean value to indicate

the authenticity of the inserted card.

Loop L1 is constrained to iterate the service either

until the response of CB component is true or to execute

to allow user to enter card and pin code three times. The

response of L1 is a boolean value to represent the au-

thenticity of the card. PIPE2 is constrained to pass the

response received from L1 to services of guards connec-

tors G1, G2 and G3. Based on the authenticity value,

these guards are constrained to pass or not to pass con-

trol to the connected component. PIPE2 passes con-

trol to these guards in sequence. If the authenticity is

true then the service of G1 executes to read an amount

to withdraw from the user. Next the service of G2 is

executed which passes the request to connector SEL1.

Based on card data, the request is forwarded to either

bank component by this connector. Next, the control is

transferred to G3 by PIPE2 and this passes the request

ahead if the authenticity value is false to confiscate the

card. Lastly, the control is returned to L2 by PIPE2.

L2 is an indefinite loop which returns the request back

to the first component CR. There is no response out of

the system through L2. After serving one customer the

ATM system is ready to serve the next customer.

5 Composition Verification

For the system construction in EX-MAN [41], exoge-

nous connectors play a key role; hence, verifying the

correctness of these connectors for constructing sys-

tems hierarchically is the main objective of this pa-

per. In this section, at the methodological level, we

define the exogenous connectors’ mechanism to verify

the static (for interface generation) and dynamic (for

control/data flows) behaviours of exogenous connector.

The correctness of the behaviours of connectors would

prove the correctness of the system. The hierarchical

construction of the control layer of a system (shown in

5 levels in Figure 5) is built recursively and a recur-

sive process is scalable by nature. Hence, the system

construction in EX-MAN is scalable; similar is the case

with our proposed approach in this paper.

5.1 Conceptual Model of Exogenous Connectors

The focus of EX-MAN is on compositional software de-

sign that yields hierarchical (algebraic; composing two

components of a type yields another component of the

same type [30]) system construction by using exogenous

composition connectors. Current component models do

not support such kind of system construction [28]. For

the system construction, pre-built encapsulated com-

ponents and exogenous connectors are available in the

respective repositories. The correctness of a system is

based on the correct composition of components and

exogenous connectors to form the operational system.

Exogenous connectors play two different core roles in

the system construction and in the system operation.

In a system construction, an exogenous connector

has the responsibility to create the interface of the com-

posite (e.g. SEQ1 in Figure 5) and adapted (e.g. G1 in

Figure 5) components. In the system operation, an ex-

ogenous connector has the responsibility to receive a

request for the service form its generated interface and

to generate requests to the composed and adapted com-

ponent(s); in other words, the role of the connector is

to coordinate the control/data to the connected compo-

nent(s). At a level of abstraction, to reflect these core

responsibilities, we create the conceptual model (Fig-

ure 6) for exogenous connectors by using UML class

diagram notation.

Exogenous
Connector

+exeSrv(int)

srvID: int []

+genInt()

const: FCL-Const[]

FCL-Const

Connector
Pipe

Sequencer
Connector

Connector

Connector
Selector

Unary
Connector

Composition

Adaptor
Guard

Adaptor
Loop

Finite-loop
Adaptor

Infinite-loop
Adaptor

1..*

1..*

0..*

0..*

Fig. 6 A conceptual model of exogenous connectors

For the construction of EX-MAN systems, the con-

crete classes are shown with bold text; rest are the

abstract classes. Four connectors can have FCL con-

straint (instance of FCL-Const) to define the exact be-

haviour of a connector. A constrained connector is a

program unit that translates its specific constraint to

define its interface generation behaviour in the system

design phase and control/data flows in the system ex-

A Component Model with Verifiable Composition for the Construction of Emergency Management Systems 7

ecution phase. In EX-MAN, the system construction

process is basically based on two steps shown in Fig-

ure 7.

SEQ1
SEQ1

[i,j] RV([l,m])

[i,j] RV([l,m])

[j] RV([m])[i] RV([l])

Loop Adaptor

Guard Adaptor

Encapsulated
Component

Connector
Composition

BA

GAC2

BA

(b)(a)

0S

S1

Fig. 7 System construction in EX-MAN.

