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Abstract

A major cause of spacecraft orbital variation comes from natural perturbations,

which, in close proximity of a body, are dominated by its non-spherical nature.

For small bodies, such as asteroids, these effects can be considerable, given their

uneven (and uncertain) mass distribution. Solar sail technology is proposed to

reduce or eliminate the net secular effects of the irregular gravity field on the

orbit. Initially, a sensitivity analysis will be carried out on the system which will

show high sensitivity to changes in initial conditions. This presents a challenge

for optimisation methods which require an initial guess of the solution. As such,

the Genetic Algorithm (GA) is proposed as the preferred optimisation method

as this requires no initial guess from the user. A multi-objective optimisation

is performed which aims to achieve a periodic orbit whilst also minimising the

effort required by the sail to do so. Given the system sensitivity, the control law

for one orbit is not necessarily applicable for any subsequent orbit. Therefore, a

new method of updating the control law for subsequent orbits is presented, based

on linearisation and use of a Control Transition Matrix (CTM). The techniques

will later find application in a multiple asteroid rendezvous mission with a solar

sail as the primary propulsion system.
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Nomenclature

a Semi-major axis

ac Characteristic acceleration

b Dimension of spacecraft/sail

C Gravity field harmonic coefficients

d Dimension of spacecraft/sail

e Eccentricity

h Dimension of spacecraft/sail

i Inclination

Izz Moment of inertia around principal z-axis

J Objective function

M Mass of asteroid

m Mass of spacecraft/sail

n Sail normal vector

n̂ Unit vector of sail normal vector

P Associated Legendre functions

r Position vector

r0 Normalising radius

r0,points Radius of sphere containing initial points

rsun Sun position vector
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r̂sun Unit vector of Sun position

s Cartesian state vector

S Gravity field harmonic coefficients

t Time

U Gravity field potential function

u Control vector

Xe Ellipsoid dimension

Ye Ellipsoid dimension

Ze Ellipsoid dimension

α Sail cone angle

γ Angle between two sail attitudes

γ̇ Magnitude of rigid-body angular velocity of sail

∆γ̇ Total changes in γ̇ over one orbit (Sail “effort” value)

δ Sail clock angle

ε Error in state

θ True anomaly

λ Longitude

µ Gravitational parameter

σ Density

τ Torque of rigid-body sailcraft
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ΦC Control transition matrix

ΦS State transition matrix

φ Latitude

Ω Right ascension of ascending node

Superscripts

T Transpose

Subscripts

c Denotes relation to cube

l Degree of harmonic expansion

m Order of harmonic expansion

new Denotes relation to new orbit obtained by CTM method

nominal Denotes relation to nominal orbit

p Denotes relation to plate

0 Initial point

f Final point

1. Introduction

Asteroids, and in particular near-Earth asteroids (NEAs), pose both a threat

and an opportunity to life on Earth: a threat in terms of possible Earth impact,

and an opportunity to explore what are often pristine relics of the early solar

system. In more recent years, NEAs have also become the focus of a new breed

of space-entrepreneur: the asteroid miner.

Given the limitations of Earth-based observations, it is desirable to conduct
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in-situ analysis of these bodies. There have been several successful asteroid

missions and, at the time of writing, there are two active missions: Hayabusa

2 and OSIRIS-REx. JAXA’s Hayabusa 2 mission (Sarli and Tsuda, 2017) has

so far brought many successes, not least in the deployment of the MASCOT

landers (Ho et al., 2017). This mission will perform a sample extraction to

be returned to the Earth for analysis and follows the earlier Hayabusa mission

(Yoshikawa et al., 2006) which also, successfully, returned a sample of asteroid

Itokawa to the Earth in 2010. NASA is also carrying out a sample return mission

with OSIRIS-REx (Hesar et al., 2016), which will return samples from asteroid

Bennu to the Earth. NASA will launch the first solar sail mission to an asteroid

when NEA Scout (McNutt et al., 2014) begins its 2 year journey to flyby asteroid

1991VG atop the new Space Launch System (SLS). There have also been other

flyby and rendezvous proposals made in the literature (Bando and Yamakawa,

2011; Hughes and McInnes, 2004; Zeng et al., 2014), which promise to harness

the unique ability of solar sail technology to provide high energy missions. In

their Gossamer roadmap series of papers, Dachwald et al. (2014); Grundmann

et al. (2015, 2019) continue the two decades of work from DLR and ESA in

developing the path to solar sailing missions. One of the recent stages of this

roadmap shows the unique flexibility of the technology in making possible a

single mission to multiple NEAs (Peloni et al., 2016).

A key phase of the mission to an asteroid will be the operation of the space-

craft in the near-asteroid space. In this region, the effects of the non-spherical

nature of the body become very important. For highly irregular bodies, these

perturbations can lead to orbital escape (Scheeres, 1999). Therefore, it is ben-

eficial to have a method of alleviating these effects on the spacecraft.

Macdonald and McInnes (2005) propose the blending of optimal control

laws for station-keeping manoeuvres. Application is made to the Earth-centred

“GeoSail” mission, where the orbit lies in the ecliptic plane. In order to maintain

a Sun-pointing periapsis, and so the apoapsis in the Earth’s magnetotail, the

sail orientation is chosen such that the accelerations experienced are able to

countenance the secular variation of the argument of periapsis.
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Biggs and McInnes (2009) present the application of Time-Delayed Feedback

Control (TDFC) as a method of bounding the orbit of a spacecraft around a

highly eccentric ellipsoid; in this case applied to asteroid 433 Eros. Rather than

depending on some reference trajectory, this method utilises the state known

one period previous to the current state as the reference. Such a method allows

for an adaptive approach to the problem; very important where the gravity field

is not known a priori, which is most often the case for an asteroid mission.

Oliveira and Prado (2014) present their work in station keeping manoeuvres

using a solar sail to combat perturbations from numerous sources. This work

utilises PID control of the solar sail to counteract the accelerations experienced

by the spacecraft due to perturbations. The method finds success in address-

ing the accelerations experienced, and shows the versatility of the solar sail in

mission applications.

