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Dynamics of an orbital siphon anchored to a rotating ellipsoidal
asteroid for resource exploitation
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Abstract

This paper investigates the dynamics of an orbital siphon anchored to a rotating ellipsoidal asteroid.

The siphon is a chain of tether-connected payload masses arranged vertically from the asteroid

surface, envisaged for propellantless delivery of payloads (e.g., mined material) from the asteroid

surface to a collecting spacecraft. If the structure is long enough, the centrifugal-induced force

can overcome the gravitational force on the payloads, eventually allowing resource payloads to

escape. By connecting new payloads at the bottom of this chain while removing upper payloads a

net orbital siphon effect is established, which provides a net continuous flow of resources from the

asteroid surface to a collecting spacecraft, attached at the top of the siphon. The dynamics of the

siphon is investigated in detail by varying a set of relevant parameters, in particular, chain length,

anchor location and asteroid shape. It is shown that the system exhibits oscillatory behaviour in

the equatorial plane, with decreasing oscillation amplitude over time and that the longest equatorial

end is the best anchor location to guarantee proper siphon operation while minimizing the chain

length. Eventually, a method is proposed to exploit the equatorial Coriolis-induced oscillations of

the siphon to transfer payload masses from the collecting spacecraft to the stable equilibrium points

associated with the effective potential of the ellipsoidal asteroid, where a catcher would collect the

material.
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1. Introduction

Recent Earth-based observations and robotic missions have shown that some near-Earth aster-

oids are abundant in useful resources such as metals (in particular platinum-group metals) and

water [1]. Exploitation of such resources could revolutionize the future of space exploration [2, 1].

Water, for example, could provide consumables and propellant, whereas metals can be exploited

for in-situ manufacturing, for example, to assemble space structures.

Research has focused on the design of asteroid mining missions, investigating models to under-

stand costs and mission design [3, 4]. However, the problem of gathering material from the surface

of an asteroid for delivery to an orbiting collecting/processing spacecraft is still largely unexplored.

Some authors proposed the direct launch of material into orbit (to a collecting spacecraft) [5] or

for material sorting (using solar radiation pressure) [6]. However, both strategies are affected by

uncertainties when launching material from the asteroid surface, for example for repeatability of

mass driver launches.

An alternative method has been proposed [7], which exploits the natural rotational self-energy of

the asteroid to overcome the low gravity at the surface and raise resource payloads without the need

for external work to be done. The idea has its root in the space elevator concept, firstly developed

by Tsiolkovski [8], then improved by Artustanov and Pearson [9]. The elevator, initially conceived

as a thought experiment for Earth applications, is envisaged as a tethered structure, where the

tether is kept in equilibrium by the balance of centrifugal-induced and gravitational forces acting

on it: a payload can then by raised to a desired altitude and, once synchronous orbit is reached,

the payload can increase its altitude without any further work required.

A direct evolution of the space elevator is the orbital siphon concept, firstly introduced by Davis

and elaborated by McInnes [10]. The orbital siphon is a tether-connected chain payloads, comprising

material from the asteroid surface: if the structure is long enough, the centrifugal-induced force can

overcome the gravitational force on the payloads, eventually allowing resource payloads to escape.

If new payloads are then connected at the bottom of this chain of masses while the upper payloads

are removed, an orbital siphon effect can be envisaged. This provides a continuous flow of resources

from the surface of the asteroid to bound orbit or escape (depending on the siphon length), without

the need for external work to be done.

Fast-rotating asteroids represent a suitable target for the orbital siphon, as the typical ratio

between the centrifugal-induced force to gravitational force at their equator can be close to unity,
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thus reducing the chain length required for the orbital siphon effect to take place. Viale et al. [7]

analysed in detail the dynamics of an orbital siphon anchored to a spherical asteroid, taking into

account the effects of material removal from the asteroid. In particular, it was shown that, if the

material removal process continues in the long term, the rotational period of the asteroid increases

to conserve the overall angular momentum of the system. This constrains the maximum amount

of mass which can be removed from the asteroid. For a constant-length siphon and an asteroid

spinning at its critical period, this limit was found to be approximately 12% the initial mass of the

asteroid [7].