For system construction, there are two main ele-

ments components and exogenous connectors (compo-

sition or adaptor) shown in Figure 7. In EX-MAN, a

composition connector is n-ary connector by default.

An adaptor is either a guard or a loop; these adaptors

are represented by different shapes. An adaptor is a

unary connector. For the system construction, the two

basic steps are to compose and to adapt; in either case,

it is a composition of two units.

For the first step in system construction, as a sam-

ple, the composition of two components by a sequencer

connector is shown in Figure 7(a) to make a partial

system S0; composite SEQ1 in Figure 5 shows a prac-

tical use of this composition. For the second step, the

out come of the first step (a partial system S0 shown

in Figure 7(a)) is adapted by a guard connector G1

shown in Figure 7(a) to form the next partial system

S1; composite of SEL1 is adapted by a guard in G2

in Figure 5 shows a practical use of this composition.

Then thereon, composition of a component or a con-

nector with the partial system and adaptation of the

partial system (shown in Figure 7(b)) are possible. For

putting two model entities together, in essence, both of

these steps are composition. The output of both steps

is an EX-MAN partial system which is treated like a

component as the partial system can only be connected

from the interface of the highest level connector. The

composition of a component and the partial system are

same in this regards. Hierarchically, an EX-MAN sys-

tem is an architecture of components (at the lowest

level) and many-levels of connectors.

In Figure 7(a), on a system request for service RV

with two input arguments, SEQ1 do five actions based

coordination in sequence: (i) send a request to A with

one input argument ‘l ’, (ii) receive response with one

return value ‘i ’, (iii) send a request to B with one in-

put argument ‘m’, (iv) receive response with one re-

turn value ‘j ’ from B, and (v) send response (collections

of received responses) for the received request. In Fig-

ure 7(b), the partial system of Figure 7(a) is adapted by

a guard adaptor with a condition applied on the input

argument(s) (e.g. l > 10, m < 5, l > 10 and m < 5).

The invocation of such a partial system is subject to

the condition of the guard connector. A loop adaptor

can be either terminating or non-terminating. A non-

terminating loop connector can only be used at the last

(highest) level of connectors; after adapting with the

non-terminating loop the construction of the system in

ended. In contrast, a terminating loop connector can

appear at any level of connectors.

5.2 Static Behaviour of Interface Generation

For the system construction in EX-MAN, in the design

phase, a system developer selects components and con-

nectors from the respective repositories. A component

has provided services interface and a connector does not

as shown in the legend in Figure 5. For composition of

any two or more components by a composition con-

nector or for adapting a component by an adaptor, the

changed interface of the composite/adapted component

is appeared. Based on this interface, the developer can

test the partial system and decide to further construct

the system. The static behaviour of interface generation

by a connector produces this interface.

In the design phase for EX-MAN system construc-

tion, an exogenous connector is responsible for generat-

ing the interface of the composite/adapted component

by the genInt() method as shown in the root class in

Figure 6. This method defines the static behaviour of

the connector. In this section, using Coloured Petri Net

(CPN) [20] notations and pseudo code (shown in Fig-

ure 8), we define the high level algorithm for interface

generation by the exogenous connectors.

In
k1

In

1- Procedure genInt()

11- O=mkToken(tList,FCLConstList);
10- If(FCLConstList<>Null)

6- For each Token T2 from In2

2- Token O;

4- Begin
3- ...

5- For each Token T1 from In1

7- ...

9- tList={T1,T2,...,TK};

12- Else
13- O=mkToken(tList);
14- End If

8- For each Token Tk from Ink

16- addTokenToOut(O);
17- End If

22- End Procedure

20- End For
21- End For

18- End For
19- ...

15- If (NotNull(O) And propagate(O))

N

Out

sIDxsSigxsList sIDxsSigxsList

sIDxsSigxsList

Fig. 8 Generic interface generation mechanism.