In a series of works, Farrés et al. propose using the sail in order to offset

undesirable effects from the non-linear dynamics of multi-body systems. Farrés

and Jorba (2012); Farrés and Jorba (2016) propose to use the sail to stabilise

a spacecraft’s orbit around an unstable equilibrium point in the Circular Re-

stricted 3 Body Problem (CR3BP). The objective is to allow the sail to escape

along the unstable manifold before changing the sail orientation such that the

stable manifold is brought into the path of the sail, thus allowing the spacecraft

to remain bound in orbit around the equilibrium point. Later, this strategy

was applied to a halo orbit in the CR3BP (Farrés and Jorba, 2014). Farrés and

Jorba (2011) then apply the same method to the Elliptical Restricted 3 Body

Problem (ER3BP). Farres and Ceriotti (2012) propose strategies of stabilising

vertical Lyapunov orbits in the CR3BP using both LQR control and Floquet

Modes.

The current work aims to use the solar sail to counteract the effect of the

perturbations from a non-spherical body on a spacecraft. A multi-objective

optimisation will be performed using a Genetic Algorithm (GA) to obtain a

control law which converges to a periodic orbit while also minimising the effort

required by the sail to do so. As the dynamics are very sensitive, in most cases,
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any control law will not be valid for any small displacement from the GA nominal

orbit after one or more revolutions. Therefore, a method will be presented for

updating the control law for subsequent orbits in the neighbourhood of the

nominal one. This method allows the sail to converge to a periodic orbits, up

to a certain inclination. The limiting effect of orbital inclination will also be

analysed.

The paper is organised as follows. Section 2 discusses the different shape

models available for asteroids and makes the case for the selected model. Section

3 introduces the dynamics of the problem before a sensitivity analysis of the

asteroid system is performed in Section 4. The methodology is described in

Section 5. This will include an analysis of the multi-objective optimisation and

a method proposed for updating the control law for orbits subsequent to the

nominal. Results from each of the described methods will be presented in Section

6 along with an analysis on the limiting effect of the orbit inclination on the

success of the method of updating the control law in Section 6.4. Finally, Section

7 introduces a smoother control law by application of cubic splines interpolation

to provide a real world applicable control law. The torque required to perform

these manoeuvres are then presented and compared with similar results from

the literature for realistic sails.

2. Asteroid Shape Model Selection

Asteroids are of such a small mass that their gravitational force is not strong

enough to compact their constituent materials into the spherical shape which

we see for larger bodies (Cox and Cohen, 2017). As such, they tend to have very

irregular shapes, which give rise to irregular gravity fields. This poses a problem

in choosing a model accurate enough to be able to predict the spacecraft motion

around the asteroid with sufficient precision for navigation.

The literature has shown the use of many different gravity field models,

as researchers seek the balance between accuracy of results and efficiency of

computation. Several authors (Scheeres, 2011; Hu and Jekeli, 2015; Sebera et al.,
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2016) discuss the use of harmonic expansion methods; spherical, spheroidal and

ellipsoidal. The harmonic expansions are limited by the Brillouin surface. This

surface represents the boundary of convergence for these methods. External to

the surface, the method will converge. However, the standard methods do not

guarantee convergence either close to, or internal to, the surface. Takahashi and

Scheeres (Takahashi and Scheeres, 2014) discuss the interior Brillouin surface

where the gravity field converges within the Brillouin surface. This is important

in modelling the dynamics of a spacecraft very close to the asteroid surface,

though only possible when some knowledge of the asteroid shape is available.

Further more authors have utilised the ellipsoid as a reference shape for the

asteroid and have modelled this using the tri-axial ellipsoid calculated using

elliptical integrals (Guibout and Scheeres, 2003; Scheeres, 1993, 1994, 2011).

Rossi (1999) describes the use of discrete point masses which define an irreg-

ularly shaped body. The problem then becomes an n-body problem, where the

potential of each point mass is summed to give the total potential of the body.

Other method such as the use of a dumb-bell model (Gozdziewski, 1998)

and a cube model (Venditti and Prado, 2015) have also been proposed.

The most accurate method of modelling asteroids is through use of shape

models which have been obtained via light curve data, radar, or in-situ analysis.

These models can then be represented using polyhedron modelling. This allows

for very detailed models of the asteroid where the true, irregular, shape of the

body can be accurately represented. This method is described and applied by

numerous authors (Scheeres, 2004, 2012; Mota and Rocco, 2019; Rocco, 2019;

Werner, 1994; Scheeres et al., 1996; Werner and Scheeres, 1997; Rossi, 1999;

Viale et al., 2019) and the work allows a much higher fidelity model to be

produced than is possible with any other method. However, this accuracy comes

at a computational cost, as the calculation of the potential required summation

over the face and each edge of every polygon.

The choice of which model to use is highly dependent on both the distance of

the spacecraft to the asteroid and also the precision of the gravity field needed

for trajectory design and spacecraft navigation. When the spacecraft is close to
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the surface, and/or interacting with the surface, then the highly detailed and

accurate polyhedron models are required. If the spacecraft is more distant from

the surface then the computationally intensive polyhedron models are no longer

required, as the effect of the complex asteroid shape on the gravitational field

quickly dissipate.

To understand the effects of the shape of a body on the gravitational field,

Fig. 1 shows the contours for the magnitude of the gravitational acceleration for

four asteroids: Castalia, Geographos, Itokawa and Mithra, using the polyhedron

shape models. These are examples of elongated, or highly irregular, bodies. The

contours, plotted in the x-y plane for each asteroid, show the shape of the gravity

field. It is clear that the shape of the field quickly becomes more regular as the

point mass moves radially outward from the surface of the body.

(a) Castalia (b) Geographos

(c) Itokawa (d) Mithra

Fig. 1: Contour plots of magnitude of the gravitational acceleration in the x-y plane for

asteroids Castalia, Geographos, Itokawa and Mithra. The red line shows the elliptical approx-

imation of the given contour line.
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Given the increasing regularity of the shape of the gravity field as the point

mass moves away from the body, it becomes wholly reasonable to assume a less

computationally expensive method where the simulated work remains at these

distances from the surface. The red dashed line of Fig. 1 shows an ellipse which

is fitted to a particular contour line. In order to understand the accuracy of

approximating the contour as an ellipse, the Mean Squared Error (MSE) of the

ellipse relative to the contour line is calculated for each asteroid and presented

in Table. 1.

Table 1: Mean squared error of elliptical approximation of gravity field contour lines.