In Ref. [11] oscillations of the system in the equatorial plane were analysed. Moreover, the use

of a ballast was envisaged to provide tension and keep the oscillations small. In Ref. [12], shape

models of two candidate near-Earth asteroids were used to model the gravitational potential and

the siphon designed as a self-supporting structure. Moreover, the behaviour of a siphon with a

moving base was considered.

In this paper, the asteroid is modelled as a triaxial ellipsoid. This choice allows an estimation

of the siphon behaviour as a function of the asteroid shape, by changing the asteroid semi-major

axes. Key parameters, such as siphon oscillation amplitude, velocity of the chain and tether torques

are taken into account, considering the effect of a collecting spacecraft receiving material at the

top of the siphon. Furthermore, it is proposed to exploit the stable equilibrium points associated

with the effective gravitational potential of the asteroid as depots for material storage. A method

is presented to exploit the Coriolis-induced oscillation of the siphon to insert payload masses into

trajectories intersecting the stable equilibrium points, where a catcher would collect the material

for storing or later processing.

The paper is divided in two parts. In the first part the dynamics of the oscillating orbital siphon

is discussed and the second part is a preliminary analysis of material transfer to the equilibrium

points exploiting the siphon dynamics.

2. Asteroid model

The asteroid is modelled as a triaxial ellipsoid with semi-major axes ᾱ ≥ β̄ ≥ γ̄ and constant

density ρA, rotating with constant angular velocity ω̄ about the axis with largest inertia. A co-

rotating reference frame is defined such that the x-axis lies along the largest dimension ᾱ, the y-axis

lies along the intermediate dimension β̄ and the z-axis lies along the smallest dimension γ̄, parallel
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to the angular velocity vector. The gravitational parameter µ of the asteroid is therefore computed

as

µ =
4

3
πGρAᾱβ̄γ̄ (1)

where G = 6.67× 10−11 m3 kg−1 s−2 is the gravitational constant.

To provide clarity and generality, non-dimensional variables will be used. In particular, distance

variables are scaled by ᾱ, time variables are scaled by ω̄−1 and mass variables are scaled by the

mass mls of an element of the lifting side of the siphon, which will be defined later in Sect. 3. All

derived units can be obtained from these scale factors (unless explicitly specified in the text).

At any point outside the asteroid an effective potential U can be defined, which combines the

effects of the centrifugal-induced acceleration due to the asteroid rotation and the gravitational

acceleration. In particular:

U =
1

2
(x2 + y2 + z2)− 1

ω2
V (2)

where the first term represents the centrifugal potential while V is the gravitational potential, with

ω =
ω̄√

4GρAπβγ

3

=
ω̄√
µ/ᾱ3

(3)

The parameter ω̄ is effectively the square root of the ratio between the centripetal acceleration and

the gravitational acceleration acting on a particle at the longest end of the ellipsoid, assuming that

the entire mass of the asteroid is concentrated at the origin. If the asteroid is a sphere, ω2 represents

the true ratio between the centrifugal-induced acceleration and the gravitational acceleration at its

surface.

From MacMillan [13], the gravitational potential V used in Eq. (2) can be expressed analytically

in non-dimensional form as:

V =
3

4

∫ ∞
λ

φ(x, y, z, ν)
dν

∆(ν)
(4)

with

∆(ν) =
√

(1 + ν)(β2 + ν)(γ2 + ν) (5)

φ(x, y, z, ν) =
x2

1 + ν
+

y2

β2 + ν
+

z2

γ2 + ν
− 1. (6)
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The parameter λ > 0, which is a function of (x, y, z), is obtained from the condition

φ(x, y, z, λ) = 0. (7)

Equation 7 defines the ellipsoid passing through the point (x, y, z) which is confocal to the body’s

ellipsoid and it has a unique positive root whenever φ(x, y, z, 0) > 0. (i.e., the point lies outside the

ellipsoid, as in the present case). For a point on the asteroid surface λ = 0. The interested reader

should refer to [13] for an exhaustive derivation of the potential.

Note that, by using non-dimensional coordinates, the effective potential at any point at the

asteroid is completely defined by the three parameters β, γ and ω. If the density is fixed, β, γ and

ω̄ (or the asteroid period 2π/ω̄) are sufficient to describe its behaviour. Since it is easier to consider

period variation rather than ω (note that ω depends both on the period and the asteroid shape, as

dictated by Eq. (3)), a constant asteroid density of 2.5 g/cm3 is considered in in Sects. 2, 3 and 4.