8 Tauseef Rana et al.

In Figure 8, an exogenous connector N may be con-

nected to one (if the connector is an adaptor) or more

(if the connector is a composition connector) compo-

nents; a connected component is represented as an Ini

(where i is a numeric value) place of tokens. The in-

terface of the composite/adapted component is repre-

sented by the Out place with tokens. A token in the

shown places is a 3-tuple of a service ID (SID; a nu-

meric value), a service signature (sSig to represent the

service name and list of input and output data types)

and a list of sub-services (sList) referring to services of

connected component. The creation of tokens (for Out

place) is defined by the procedure genInt() with the

help of pseudo code. Before adding a created token to

Out place, the service in the token is checked for a se-

lected service for the composite/adapted component (a

special feature of EX-MAN component model [39]).

Figure 8 shows the generic interface mechanism at

a level of abstraction for all connectors. However, the

mechanism for procedure mkToken(...) is connector spe-

cific. As a sample, we consider the mkToken(...) for

the sequencer connector as shown in Figure 9. The

mkToken(...) procedure is shown schematically in Fig-

ure 9(a) and in pseudo code in Figure 9(b). The be-

haviour of this procedure is to form a combined token

from the input tokens.

where: N=sName, R=oList, P=iList.

...

mkToken

sSig = PRN ,,< >k k ksSig = >< , ,N R P2 2 2

sSig = P1R1,,< >1N

7- concat(O.sSig.iList,T.sSig.iList);
8- concat(O.sSig.oList,T.sSig.oList);

10- End For
11- return O;
12- End Procedure

4- ...
3- Begin
2- Token O;
1- Procedure mkToken(Tokens IPs):Token

5- For Token T in IPs

, , ... ,R R R1 2 k<,mN >><>< , , , ... ,P1 2P kPsSig =

sID
2

< , >In
2

>< , , ... ,
1

In >,<
1

sID
k

In >,<
k

sIDsList =

(b)(a)

9- addToEnd(O.sList,Ref(T));

6- {O.sSig.sName=T.sSig.sName;}
each

Fig. 9 Sequencer specific operation.

In Figure 9(a), for simplicity, only sSig of input and

output tokens, and sList of the output token are shown.

In an output token, the service signature contains or-

dered lists of input/output parameters of the service

signatures from the input tokens. The output token con-

tains a list (sList) of tuples. The mechanism for naming

a compound service is not shown. A compound service

is referring to one sub-service of each connected com-

ponent from left to right.

5.3 Dynamic Behaviour of Operational Coordination

In the execution phase for EX-MAN system construc-

tion, an exogenous connector is responsible for gener-

ating the request(s) to the composite/adapted compo-

nent(s) by the exeSrv(int) method as shown in the root

class in Figure 6. This method defines the dynamic be-

haviour of the connector. In this section, using CPN

notations and pseudo code (shown in Figure 10), we

define the high level algorithm for a service execution

by the exogenous connectors.

6- sReq=getTokenFromReq(a);

1- Procedure exeSvr(int a)

k
CPCP

1

N

sIDxrList

ResReq

sIDxaList

Out

sIDxsSigxsList

14- End Procedure

12- End If
11- sRes=mkRequest(sReq,lst);
10- Else
9- sRes=mkRequest(sReq,lst,Z);

7- lst=getListFromOut(sReq.sID);

5- Begin	
4- ...
3- sList lst;
2- ...

13- addTokenToRes(sRes); 	

<sIDxaList,sIDxrList> <sIDxaList,sIDxrList>

8- If(FCLConstList<>Null)

Fig. 10 Generic service execution mechanism.

In Figure 10, an exogenous connector N may be con-

nected to one (if the connector is an adaptor) or more

(if the connector is a composition connector) compo-

nents; a connected component is represented as a CPi

(where i is a numeric value) composition place of to-

kens. The service request is received as a token in Req

place and the response is represented by a token in the

Res place. The place Out (from Figure 8) is connected

to shown it’s use for the request verification.