MSE (km2)

Castalia 3.03× 10−4

Geographos 7.20× 10−2

Itokawa 1.03× 10−4

Mithra 7.67× 10−2

It is clear from the small values of MSE that an elliptical approximation

is indeed very accurate, and so this work will use the ellipsoid to model the

irregular asteroid

3. Dynamics

This work uses two-body dynamics where the gravitational potential field of

one massive body (the asteroid) acts on a negligible-mass spacecraft. This allows

focus on gravitational perturbations from the irregular gravity field of that body

only, and no third-body effects. The inertial reference frame is centred on the

asteroid centre of mass with the x-axis in the direction of the first point of

Aries, the z-axis pointing along the axis of rotation and the y axis completing

the right-handed set. Pravec et al. (2002) state that, for asteroids of diameter

smaller than 10 km, there are significant populations of both slow and fast

rotators, which can have rotational periods from longer than one day to as

10



short as 2 hours. As such, the asteroid is considered to have a rotational period

of 5 hours, which is within this range. At the origin of time, the asteroid longest

dimension is aligned with the x-axis of the inertial frame.

The two-body acceleration for a spacecraft in this system is given by:

r̈ = ∇U (1)

where r̈ is the acceleration of the spacecraft, and ∇U is the gradient of the grav-

itational potential function of the non-spherical body, modelled using spherical

harmonics. This potential function U is given by Scheeres (2011):

U(r, φ, λ) =
µ

r

∞∑
l=0

l∑
m=0

(r0

r

)l
Plm[sinφ]× ...

...× {Clm cosmλ+ Slm sinmλ}

Plm[sinφ] = cosm φ

int[(l−m)/2]∑
i=0

Tlmi sinl−m−2i φ

Tlmi =
(−1)i (2l − 2i)!

2li! (l − i)! (l −m− 2i)

(2)

where µ is the asteroid gravitational parameter, r is the magnitude of the space-

craft position relative to the asteroid, l is the degree of the harmonic expansion,

m is the order of the harmonic expansion, r0 is the mean radius of the aster-

oid, P is the associated Legendre function, φ is the latitude of the spacecraft

position in an asteroid centred reference frame, and Clm, Slm are the harmonic

coefficients of the model. The coefficients for an ellipsoid, given by Scheeres

(2011), will be applied:
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where r0 is the normalising radius of the body, which in the case of the ellipsoid

is taken as the largest dimension, and Xe, Ye, Ze are the ellipsoid dimensions.

Fig. 2 shows the dimensions of the ellipsoid.

Fig. 2: Dimensions of ellipsoid, as presented in Scheeres (2011)

In order to establish the mass of the body, we assume an average asteroid

density of σ = 3.5 g/cm3 (Scheeres, 2011). The mass is then given by:

M =
4πσXeYeZe

3
(4)

Finally, the acceleration due to the solar sail (McInnes, 1999) is added:

r̈ = ∇U + ac (r̂sun · n̂)
2
n̂ (5)

where r̂sun is the unit vector of the Sun-line, n̂ is the sail normal unit vector

and ac is the sail characteristic acceleration. In this work, an ideal, perfectly

reflecting sail is used. The ideal sail neglects the effects of imperfect reflection

as well as those from a billowing sail. These effects can both reduce the effective
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performance of the sail as well as result in a thrust vector which is not aligned

with the sail normal, leading to additional challenges in control.

The assumption that the NEA is in a circular orbit around the Sun at 1 AU

is made, and the time considered for operations around the asteroid are short

enough that any change in position of the Sun can be neglected. Therefore,

r̂sun = [1, 0, 0]. This work will not consider the effect of eclipses, where the sail

passes behind the asteroid with respect to the Sun, and so where there would

be no effect from SRP.

The definition of the system dynamics is completed by establishing the sail

normal vector (McInnes, 1999):

n̂ = [cos(α), sin(α) cos(δ), sin(α) sin(δ)]
T

(6)

as a function of the control angles, sail cone α and clock angle δ.

4. System Sensitivity

Optimisation methods, particularly local ones, usually require initialisation

with an initial guess of the solution. This initial guess must be sufficiently close

to the optimal solution for the optimisation method to converge to a solution.

For highly sensitive systems, it becomes necessary for such an initial guess to

be very close to the optimal solution in order for the optimisation method to

converge. To establish a suitable method of optimisation, the orbit sensitivity

to changes in initial condition is analysed here.

Fig. 3 shows this analysis for a range of four different orbits, with orbital

elements shown in Table 2. Incremental changes are made in the Cartesian x,

y and z initial positions and the final error in x, y and z positions after one

full revolution, relative to the final position of the reference orbit, are recorded.

This final error in each of the x, y and z co-ordinates are shown on the y-axis

of Fig. 3 with the changes in initial position shown along the x-axis. Therefore,

the final point error is the distance between the final point of the reference orbit,

and the final point for the perturbed orbit.
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(a) Sensitivity analysis with orbital inclina-

tion of 0 degrees
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(b) Sensitivity analysis with orbital inclina-

tion of 15 degrees
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(c) Sensitivity analysis with orbital inclina-

tion of 30 degrees
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(d) Sensitivity analysis with orbital inclina-

tion of 60 degrees

Fig. 3: Sensitivity analysis for range of orbital inclinations.

Table 2: Principal orbital elements for four orbits tested in sensitivity analysis

a (km) e i (deg)

a) 9.80 0.10 0

b) 9.80 0.10 15

c) 9.80 0.10 30

d) 9.80 0.10 60

It is clear that the system is most sensitive to changes along the x-axis for all

orbits, with the highest sensitivity seen in the highest inclination orbit (as the

orbits’ initial point is always at periapsis, changes in x-position impact mostly

the semi-major axis). At an orbital inclination of i = 60◦, for every metre

change in initial condition along the x-axis, there is an associated error of 46m

in final position when compared to the final position of the original orbit.

Given this high sensitivity, it can be difficult for any optimisation method
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to converge to a solution to the optimisation problem, unless the initial guess

is very close to the optimal solution. A wide variety of cases were tested using

a Gauss pseudospectral method of optimal control (Rao et al., 2010). However,

these failed to converge. As such, and without knowledge of a solution which

would be sufficiently close to the optimal solution, it is desirable to use an

optimisation method which does not require an initial guess from the user.