When necessary, comments related to larger/lower asteroid densities will be made.

2.1. Equations of motion and equilibrium points

The differential equation governing the motion of a point mass in the rotating reference frame

can be written as

ẍ− 2ẏ = Ux (8a)

ÿ + 2ẋ = Uy (8b)

z̈ = Uz (8c)

where Ux, Uy, Uz are the partial derivatives of the effective potential with respect to the variables

x, y and z respectively:

Ux = x

[
1− 3

2ω2

∫ ∞
λ

φxdν

(1 + ν)∆(ν)

]
(9a)

Uy = y

[
1− 3

2ω2

∫ ∞
λ

φydν

(β2 + ν)∆(ν)

]
(9b)

Uz = z

[
1− 3

2ω2

∫ ∞
λ

φzdν

(γ2 + ν)∆(ν)

]
. (9c)
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Figure 1: Location of the equilibrium points for an asteroid with β = γ = 0.4 and period 6 h.

By studying the condition ∇U = 0, four equilibrium points (EPs) can be found: two saddle

equilibrium points (SEPs) on the x-axis and two centre points (CEPs) on the y-axis, both pairs

being symmetrical with respect to the origin. In these positions the net force acting on a particle

will vanish. Figure 1 shows the location of the four EPs for an asteroid with β = γ = 0.4 and a

rotational period of 6 h.

It can be shown that the SEPs are always unstable, whereas CEP stability depends on the

asteroid shape parameters β, γ and its angular velocity ω. The reader is referred to Ref. [14] for

a thorough analysis on stability. Figure 2 shows the region of stability of the CEPs as a function

of β and ω, assuming γ = β (continuous line) and γ = β/2 (dotted line), following the analysis in

Ref. [14]. For a given set of shape parameters, the CEPs are unstable beneath the associated curve.

The two dotted lines represent the case where the CEPs fall below the asteroid surface (the dotted

black line refers to the case γ = β, whereas the dotted red line refers to γ = β/2 ). It is apparent

that fast-rotators are generally characterized by unstable CEPs. For γ = β, CEPs are below the

surface for periods between 1.75 h and 2.3 h in the range of β shown in the figure.
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Figure 2: Regions of stability of the centre equilibria, for γ = β and γ = β/2, as a function of β and the asteroid
period. The dotted lines mark the region where centre points fall below the surface of the asteroid.

3. Orbital Siphon model

The key idea of the orbital siphon is that a chain of tether-connected payload masses arranged

vertically from the surface of a rotating asteroid can be used to deliver payloads from the asteroid

surface to orbit (or to a collecting spacecraft): if the chain is long enough, a net radial force is

established on the chain, which would lift the chain without the need for external work to be done:

new payloads are connected to the bottom of the chain while top payloads are released [7].

Here, the orbital siphon is modelled as a chain of 2n masses, divided in a lifting-side (LS) and a

descending-side (DS) each one with n masses, as represented in Fig. 3. The former contains bucket

masses mb filled with payload masses mp to be lifted, whereas the latter contains the empty buckets

mb going back to the asteroid for refilling. Each bucket is connected to its two neighbours with a

tether, and two pulleys at the two endpoints (at the anchoring point and at the top of the chain)

connect the LS with the DS. The bucket chain slides without friction on a rigid rod with length L,

which allows rotation on the equatorial plane with respect to the fixed anchor point A. The choice

of a rigid rod is required as dynamical constraint for the model used, however it is shown in [12]

that a self-sustaining siphon without support structure exhibits similar behaviour to the system

described here. At the top of the rigid rod a collecting spacecraft (CS), here modelled as point

mass M , collects the payloads released by the LS. Note that the CS mass M increases over time,

as more payloads are released.
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It is assumed that all the payloads have constant mass mp. Therefore, an element on the LS

will have a mass mls = mb + mp whereas an element on the DS has mass mds = mb. Moreover,

it is assumed that the mass of the asteroid remains constant, implying that the mass removed is

small (the reader is referred to [7] for a general discussion about asteroid mass variation using a

simplified orbital siphon model).

Some additional assumptions are made.

1. Any friction due to the bucket-pulley interaction is neglected.

2. Other external perturbations (e.g., third-body perturbation, solar radiation pressure) are not

considered.