A token in Req place is a token to represent service

request with a service ID sID and a list of arguments

aList for the requested service. Similarly, a token in

Res place is a token to represent service response with a

service ID sID and a list of response values rList gener-

ated by the executed service. The behaviour of a service

execution is defined in procedure mkRequest(...).

Figure 10 shows the generic service execution mech-

anism at a level of abstraction for all connectors. How-

ever, the mechanism for procedure mkRequest(...) is

connector specific. As a sample, the mkRequest(...) for

the sequencer connector is shown in Figure 11. The

mkRequest(...) procedure is shown schematically in Fig-

ure 11(a) and in pseudo code in Figure 11(b). The be-

haviour of this procedure is to initiate sub-requests to

the referenced sub-services from the connected compo-

nent(s).

In Figure 11, the argument lst to the procedure

mkRequest of the sequencer connector has two or more

tokens. The mkRequest procedure finds out the argu-

ments for each sub-service from the lst argument, makes

request to the sub-service and appends the response of

the sub-service into the response token O. After get-

ting the response of the last sub-service, the procedure

returns the response token to Res place.

A Component Model with Verifiable Composition for the Construction of Emergency Management Systems 9

lst<sID,aList>

mkRequest

<sID,rList>

sID = i

sID = i

 i=a positive integer,
where:

 aList=rList=list of data values.

(b)(a)

10-

12- tmp

subLst(T.aList,bgIndex,paramSize)

13- appendToList(O.rList,tmp.rList);

11- bgIndex=bgIndex+paramSize;

9- paramSize=getParamSize(E.sID);

each7- For

4- bgIndex,paramSize;
tmp;

I=mkReqToken(E.sID,

Integer placeIndex,

=requestTo_CP(placeIndex,I);

3- rsToken O,

sRef E in lst

16- End Procedure
15- return O;
14- End For

8- placeIndex=getPlaceIndex(E.pID);

6- ...
5- Begin

1- Procedure mkRequest(rqToken T,sList lst):rsToken
2- rqToken I;

);

Fig. 11 Sequencer specific operation.

5.4 Implementation of EX-MAN

We have implemented the EX-MAN component model

(described in Section 4) in our prototype tool called

Exogenous Composition Framework (ECF). In ECF,

using Java language, we have developed two core APIs

implementing encapsulated components and exogenous

connector (as per the conceptual model shown in Fig-

ure 6). The connector API provides classes (shown in

Figure 14) for all exogenous connectors. We have ver-

ified the semantics of static/dynamic behaviour of all

exogenous connectors described in Section 5.2 and in

Section 5.3, respectively.

6 Construction of DMS

The system for the interaction between WS and WIS

of DMS from Figure 3 is designed using EX-MAN in

three construction steps as shown in Figure 12. Com-

ponents GT (to read ground temperature), AT (to read

air temperature), AP (to read air pressure), WiSp (to

read wind speed), RF (to read rain fall total value),

and WD (to read wind direction value) are composed

by using a sequencer connector SEQ1. This composite

is referred to as partial system S0. In the second step,

the partial system S0 is composed with a guard con-

nector G1 to form partial system S1. In the next step,

S1 is composed with SC (to establish the satellite com-

munication link) by using a pipe connector PIPE1. The

output system is referred to as S2. Instead of using one

communication link for data collection using SC1, using

a more generic component for communication through

many other means is possible.

In Figure 12, for system execution, the flow of re-

quests and responses are shown with numbered arrows.

To read the data from all the sensors, a WIS sub-system

makes a request to the WS system shown in Figure 12.

In the context of the core of this paper, to evaluate

the correctness of interface generation and the flow of

control/data to the connected component by the exoge-

nous connector, we have designed and executed the sys-

tem shown in Figure 12 using ECF tool for EX-MAN.

2s

SEQ1

1

20

4

19

18

5

16

17

14

15

12

13

10

11

8

97

62

3

s1

0s

Request Response

GT1 AT1 AP1 WiSp1 RF1 WD1SC1

PIPE1

G1

Fig. 12 Weather Station for DMS.