5. Methods

In this work, the objective is to design stable periodic orbits which can be

controlled by a solar sail. To do this, a multi-objective optimisation will be per-

formed by a Genetic Algorithm (GA) where the objectives are to minimise the

error in initial and final state, so as to ensure periodicity, while also minimising

the effort required by the sail to do so.

Solar sails possess high moments of inertia. As such, high rates of rotation

would place excessive demands on the system power supply or would necessitate

excessively heavy reaction wheels. As such, the second objective of minimising

the effort allows the optimisation to find control laws which are feasible for

near-term sails.

5.1. Multi-Objective Optimisation with Genetic Algorithm

A Genetic Algorithm (GA) provides a method for both constrained and

unconstrained optimisation based on the principles of evolution. Having defined

”individuals” that encode the solution vector, the algorithm combines pairs

of “parents” to produce the next generation of “children”. Over successive

generations, the “population” will converge to the optimal solution.

The benefit of this algorithm, for the purposes of this work, is that it requires

no initial guess from the user. The algorithm can be initialised with an initial

population randomly spread in the search space. However, it is important to

note that the algorithm is stochastic, and the convergence to the global optimum

is not guaranteed; in fact, a solution provided from one initial population can
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be different from the optimal solution for another initial population. As such,

it is necessary to run multiple instances, or “seeds”, in order to obtain a true

optimal solution.

From the full set of solutions to the multi-objective optimisation problem,

there exists a subset of non-dominated solutions which, when plotted in the

objective-space, produce what is referred to as the Pareto Front (Dirkx and

Mooij, 2017). The GA provides both Pareto and non-Pareto solutions. In order

to build a better Pareto front based on all solutions, all solutions from all seeds

are aggregated and from these, the non-dominated solutions from this full set

are selected to produce the Pareto front.

There exists then the question of how to select the appropriate solution

from the multi-objective optimisation. Rocco et al. (2003) provide an overview

of the many optimisation methods available and, along with Rocco et al. (2013),

discuss the selection of solutions from the Pareto Front. It is possible to apply

a weighting to each solution, but this must be carefully chosen so as not to

bias a particular objective. The choice of weighting applied to each Pareto

optimal solution, in itself, presents an optimisation problem, and it also fails

to take advantage of the population based-nature of the Genetic Algorithm

(Coverstone-Carroll et al., 2000).

In the optimisation of the asteroid orbit, two objectives are considered:

1. Reduce the error in the state-space between the initial and final point of

an orbit, this is to ensure a periodic orbit.

2. Minimise the effort required by the sail to do so, in order to meet real-

world steering constraints of a sail and the requirements this places in

terms of power and weight.

Therefore, the objective functions for this work can be formulated as:

J1 = ||s(tf )− s(t0)|| (7)

J2 =

∫ tf

t0

γ̈dt (8)

16



where s is the state vector of the spacecraft, t0 and tf are the initial and final

times respectively and γ̇ is the magnitude of the angular velocity of the sail

(as a rigid body) as it changes attitude. By taking the integral of the angular

acceleration (γ̈) of the sail over one orbital period, the cumulative change in

angular velocity, ∆γ̇, is obtained. This value will be considered the total “control

effort” required by the sail.

To reduce the time-continuous optimal control problem to a static problem,

the control will be discretized into N nodes, equally spaced in time, along the

trajectory, and then interpolated to reconstruct a continuous control history.

Initially, the control will be interpolated using a piece-wise-constant method.

Later, a differentiable cubic spline interpolation will be presented as a viable

control for a realistic sail. The optimisation solution vector will therefore be

composed of the controls at each node, the final time of the orbit and the

initial state of the orbit. As there are N discrete nodes, and the control has

two components (u = [α, δ]), there will be 2N controls. Bounds for the cone

angle are set such that α ∈ [0, π/2], the clock angle bounds are set such that

δ ∈ [0, 2π]. The bounds applied to the final time are set at 20% either side of

the final time of the unperturbed orbit. For the initial state, the bounds are

applied as a percentage of the magnitude of the reference initial state. In this

work, there will be a ±5% tolerance on each component of the Cartesian initial

state. The control law obtained from this process will be the nominal control,

unominal.

5.2. Updating the Control Law

Given the system sensitivity, which was illustrated in Section 4, any small

discrepancy between the initial and final state of an orbit could mean that the

nominal control law, established by the optimisation method of Section 5.1,

cannot maintain periodicity for any subsequent orbit. As such, a method by

which the control law can be updated using the available information (the error

in initial and final states) is desirable.
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5.2.1. Control Transition Matrix

The errors in state at time t, due to variations at t0, are given by (to a linear

approximation):

δs(t) = ΦS(t, t0)δs(t0) (9)

where ΦS is the State Transition Matrix (STM) (Wiesel, 2010; Vallado, 2013).

In this work, the interest lies in the effect that variations of control, rather than

initial state, will have on the final state of the spacecraft. As such, this work

now extends the linear theory of the STM to include these control variations.

An equivalent matrix to the STM will be referred to as the Control Transition

Matrix (CTM). Each entry of the CTM represents the variation in the final

states for a unitary variation in each of the controls. The matrix size is therefore

6× 2N .

By replacing ΦS with ΦC , the CTM:

δs(tf ) = ΦCδu (10)

where δu are the deviations in control vector unominal. The objective is to

correct the nominal control law to account for errors in the initial state. The

variation of the controls that produces a variation in δs(tf ), is (at least in a first

order approximation):

δu = Φ−1
C δs(tf ) (11)

Therefore, in order to remove an error in δs0 after one period, the aim is to

achieve a final error of:

δs(tf ) = −δs0 (12)

This assumes that the linearisation of the CTM is still valid for the perturbed

orbit, allowing the perturbed orbit to be corrected towards the nominal orbit.

As the CTM is not a square matrix, its inverse is not uniquely defined. The
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Moore-Penrose pseudo-inverse is used to obtain Φ−1
C , which results in a 2N × 6

matrix. To update the control law, the nominal control is added to the control

variation:

u = unominal + δu (13)

5.2.2. Monte Carlo method to establish success rates

Monte Carlo methods are a set of numerical methods based on repetitive

random sampling to assess the success of a given system under uncertain initial

conditions. For this work, a set of initial states, si, is generated randomly, and

used to test the success rates of the method described in Section 5.2.1. A sphere

of radius r0,points will contain 500 normally distributed random points within 3

standard deviations of the mean. To generate these points, Ceriotti and Sanchez

(2016) give:

si = snominal +

(
r0,points

rndNorm

1.96

)
1(6×1) (14)

where r0,points is the radius of sphere containing points, rndNorm is a randomly

generated number with normal distribution, the 1.96 scaling factor guarantees

that the randomly generated points are within 3 standard deviations of the

mean, giving a 97.5% probability that the points will be contained in the sphere.