3. The dynamics is restricted to motion in the equatorial plane x− y.

4. The tethers connecting consecutive buckets are assumed massless and infinitely rigid, with

constant length l = L/n.

Although the last hypothesis may appear restrictive, it has been shown in [7] that, for realistic

tether stiffness and damping parameters, the simulation results do not change significantly with

respect to the case with infinitely rigid tethers. Moreover, it is reasonable to assume that the tether

mass is small with respect to the masses mls and mds. As a consequence, the entire LS and DS are

effectively treated as rigid bodies sliding on a rod and the overall dynamics of the siphon can be

described via two generalized coordinates: the rotation of the siphon θ and the distance of the first

bucket mass of the LS from the anchor point. All rotations are assumed positive when measured

from the x-axis in the counter-clockwise direction.

3.1. Siphon radial force

The coordinates of the i-th mass (1 ≤ i ≤ 2n) on the chain can now be written as

xi = rA cosφA + si cos(φA + θ) (10a)

yi = rA sinφA + si sin(φA + θ) (10b)

where θ is the angle between the chain radial unit vector ûr and the line OA (see Fig. 3) while rA

and φA are the polar coordinates of the anchor point, related by the ellipse equation written with
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Figure 3: Orbital siphon model. Rotations are measured positive in the counter-clockwise direction.

respect to its centre:

rA =
β√

1−
(
1− β2

)
cos2(φA)

. (11)

The parameter si is the distance between the i-th bucket and the anchor point A, which can be

written as a function of s1, such that

si =

s1 + (i− 1)l, 1 ≤ i ≤ n

L− (s1 + (i− 1)l), n+ 1 ≤ i ≤ 2n

(12)

The force fr,i acting on the i-th element of the chain in the radial direction ûr is given by

fr,i =

 mls(∇U(si) · ûr + siθ̇
2 + 2θ̇si), 1 ≤ i ≤ n

− mds(∇U(si) · ûr + siθ̇
2 + 2θ̇si), n+ 1 ≤ i ≤ 2n

(13)
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The internal tension forces are not explicitly listed here as they will vanish in a summation to be

performed later. Due to its significance in later analysis mds is redefined as:

D = mds =
m̄ds

m̄ls
=

1

1 +
m̄p

m̄b

(14)

Note that D can be written as a function of the ratio between the payload mass and the bucket

mass and D ∈ [0, 1].

The first term of Eq. (13) is the force associated to the gradient of the effective potential U ,

defined by Eq. (2). The second and third terms are due to the chain dynamics and are non-zero if

the chain is rotating with θ̇ 6= 0. In particular, the term sθ̇2 is the centrifugal-induced acceleration,

while the last term is the Coriolis acceleration in the direction ûr, associated with the velocity θ̇s

in the û⊥ direction. Note that the contribution of the terms involving the chain angular velocity θ̇

is negative for −2 < θ̇ < 0, ∀i ≤ 1 ≤ n. Therefore, if the chain is rotating in the clockwise direction

with angular velocities up to two times the angular velocity of the asteroid, then the chain rotation

induces a net radial force contribution opposite to ûr. The unit vectors ûr and û⊥ can be written

as a function of the anchor longitude and the chain angle as:

ûr =

 cos(φA + θ)

sin(φA + θ)

 (15a)

û⊥ =

 − sin(φA + θ)

cos(φA + θ)

 (15b)

Then, the overall radial force acting on the chain can be written as

fr =

n∑
i=1

[(
∇U(si) · ûr + siθ̇

2 + 2θ̇si

)]
+ (16)

−
2n∑

i=n+1

[
D
(
∇U(si) · ûr + siθ̇

2 + 2θ̇si

)]
.

When the siphon is loaded with small payload masses mp → 0 then D → 1 (see Eq. (14)) and the

the contribution of the DS on the radial force is maximum, whereas if the mass of the payload is

much larger than the mass of the bucket then D → 0 and the DS effect on fr becomes negligible.

In particular, if D = 1 and the LS and DS are aligned (this occurs when s = l/2) then the radial
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force is zero, regardless of the other parameters. Note that in this model the CS does not influence

the radial force.