The implementation code of partial system S1 from Fig-

ure 12 is shown in Figure 13. The connector API (used

in ECF tool shown in Figure 14) provides classes for all

exogenous connectors.

For our future extension of the system, a number

of more components and connectors can be used to ex-

tend the weather station case study. For frequent data

collection from the weather station through the satel-

lite link, a delay component with customizable dura-

tion can be composed through a pipe connector and

for repetition of the data collection service execution a

non-terminating loop connector can be used as the root

connector in the system. The component for the delay

with customizable duration and the connector for the

repetition can be a way to optimize or adapt the system

under different situations.

7 Discussion and Conclusion

In EX-MAN, the mechanisms of composition (based on

control coordination) are defined by the exogenous com-

position connectors. In this paper, we have presented a

composition verification approach for checking the cor-

rectness and EX-MAN exogenous connectors in system

construction and in system execution. For constructing

critical systems (e.g., emergency management systems),

a composition mechanism that can be checked/verified

for the correctness of a system construction and execu-

tion is a promising and demanded feature.

In the category of component models with exoge-

nous control initiation and management, only EX-MAN

defines explicit connectors, which can be used at sys-

10 Tauseef Rana et al.

Fig. 13 Execution of S1 in ECF.

Fig. 14 API for exogenous connectors in ECF.

tem architecture level. These connectors make use of

control structures that are Turing complete. Because

of this, they help to construct hierarchically (algebraic)

complex control coordination structures that are also

compositional in nature. Although, some of the com-

ponent models like Kobra [3] is hierarchical but is not

compositional. Current new challenges; i.e., complexity,

scalability, and safety faced by CBD demands a sys-

tem construction that is both hierarchical (algebraic)

and compositional in nature. As EX-MAN is specifi-

cally designed according to these required lines, it be-

comes non-trivial to check for the correctness of these

exogenous connectors. In this paper, we have defined a

mechanism to verify the correctness of these connectors

in the system design as well as in system execution.

For the critical management system construction,

a component model with verifiable composition is de-

sired. In such a composition, the composite has prop-

erties of the composed components. For example, the

composition of components (sensors/devices) into a WS

composite (shown in Figure 12) makes the composite

with the computational properties (to read data from a

sensor) of the composed components. Hence, the com-

posite can be checked and verified for the required prop-

erties which can be decided when the components are

selected for critical system construction. In this paper,

using EX-MAN component model, we have showed the

construction of DMS in Section 4; exogenous connec-

tors (composition and adopters) are main elements for

the system construction. Further in Section 5.2 and Sec-

A Component Model with Verifiable Composition for the Construction of Emergency Management Systems 11

tion 5.3, we have showed by using a sample exogenous

connector that the system construction by exogenous

connectors is verifiable and the properties of the system

can be predicted from the properties of the components.

Hence, based on the DMS construction in Section 6, we

conclude that EX-MAN model is suitable for the con-

struction of critical system.

Despite the few strengths of EX-MAN for the con-

struction of critical system, there are a number of lim-

itations associated with this model. Elements (com-

ponents and connectors) in EX-MAN are passive ele-

ments. In EX-MAN system, for a component/connector

to perform its tasks the control reaches with a ser-

vice request. In practice, for critical system, many ac-

tive components can be used in a system construction.

Hence, to address this limitation, we like to extend the

model to address this shortcoming in future advance-

ments. To support the development in EX-MAN, we

also feel the importance and need of a CASE tool in

future advancements.

Acknowledgements This research was partly funded by
EPSRC Global Challenges Research Fund–the DARE project–
EP/P028764/1. Author Baz would like to thank Umm Al-
Qura University (UQU) for the funds he received during projects:
15-COM-3-2-0001, 17-COM-1-01-0009, 18-COM-1-01-0001, 18-
COM-1-07-0002, 15-COM-4-1-0001, 15-COM-4-1-0002.