The 1(6×1) matrix is a 6× 1 matrix of ones.

5.2.3. Success Parameters

With the method of updating the control law established, it is now useful

to define success parameters for this method. Fig. 4 shows the initial state of

the nominal orbit, s0,nominal, on a Poincaré section (Wiesel, 2010), where the

black dot represents the point at which the section is pierced. The success of

the method will consider a displaced orbit, s0, which will be propagated with

both the nominal control law (red line) and the updated control law (blue line).

sf,unew
is the final state of the orbit which originates at s0 and utilises

the new control law, u(t), and sf,unominal
is the final state of an orbit which
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Fig. 4: Schematic showing the initial and final states of the nominal orbit, new orbit, and

the error in the states and their final states if propagated with both the new control and the

nominal control. The Poincaré section, which lies in the x-z plane of the asteroid-centred

reference frame, is represented by the grey dashed line. Each trajectory orbits once around

the asteroid.

originates at s0 and is propagated using the nominal control law. δs is the

error between the nominal orbit initial state and the initial state of the orbit

originating at s0, εunew
is the error between the nominal initial point and the

final point of the orbit originating at s0 and propagated using the new control

law and εunominal
is the error between the nominal initial state and the final

state of the orbit originating at s0 propagated using the nominal control law.

The first success parameter is defined as εunew
< |δs|, which implies that the

updated control law u in Eq. 13 reduces the norm of the initial state error after

one orbit. The second success parameter is defined as εunew
< εunominal

. This

success parameter shows that by integrating the updated control law, the final

state is closer to the target final state than would have been achieved by simply

using the nominal control law again.

6. Results

6.1. Multi-Objective Optimisation with Genetic Algorithm

In this section a target orbit with elements listed in Table 3 is sought by the

GA multi-objective optimisation. The objectives are for a periodic orbit with a
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minimum amount of effort required by the sail.

Table 3: Principal orbital elements for the initial target orbit for the GA multi-objective

optimisation.

a (km) e i (deg)

9.80 0.10 15.00

As discussed in section 5.1, it is necessary to initialise the GA with multiple

seeds. In this work, 25 seeds are used to generate 25 initial populations and

their solutions form the full solution set. The non-dominated solutions from

this set form the Pareto front.

Fig. 5 shows the full solution set in black points with the Pareto Front shown

in red.

0 0.5 1 1.5
0

0.1

0.2

0.3

Fig. 5: Pareto front shown in red with full set of solutions in black.

It is clear that, for a minimum amount of effort from the sail, there will

be a correspondingly high difference between the initial and the final state of

the orbit. Similarly, a minimum difference in final and initial state will bring

a higher effort value. Section 5.1 discussed the methods which are available in

the literature for selection of the appropriate solution from the Pareto front.

However, it should be noted that data from The Planetary Society’s LightSail

2 mission shows rotation rates of γ̇ = 0.4 deg/s 1. As such, a solution is sought

1https://www.planetary.org/explore/projects/lightsail-solar-sailing/lightsail-mission-

control.html, cited March 27th, 2020
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which offers an effort value which is lower than ∆γ̇ = 0.4 deg/s and which offers

as close to a periodic solution as possible. As all of the solutions on the Pareto

Front meet the effort condition, the solution which offers the minimum difference

in final and initial states is chosen. The control law and trajectory for the chosen

solution are shown in Fig. 6. The difference in initial and final states is reduced

by allowing variation in initial state from the reference initial state as part of the

optimisation. For this orbit the objective values were ||s(tf ) − s(t0)|| = 0.017

and ∆γ̇ = 0.24 deg/s

(a) Trajectory plot from GA results.
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(b) Control history in clock (δ) and cone (α)

angles

Fig. 6: Trajectory and control history for nominal orbit using GA with piece-wise constant

interpolation.

However, although this solution brings the final state very close to the initial

state, there is still a small error. Given the unstable nature of the orbit and its

sensitivity to initial conditions, this means that a small error would quickly grow

after a number of orbital revolutions. Fig. 7 shows how the nominal control law,

applied over two orbits, causes the sail to diverge from the nominal trajectory.

For this reason, the CTM method described in Section 5.2 is applied.

6.2. Success Rates of CTM Method of Control Law Correction

Applying the methods described in Section 5.2, the Monte Carlo simulation

will be performed for increasing radius r0,points of dispersion of the initial states.

The success rate of each of the two parameters, outlined in Section 5.2.3, will

then be measured for each r0,points. Fig. 8 shows the success rates for εunew
<
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Fig. 7: Trajectory as in Fig. 6a, propagated for two revolutions using same nominal control

law shown in Fig. 6b

|δs| in red, and εunew
< εunominal

in blue up to r0,points = 490 m. Fig. 9 shows

the success rates up to r0,points = 9.8 km.
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Fig. 8: Success rates of parameters εunew < |δs| and εunew < εunominal with varying radius

of sphere of dispersion of initial points.
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Fig. 9: Success rates of parameters εunew < |δs| and εunew < εunominal with varying radius

of sphere containing initial points.

For a sphere radius up to 500 m, εunew
< εunominal

has very nearly 100%
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success, where εunew < |δs| is never successful. As the radius of the sphere

increases, there is a reduction in the success rate of εunew
< εunominal

until it

settles around 80%. εunew
< |δs| remains almost always unsuccessful until the

sphere increases to a radius of around 4km, reaching a peak success rate of 4%

at r0,points ≈ 9km. However, given the linearisation of the system, the drop in

success of εunew
< εunominal

may be an indication of the CTM being applied to

trajectories which are not sufficiently close to the reference trajectory for the

linearisation to be valid.

6.3. Application of CTM to multiple revolutions

In order to show the utility of using the CTM to update the control law,

this section will present results where the CTM is used over multiple orbits to

achieve periodicity.