3.2. Siphon torque

While material is moving towards the CS, Coriolis forces due to the motion of the LS (DS) will

induce a clockwise (counter-clockwise) torque. The torque Ti due to the i-th element of the chain

with respect to the anchor point can be written as

Ti =

 mls

[
∇U(si) · û⊥ − 2(1 + θ̇)ṡ1

]
si, 1 ≤ i ≤ n

mds

[
∇U(si) · û⊥ + 2(1 + θ̇)ṡ1

]
si, n+ 1 ≤ i ≤ 2n

(17)

The first term is the contribution due to the gradient of the effective potential U in the transversal

direction û⊥. The second part is the contribution due to the Coriolis force in the direction û⊥ due

to the motion of the chain (note that this contribution is opposite between LS and DS, since the

buckets are travelling in opposite directions in the two cases).

Similarly, the torque generated by the CS with respect to the anchor point is

Tcs = ML∇U(L) · û⊥ (18)

where ∇U(L) is the gradient of the effective potential at the location of the CS. Then, the overall

torque T of the system chain and CS is the sum Tcs +
∑2n
i=1 Ti:

T = ML∇U(L) · û⊥+

n∑
i=1

[
∇U(si) · û⊥ − 2(1 + θ̇)ṡ1

]
si+ (19)

+

2n∑
i=n+1

D
[
∇U(si) · û⊥ + 2(1 + θ̇)ṡ1

]
si

Note that if θ̇ > −1, the Coriolis torque (proportional to (1 + θ̇) on Eq.(19)) is always negative

(i.e., inducing a clockwise rotation, opposite to the asteroid rotation). The limiting case θ̇ = −1

corresponds to the scenario where the angular velocity of the siphon has the same magnitude as the

angular velocity of the asteroid however with opposite direction: in this case, the global Coriolis

torque vanishes.
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3.3. Siphon dynamics

The overall siphon dynamics are then described by the combination of the translational chain

motion s1 and the rotation θ:

n(1 +D)s̈1 = fr (20a)[
2n∑
i=1

mis
2
i +ML2

]
θ̈ = T (20b)

where fr and T are the radial force and torque on the siphon, given by Eqs. (16) and (19) respec-

tively. Note that the two equations of motion are coupled, being fr function of θ and θ̇, and T

a function of s1 and ṡ1. Again, it is emphasized that each si can be written as a function of s1

according to Eq. (12), due to the hypothesis of rigid tethers connecting the buckets. From now on,

when the context is clear, the subscript 1 will be omitted from the generalized coordinate ṡ1.

Equations (20) are non-autonomous, non-linear and non-homogeneous differential equations

and do not admit a closed-form solution. They can be numerically integrated from an initial state{
s(t0), ṡ(t0), θ(t0), θ̇(t0)

}
and an initial CS mass M(t0). Let

{
s(t1), ṡ(t1), θ(t1), θ̇(t1)

}
be the state

when s = l, i.e., when the top payload has reached the CS and a new empty bucket from the DS has

reached the anchor point. It is assumed that the payload to be added to the chain has zero velocity

within the rotating frame. By modelling this event as an inelastic collision, the new velocity of the

chain ṡ after a new payload is added is ṡ(t1)(n− 1)/n (see Appendix A). Then, the new state after

this event will be {
0,
n− 1

n
ṡ(t1), θ(t1), θ̇(t1)

}
(21)

A new integration can then be performed with the updated velocity and CS mass (M(t1) = M(t0)+

mp), and the process is iteratively repeated. Note that the translational degree of freedom s is

bounded between 0 and l. As a compact notation, the subscript 0 will be used in the following

sections to indicate a variable at the beginning of the simulation.

3.3.1. Siphon rotational damping

The siphon rotational dynamics, Eq. (20b), can be rearranged as:

Iθ̈ + cθ̇ + k(θ) = −c (22)
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where

I =

2n∑
i=1

mis
2
i +ML2 (23)

c = 2ṡ

[
n∑
i=1

si −
2n∑

i=n+1

Dsi

]
(24)

k = Tcs +

n∑
i=1

(∇U(si) · û⊥ − 2ṡ1) si+ (25)

+

2n∑
i=n+1

D (∇U(si) · û⊥ + 2ṡ1) si

The first and third term on the left-hand side of Eq. (22) represent the inertia and the stiffness of

the siphon respectively, and they linearly increase with the CS mass M . The second term c, does

not depend on the CS mass but on the current chain mass distribution and the chain velocity θ̇.