References

1. Achermann, F., Nierstrasz, O.: A calculus for reasoning
about software composition. Theoretical Computer Sci-
ence 331(2-3), 367–396 (2005)

2. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Mod-
eling component connectors in reo by constraint au-
tomata: (extended abstract). Electronic Notes in The-
oretical Computer Science 97, 25–46 (2004). DOI
10.1016/j.entcs.2004.04.028

3. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Lait-
enberger, O., Laqua, R., Muthig, D., Paech, B., Wüst,
J., Zettel, J.: Component-based product line engineering
with UML. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2002)

4. Belal, M.: Frameworks between components and objects.
Advanced Computing: An International Journal 3, 9–17
(2012). DOI 10.5121/acij.2012.3502

5. Bellekens, X., Atkinson, R., Seeam, A., Tachtatzis, C.,
Andonovic, I., Nieradzinska, K.: Cyber-physical-security
model for safety-critical iot infrastructures. In: Wireless
World Research Forum Meeting 35. Copenhagen, Dane-
mark (2016)

6. Chapman, R.: Correctness by construction: A man-
ifesto for high integrity software. In: Proceed-
ings of the 10th Australian Workshop on Safety
Critical Systems and Software - Volume 55, SCS
’05, pp. 43–46. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia (2006). URL
http://dl.acm.org/citation.cfm?id=1151816.1151820

7. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley,
B., Sha, L.: Compositional verification of architectural

models. In: Proceedings of the 4th International Confer-
ence on NASA Formal Methods, NFM’12, pp. 126–140.
Springer-Verlag, Berlin, Heidelberg (2012)

8. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.:
A classification framework for software component mod-
els. IEEE Transactions on Software Engineering 37(5),
593–615 (2011). DOI 10.1109/TSE.2010.83

9. DeMichiel, L., Yalçinalp, L., Krishnan, S.: Enterprise
JavaBeans Specification Version 2.0 (2001)

10. Don, B.: Essential COM, first edn. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1997)

11. Dong, J., Alencar, P., Cowan, D.: Ensuring struc-
ture and behavior correctness in design composition.
In: Proceedings Seventh IEEE International Conference
and Workshop on the Engineering of Computer-Based
Systems (ECBS 2000), pp. 279–287 (2000). DOI
10.1109/ECBS.2000.839887

12. Erl, T.: Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2005)

13. Fiadeiro, J., Lopes, A., Bocchi, L.: A formal approach to
service component architecture. In: Services and Formal
Methods, Third International Workshop, WS-FM 2006,
pp. 193–213. Springer, Berlin, Heidelberg (2006)

14. Gelernter, D., Carriero, N.: Coordination languages and
their significance. Communications of the ACM 35(2), 96
(1992). DOI http://doi.acm.org/10.1145/129630.376083

15. Group, O.M.: Corba component model 4.0 specification.
Specification Version 4.0, Object Management Group
(2006). URL http://www.omg.org/docs/formal/06-04-
01.pdf

16. Hannan, A., Arshad, S., Azam, M.A., Loo, J., Ahmed,
S.H., Majeed, M., Shah, S.: Disaster management system
aided by named data network of things: Architecture,
design, and analysis. Sensors 18, 2431 (2018). DOI
10.3390/s18082431

17. He, N., Kroening, D., Wahl, T., Lau, K.K., Taweel, F.,
Tran, C., Rümmer, P., Sharma, S.: Component-based de-
sign and verification in X-MAN. In: Proc. Embedded
Real Time Software and Systems (2012)

18. Hinchey, M., Coyle, L.: Evolving critical systems:
A research agenda for computer-based systems. In:
Proceedings of the 2010 17th IEEE International
Conference and Workshops on the Engineering
of Computer-Based Systems, ECBS ’10, pp. 430–
435. IEEE Computer Society, Washington, DC,
USA (2010). DOI 10.1109/ECBS.2010.56. URL
https://doi.org/10.1109/ECBS.2010.56

19. Hsu, S.Y., Chen, T.B., Du, W.C., Wu, J.H., Chen, S.C.:
Integrate weather radar and monitoring devices for ur-
ban flooding surveillance. Sensors 19, 825 (2019). DOI
10.3390/s19040825