Four test cases will be presented for different orbit inclinations. Each test

case will show the target orbital elements, the orbital elements for the orbit

obtained via the GA. The orbit selected from the GA is the one with the smallest

difference between initial and final state. The orbital elements of the final

periodic orbit to which the CTM method converges are also listed.

6.3.1. Test Case 1

The first test case is for an equatorial orbit with orbital elements shown

in Table 4. The initial state for this test case, along with the controls and

final time, form the solution vector of the Genetic Algorithm optimisation, as

described in Section 5.1. The resulting orbit is taken as the nominal orbit,

shown in red in all subsequent plots, and the CTM method is applied to update

the control law on each subsequent orbit. Table 4 shows the orbital elements

for the target orbit, the GA nominal orbit, and the final periodic orbit obtained

using the CTM.

Fig. 10 shows the trajectory comparison of using the nominal control law for

several subsequent orbital revolutions (Fig. 10a) and using the CTM method

to update the control law for each orbit (Fig. 10b). As was made clear in Fig.
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8, the new control law, updated using the CTM, will almost always succeed in

improving upon the error between the final state and the target final state than

that which would have been achieved using the nominal control law.

(a) Nominal orbit shown in red. Blue trajec-

tory shows the divergent effect of continuing use

of nominal control law for subsequent orbits,

shown here for 10 revolutions.

(b) Nominal orbit shown in red. Blue trajec-

tory represents 100 subsequent revolutions un-

der control of the CTM method, where the con-

trol law is updated.

Fig. 10: Comparison of trajectories where the nominal control law is applied to subsequent

orbital revolutions with the CTM employed to update the control law on each successive

revolution.

Fig. 11 shows a comparison in the time history of the control law obtained

from the GA alongside the control law obtained for the periodic orbit obtained

through use of the CTM.
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Fig. 11: Control law for the nominal orbit obtained from the GA (shown in broken lines)

along with control law for the periodic orbit (shown in solid lines) for test case 1

In order to confirm the periodicity of the orbit obtained using the CTM

method, Fig. 12 show the Poincaré sections in position (Fig. 12a) and velocity
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(Fig. 12b); it is clear that the trajectory converges to a periodic orbit and Table

5 shows that the orbital elements achieved through the CTM are very close to

those of the nominal GA result.
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(a) Poincaré section in position. (b) Poincaré section in velocity.

Fig. 12: Poincaré sections in both position and velocity for 100 orbits where control has been

updated using CTM method. Nominal orbit shown in red with all subsequent orbits in blue

and the black connecting line showing the progression from the nominal to the final orbit.

Table 4: Principal orbital elements for the target orbit in test case 1. The nominal orbit is

obtained from the GA and the final periodic orbit is obtained through the CTM control law

updating.

a (km) e i (deg)

Target Orbit 9.80 0.10 0

GA Result 9.29 0.06 1.06

CTM Result 9.12 0.07 0.32

6.3.2. Test Case 2

The second test case continues with the target orbit used in section 6.1,

with orbital elements for the target orbit, the GA nominal orbit, and the final

periodic orbit obtained via the CTM method shown in Table 5.

Fig. 13 shows the trajectory comparison of using the nominal control law

for any subsequent orbital revolution (Fig. 13a) and using the CTM method to

update the control law for each orbit (Fig. 13b).
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(a) Nominal orbit shown in red. Blue trajec-

tory shows the divergent effect of continuing use

of nominal control law for subsequent orbits,

shown here for 10 orbits.

(b) Nominal orbit shown in red. Blue trajectory

represents 100 subsequent orbits under control

of the CTM method, where the control law is

updated.

Fig. 13: Comparison of trajectories where the nominal control law is applied to subsequent

orbits and where the CTM method is employed to update the control law on each successive

orbit.

In order to confirm the periodicity of the orbit obtained updating the con-

trol through the CTM, Fig. 14 shows the Poincaré sections in position (Fig.14a)

and velocity (Fig.14b). From these Poincaré sections, it is clear that the trajec-

tory converges to a periodic orbit and Table 4 shows that the orbital elements

achieved through the CTM are very close to those of the nominal GA result.
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(a) Poincaré section in position. (b) Poincaré section in velocity.

Fig. 14: Poincaré sections in both position and velocity for 100 orbits where control has been

updated using CTM method. Nominal orbit shown in red with all subsequent orbits in blue

and the black connecting line showing the progression from the nominal to the final orbit.
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Table 5: Principal orbital elements for the target orbit in test case 2. The nominal orbit is

obtained from the GA and the final periodic orbit is obtained by the CTM method of control

law updating.

a (km) e i (deg)

Target Orbit 9.80 0.10 15.00

GA Result 8.84 0.01 14.54

CTM Result 8.65 0.03 14.07

6.3.3. Test Case 3

In the third test case, the target orbit sits at an inclination of 30◦, with

the full target orbital elements shown in Table 6. Once again, there is an

improvement in using the CTM method of updating the control law as compared

to the nominal control law for subsequent orbits. Fig. 15 shows the trajectories

for the nominal control over 10 orbits (Fig. 15a) and the trajectory where the

CTM method is employed to update the control law (Fig. 15b) is shown for 100

orbital revolutions.

(a) Nominal orbit shown in red. Blue trajec-

tory shows the divergent effect of continuing use

of nominal control law for subsequent orbits,

shown here for 10 orbital revolutions.

(b) Nominal orbit shown in red. Blue trajec-

tory represents 100 subsequent orbital revolu-

tions under updated control law through the

CTM.

Fig. 15: Comparison of trajectories where the nominal control law is applied to subsequent

orbits and where the CTM method is employed to update the control law on each successive

orbital revolution.
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Once again, the method is successful and the periodicity of the final orbit

is confirmed by the Poincaré sections shown in Fig. 16. The orbital elements

for the final CTM orbit are shown alongside the GA result in Table 6 and show

close alignment.
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(a) Poincaré section in position. (b) Poincaré section in velocity.

Fig. 16: Poincaré sections in both position and velocity for 100 orbits where control has been

updated using the CTM. Nominal orbit shown in red with all subsequent orbits in blue and

the black line showing progression from nominal to final orbit.