20. Jensen, K.: Coloured Petri nets: basic concepts, analy-
sis methods and practical use, vol. 2. Springer-Verlag,
London, UK (1995)

21. Johnson, K., Calinescu, R., Kikuchi, S.: An incremen-
tal verification framework for component-based software
systems. In: Proceedings of the 16th International ACM
Sigsoft Symposium on Component-based Software En-
gineering, CBSE ’13, pp. 33–42. ACM, New York, NY,
USA (2013). DOI 10.1145/2465449.2465456. URL
http://doi.acm.org/10.1145/2465449.2465456

22. Johnson, R.E.: Frameworks = (components
+ patterns). Commun. ACM 40(10), 39–42
(1997). DOI 10.1145/262793.262799. URL
http://doi.acm.org/10.1145/262793.262799

12 Tauseef Rana et al.

23. Khaliq, K., Chughtai, O., Shahwani, A., Qayyum, A.,
Pannek, J.: An emergency response system: Construc-
tion, validation, and experiments for disaster manage-
ment in a vehicular environment. Sensors 19, 1–23
(2019). DOI 10.3390/s19051150

24. Koziolek, H.: Performance evaluation of component-
based software systems: A survey. Perform. Eval. 67(8),
634–658 (2010). DOI 10.1016/j.peva.2009.07.007. URL
http://dx.doi.org/10.1016/j.peva.2009.07.007

25. Lau, K.K., Cola, S.: An Introduction to Component-
Based Software Development. World Scientific, Singa-
pore (2017)

26. Lau, K.K., Ling, L., Velasco Elizondo, P., Ukis, V.: Com-
posite connectors for composing software components. In:
M. Lumpe, W. Vanderperren (eds.) Proceedings Sixth In-
ternational Symposium on Software Composition, LNCS
4829, pp. 266–280. Springer-Verlag (2007)

27. Lau, K.K., Ntalamagkas, I., Tran, C., Rana, T.: (Be-
havioural) Design patterns as composition operators. In:
L. Grunske, R. Reussner, F. Plasil (eds.) Proceedings
Thirteenth International Symposium on Component-
based Software Engineering, LNCS 6092, pp. 232–251.
Springer-Verlag (2010)

28. Lau, K.K., Ornaghi, M.: Control encapsulation: A cal-
culus for exogenous composition. In: G. Lewis, I. Po-
ernomo, C. Hofmeister (eds.) Proc. 12th Int. Symp. on
Component-based Software Engineering, LNCS 5582, pp.
121–139. Springer-Verlag (2009)

29. Lau, K.K., Ornaghi, M., Wang, Z.: A software com-
ponent model and its preliminary formalisation. In:
F.S. de BoerMarcello M. BonsangueSusanne GrafWillem-
Paul de Roever (ed.) Proceedings Fourth International
Symposium on Formal Methods for Components and Ob-
jects, LNCS 4111, pp. 1–21. Springer-Verlag, Heidelberg
Germany (2006)

30. Lau, K.K., Rana, T.: A taxonomy of software composi-
tion mechanisms. In: Proceedings Thirty-sixth EUROMI-
CRO Conference on Software Engineering and Advanced
Applications, pp. 102–110. IEEE, Lille, France (2010)

31. Lau, K.K., Safie, L., Stepan, P., Tran, C.: A compo-
nent model that is both control-driven and data-driven.
In: Proceedings of the 14th International ACM Sig-
soft Symposium on Component Based Software Engi-
neering, CBSE ’11, pp. 41–50. ACM, New York, NY,
USA (2011). DOI 10.1145/2000229.2000236. URL
http://doi.acm.org/10.1145/2000229.2000236

32. Lee, E.: Cyber physical systems: Design challenges.
In: Proceedings of the 2008 11th IEEE Sympo-
sium on Object Oriented Real-Time Distributed
Computing, ISORC ’08, pp. 363–369. IEEE Com-
puter Society, Washington, DC, USA (2008). URL
https://doi.org/10.1109/ISORC.2008.25

33. Mehta, N., Medvidovic, N., Phadke, S.: Towards a taxon-
omy of software connectors. In: ICSE ’00: Proceedings of
the Twenty-second International Conference on Software
Engineering, pp. 178–187. ACM, New York, NY, USA
(2000). DOI http://doi.acm.org/10.1145/337180.337201

34. Moriconi, M., Qian, X.: Correctness and com-
position of software architectures. SIGSOFT
Softw. Eng. Notes 19(5), 164–174 (1994). DOI
http://doi.acm.org/10.1145/195274.195403

35. OASIS: Web services business process execution
language (2007). URL http://http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

36. OMG: OMG Unified Modeling Language Specification
(2007). Http://www.omg.org/cgi-bin/doc?formal/07-11-
01.pdf, Access Date: 04-03-2015.

37. Papadopoulos, G., Arbab, F.: Coordination models and
languages. Tech. rep., CWI (Centre for Mathematics and
Computer Science), Amsterdam, The Netherlands (1998)

38. Proença, J., Clarke, D.: Typed connector families. In:
Revised Selected Papers of the 12th International Confer-
ence on Formal Aspects of Component Software - Volume
9539, FACS 2015, pp. 294–311. Springer-Verlag, Berlin,
Heidelberg (2016)

39. Rana, T.: Incremental construction of component-based
systems: A study based on current component model.
Ph.D. thesis, School of Computer Science, The University
of Manchester (2015)

40. Rana, T.: Ex-man component model for component-
based software construction. Arabian Journal for Science
and Engineering pp. 1–14 (2019)

41. Rana, T., Bangash, Y., Baz, A., Rana, T., Imran, M.:
Incremental composition process for the construction of
component-based management systems. Sensors p. 1351
(2020). DOI https://doi.org/10.3390/s20051351

42. Rana, T., Bangash, Y.A., Abbas, H.: Flow con-
straint language for coordination by exogenous connec-
tors. IEEE Access 7, 138,341–138,352 (2019). DOI
10.1109/ACCESS.2019.2943164

43. Rana, T., Baz, A.: Incremental construction for scalable
component-based systems. Sensors p. 1435 (2020). DOI
ttps://doi.org/10.3390/s20051435

44. Sommerville, I.: Software Engineering, tenth edn. Pear-
son Education Limited, Essex, England (2016)

45. Stepan, P., Lau, K.: Controller patterns for component-
based reactive control software systems. In: CBSE’12 -
Proceedings of the 15th ACM SIGSOFT Symposium on
Component Based Software Engineering—CBSE - Proc.
ACM SIGSOFT Symp. Compon. Based Softw. Eng.,
pp. 71–76. Association for Computing Machinery, United
States (2012). DOI 10.1145/2304736.2304749

46. Sullivan, K., Marchukov, M., Socha, J.: Analysis
of a conflict between aggregation and interface ne-
gotiation in Microsoft’s component object model.
IEEE Transactions on Software Engineering 25(4),
584–599 (1999). DOI 10.1109/32.799960. URL
http://dx.doi.org/10.1109/32.799960

47. Szyperski, C., Gruntz, D., Murer, S.: Component Soft-
ware: Beyond Object-Oriented Programming, second
edn. Addison-Wesley, New York, NY,United States
(2002)

48. Velasco Elizondo, P., Lau, K.K.: A catalogue of compo-
nent connectors to support development with reuse. The
Journal of Systems and Software 83, 1165–1178 (2010).
DOI 10.1016/j.jss.2010.01.008

49. Wang, T.: A context-sensitive service composition
framework for dependable service provision in cyber-
physical systems. International Journal of Ad Hoc
and Ubiquitous Computing 24, 1 (2017). DOI
10.1504/IJAHUC.2017.10001130

50. Whitehead, K.: Component-Based Development: Princi-
ples and Planning for Business Systems. Pearson Educa-
tion (2002)

	Enlighten Accepted coversheet
	221981