Table 6: Principal orbital elements for the target orbit in test case 3. The nominal orbit is

obtained from the GA and the final periodic orbit is obtained by the CTM method of control

law updating.

a (km) e i (deg)

Target Orbit 9.80 0.10 30.00

GA Result 9.23 0.08 30.62

CTM Result 8.65 0.03 29.77

6.3.4. Test Case 4

In the fourth test case, a higher inclination orbit is used. The initial Kep-

lerian orbit parameters used for the GA, and those of the resulting orbit, are

shown in Table 7.

From Fig. 17, it would appear that at this inclination, there are no nearby

periodic orbits controllable with the CTM method. This presents an interesting
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question of where this limit in inclination lies.

Fig. 17: CTM method applied over 4 orbital revolutions where GA result stems from initial

orbit at i = 60◦

Table 7: Principal orbital elements for the target orbit in test case 4. The nominal orbit is

obtained from the GA and the final periodic orbit is obtained through the CTM control law

updating.

a (km) e i (deg)

Target Orbit 9.80 0.10 60.00

GA Result 8.84 0.07 63.87

CTM Result - - -

6.4. The Limiting Effect of Orbit Inclination

Given the non-spherical shape of the body, it is expected that, as the right

ascension of the ascending node, Ω, is varied, there will be a corresponding

change in the inclination limit for the CTM method. As such, and taking

account of the symmetry of the ellipsoid, a study is conducted here for Ω ∈ [0, 90]

degrees. It is also expected that variation in other orbit parameters, semi-major

axis (a) and eccentricity (e), will also have an effect. However, this section will

make an initial analysis with a = 9.8 km and e = 0.10.

Fig. 18 shows the boundary between the convergent and divergent regions

for the CTM method.

30



0 20 40 60 80

Right Ascension of Ascending Node,  (deg)

0

20

40

60

80

In
c
lin

a
ti
o

n
,i
 (

d
e

g
)

Convergent 

Region

Divergent

Region

Fig. 18: Visualisation of the effect of changing Ω and i on the convergence of the CTM

method. The line represents the boundary at which point the CTM method cannot converge

to a nearby periodic solution.

Further analysis is required to establish if variation of the other orbital pa-

rameters will improve the convergence of the method.

7. Smoothing the Control Law for Realistic Application

Up to this point, the control laws have been interpolated using a piece-wise

constant method. However, this method required instantaneous changes in sail

attitude. As discussed in Section 5, this is not possible due to limited attitude

actuation capacity of the sail. Therefore, in order to present a realistic solution,

the control interpolation method is changed to cubic splines, and the process is

restarted. The resulting GA trajectory and control law for Test Case 2 (section

6.3.2) are shown in Fig. 19.

The magnitude of the rigid-body angular velocity, γ̇, and angular acceler-

ations, γ̈, required for this nominal control are shown in Fig. 20. The angle

between two attitudes is given by (Peloni et al., 2016):

cos(γ) = n̂(ti) · n̂(ti+1) (15)

where n̂ is the unit vector of the sail normal, t is the time and i is the indexing

variable. As such, the angular velocity, γ̇, is the time rate of change of this

angle. Likewise, the angular acceleration, γ̈, is the time rate of change of γ̇.
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(a) Nominal trajectory from GA using cubic

spline interpolated control law
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(b) Nominal control law using cubic spline in-

terpolation

Fig. 19: Nominal trajectory and control law using cubic spline interpolation on control in the

GA

For the nominal orbit, the optimal values of the objectives from the GA are

given in Table 9.
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(a) Magnitude of rigid-body angular velocity, γ̇
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(b) Angular acceleration, γ̈

Fig. 20: Rigid-body angular velocity, γ̇, and angular accelerations, γ̈, plotted against control

history for nominal orbit

With the nominal trajectory and control established, the CTM method is

once again used to update the control law to ensure a periodic solution. As

before, the simulation is performed for 100 subsequent orbital revolutions. Fig.

21 shows the nominal trajectory in red with the 100 subsequent orbits in blue.

Fig. 22 shows the Poincaré sections in position and velocity where, once again,

the nominal orbit is in red and all subsequent orbits in blue. The black line

highlights the sequence from nominal to periodic. Finally, Fig. 23 shows the
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comparison of the GA control law (dashed line) with the CTM control law (solid

line) for the final periodic orbit.

Fig. 21: Trajectory plot of nominal orbit with spline-interpolated control (red), and subsequent

propagation for 100 orbital revolutions with the control law updated at each orbit using the

CTM.
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(a) Poincaré section in position (b) Poincaré section in velocity

Fig. 22: Poincaré sections in both position and velocity for 100 orbital revolutions where

control has been interpolated using cubic splines and updated using the CTM. Nominal orbit

shown in red with all subsequent orbits in blue and the black line showing progression from

nominal to final orbit.

As in Sec. 6.3.1, the results show that the CTM method has converged

to a stable periodic solution. As the control law has been interpolated using

cubic splines, a smooth transition in sail orientation is obtained, allowing for

the slower rotational rates of a realistic sail. Table 8 shows the orbital elements

of the targeted orbit, the nominal orbit resulting from the GA and the periodic
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Fig. 23: Comparison of the control law obtained from the Genetic Algorithm (GA) and the

Control Transition Matrix (CTM) periodic solution.

orbit obtained through the CTM.

Table 8: Principal orbital elements for target orbit, GA nominal orbit and CTM periodic

orbit, using cubic spline interpolation.

a (km) e i (deg)

Target Orbit 9.80 0.10 15.00

GA Result 8.27 0.03 12.89

CTM Result 8.03 0.09 11.73

The magnitude of the rigid-body angular velocity and the angular accelera-

tion are plotted with the control history for the CTM-updated periodic orbit in

Fig. 24. Table 9 shows the values of each objective for both the nominal orbit

from the GA, and the CTM-updated periodic orbit.

Table 9: Objective function values for the GA nominal orbit and CTM obtained periodic

orbit, where cubic splines interpolation method is used.

||s(tf )− s(t0)|| ∆γ̇ (deg/s)

GA Nominal Orbit 0.04 0.46

CTM Periodic Orbit 0.01 0.63
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(a) Magnitude of rigid-body angular velocity
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(b) Angular Acceleration

Fig. 24: Rigid-body angular velocity and angular accelerations plotted against control history

for CTM periodic orbit

7.1. Torque Analysis

In order to further understand the implication on a realistic sail, this section

will calculate the torques required for attitude tracking. The sails will be con-

sidered as square flat plates and the spacecraft bus is considered to be a cube.

Fig. 25 shows the principal axes of inertia for a plate with negligible thickness.

Fig. 25: Principal axes of inertia for a very thin square plate

In order to take the most conservative estimate of torque requirements, the

analysis will be conducted around one of these principal axes, where the mo-

ments of inertia are highest. The moment of inertia (MOI) for a square flat

plate (b = h) are highest around the x-axis. However, rotations around the

x-axis, shown in Fig. 25, are irrelevant for the sail acceleration, and hence not

considered. Therefore, rotations in this analysis will be conducted around the
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z-axis of Fig. 25. As such, and with b = h, the moment of inertia for a square

flat plate around the principal z-axis are given by (Meriam and Kraige, 1998):

Izz =
1

12
mph

2
p (16)

and for a cube, around the same axis, the MOI is given by:

Izz =
1

6
mch

2
c (17)

where mp is the mass of the plate, mc is the mass of the cube, hp is the edge

length of the plate and hc is the edge length of the cube. The centroid of the

sail and spacecraft bus will be considered coincident and their principal axes

aligned, so the total MOI of the spacecraft is the sum of the bus’ and the sail’s.

The torque can then be calculated from the angular accelerations, γ̈ which are

shown in Figs 20 and 24 for the Nominal and CTM orbits respectively. The

torque is given by:

τ = Iγ̈ (18)

Three classes of spacecraft, of different size and mass, will be compared.

Throughout each, the characteristic acceleration of ac = 0.2 mm/s2 is main-

tained. The details of each sail and spacecraft bus are listed in Table 10. In

order to establish the mass of the sail assembly, Ceriotti et al. (2012) state that

for a near-term sail, an areal density for the sail assembly of 10 g/m2 should be

used. To establish the correct dimensions of the spacecraft bus, a cube density

of 142.4 kg/m3 is maintained. This figure was obtained after calculating the

spaceraft bus mass for the 2 m edge length sailcraft with characteristic acceler-

ation of ac = 0.2 mm/s2 and then calculating the density for such a mass in a

(10cm)3 volume.

The orbit from Test Case 2 (Secs. 6.3.2 and 7) is again used here to demon-

strate the required torques to achieve the desired control. First, the results for

the nominal orbit are shown in Fig. 26 for the three different sizes of sail. Fig.

27 shows the required torques for the CTM controlled orbit.
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Table 10: Sail and spacecraft bus dimensions, mass and moments of inertia

Sail Edge Length (m) 2 10 20

Sail Area (m2) 4.00 100.00 400.00

Sail Assembly Mass (kg) 0.10 1.00 4.00

Sail MOI (kg·m2) 0.01 8.33 133.33

Spacecraft Bus Edge Length (m) 0.1 0.29 0.46

Spacecraft Bus Mass (kg) 0.14 3.56 14.24

Spacecraft Bus MOI (kg·m2) 2.37 × 10−4 0.05 0.51
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(a) Sail with edge length of 2m
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(b) Sail with edge length of 10m
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(c) Sail with edge length of 20m

Fig. 26: Nominal orbit torque, τ , shown against control history for square sail

The maximum torques for each case shown in Figs. 26 and 27 are shown

in Table 11. To provide some context, Plante et al. (2017) discuss the ACDS

system design for The Planetary Society’s LightSail 2 mission. In their study

of changes in inclination, the maximum torques in yaw, which are provided by

a reaction wheel, are given as τ = 0.06 Nm. In their work on a Sun pointing

solar sail ACDS system design in Earth orbit, Wie (2004) calculates that the
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(a) Sail with edge length of 2m
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(b) Sail with edge length of 10m
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(c) Sail with edge length of 20m

Fig. 27: Attitude torque τ on CTM-controlled orbit, shown against control history for square

sails with side lengths of 2m, 10m and 20m.

maximum required control torques will have a magnitude of τ ≈ 0.002 Nm.

Therefore, the torques required in this work would appear feasible for a realistic

sail in the context of previous work in the literature.

Table 11: Maximum Torque Values

Sail Edge Length (m) 2 10 20

Nominal Orbit (Nm) 2.62× 10−8 1.62× 10−5 2.58× 10−4

CTM Orbit (Nm) 4.11× 10−8 2.54× 10−5 4.05× 10−4

8. Conclusions

In this work, a method of mitigating the effects of perturbations due to the

non-spherical shape of a body using a solar sail have been presented. Given

the system sensitivities, it is desirable to select an optimisation method which

requires no initial guess of the solution from the user. This work uses a Genetic
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Algorithm to conduct a multi-objective optimisation to obtain a periodic orbit

while also minimising the effort required by the sail to do so. As this method

required no initial input from the user, other than to define the optimisation

parameters and their limits, it allows for a far more robust way in obtaining the

optimal solution.

This method proved successful in establishing near-periodic orbits while also

presenting solutions with low effort values. It was found that, although the orbits

were very nearly periodic, the small discrepancy between final and initial state

meant that the control law was not valid for any subsequent orbits. As such,

a method of updating the control law for any subsequent orbit was presented.

This method used the Control Transition Matrix (CTM), a matrix containing

information on the effects of variation in control on final state errors, to update

the control law, allowing for stable periodic orbits to be established.

This method of updating the control law was found to be limited by the

orbital inclination. This inclination limit was also found to vary with the right

ascension of the orbit’s ascending node. It is found that the magnitude of the

tesseral and sectoral harmonics is small relative to that of the zonal harmonics

for this body. As the zonal harmonics dominate, and are invariant in longitude,

the asteroid rotation has negligible effect on analysing the effect of parame-

ters which are longitudinal, such as varying Ω. Analysis on this variation was

presented with a boundary between the convergent and divergent regions. It

is expected that other orbital parameters (such as semi-major axis and eccen-

tricity) will also affect this convergence study. However, this work presents an

initial analysis where these parameters remain fixed.

Finally, to generate a realistic, smooth control law, the piece-wise-continuous

interpolation of the control was replaced with cubic splines, which allowed grad-

ual transitions in attitude. The CTM method was once again successful in es-

tablishing a stable periodic orbit from this updated nominal orbit, with a small

increase in required effort from the sail. Analysis of the torque which would be

required from the ACDS system were then shown. These results showed that

the maximum required torques lay well within the maximum torques of realistic
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sail examples from the literature.
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