Being D < 0 by definition (Eq. (14)), the term within square brackets in Eq. (24) is always positive,

for any choice of n and L. Then, the sign of c depends on the sign of the siphon radial velocity,

which is positive if the orbital siphon effect is generated (i.e., fr > 0, Eq. (16)). Therefore, the term

c can be thought of as a damping term, responsible for attenuation of the siphon oscillation and it

is due to the Coriolis forces associated with the rotation of the chain. This behaviour is typical of

frictionless pendulums with moving mass (see, for example, Ref. [15]). Note that the term c also

appears at the right-hand-side of Eq. (22). Since c > 0, the term −c effectively represents a torque

in the clockwise direction, which induces the chain to rotate opposite to the direction of the asteroid

rotation. Therefore, the motion of the chain has a double effect on the system: (1) it attenuates

the amplitude of the siphon oscillation and (2) forces the siphon to rotate clockwise.

As more mass is delivered to the CS and M � 0, the term c (not depending on M) becomes

negligible with respect to I and k, therefore it is expected that the damping is gradually reduced

over time. Although a formal stability analysis of the system is not performed in this paper, such

qualitative comments will be helpful for interpretation of the numerical simulation results presented

in Sect. 4.

3.4. Approximations for a continuous chain

In the following sections a set of parameters are defined, where the LS and DS are approximated

with continuous mass distributions with linear densities ρls = nmls/L and ρds = nmds/L. In this
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scenario, the parameter D can also be written as the ratio between the two densities ρds/ρls. It will

be shown that such approximations can be exploited to quickly analyse the effects of the asteroid

shape on the siphon dynamics.

3.4.1. Siphon equilibrium length

The siphon equilibrium length is defined as the length Lmin such that the overall radial force on

the siphon fr is zero when the siphon orientation is fixed (θ̇ = 0) for continuous mass distributions

along the LS and DS. In such scenario the radial force given by Eq. (16) can be written as the

integral

fr|n→∞ = (1−D)

∫ L

0

∇U · ûrdσ (26)

where the discrete variable si is replaced with σ, which varies continuously in the range [0, L] and

represents the distance of a generic point on the (continuous) chain with respect to the anchor

point. Then, Lmin can be found by solving fr|n→∞ = 0, i.e.,

∫ Lmin

0

∇U(σ) · ûrdσ = 0. (27)

When L = Lmin the gravitational and centrifugal-induced forces acting on the DS and LS balance,

removing any orbital siphon effect. In general, Eq. (27) does not admit a close-form solution, due to

the integrals in Eqs. (9), related to the gravitational component of the effective potential. However,

if β = γ = 1 (i.e., for a spherical asteroid), and θ = 0 then Eq. (27) simplifies to

Lmin =
1

2

[√
9− 8

(
1− 1

ω2

)
− 3

]
(28)

which is the same result found in [7] for the minimum length of a siphon anchored to a spherical

asteroid. Note that Lmin is independent of the linear densities of the LS and DS, as the parameter

D does not appear. As in [7] it can be shown that if L > Lmin then fr > 0 for any n ≥ 2 (with

s1 > l/2). Therefore, to guarantee the siphon effect, it is necessary to ensure that L > Lmin for the

angle θ (or the range of angles) at which the siphon is operating.

Figure 4 shows Lmin for φA ∈ [0, 2π] considering an asteroid period 2π/ω̄ = 5 h, assuming

θ = 0,∀φA and β = γ = 0.5 (Fig. 4a), β = γ = 0.9 (Fig. 4b). If the top of the siphon is contained

within the shaded region then fr|n→∞ < 0 and the siphon effect cannot be generated. Note that
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Figure 4: Representation of Lmin assuming θ = 0 (black line at the boundary of the shaded region) for an asteroid
with period 5 h and β = γ = 0.5 (a), β = γ = 0.9 (b). To guarantee the orbital siphon effect the chain length must
extend beyond the shaded region. Center (C) and Saddle (S) equilibrium points are also represented.

the shaded region contains the EPs and the minimum length in the region φA ≈ π/2 is larger than

that for φA ≈ 0 when the asteroid is more prolate.

Figures 5a and 5b show the equilibrium length Lmin as a function of the asteroid period for

anchoring longitude φA = 0 (a), φA = π/2 (b) and a range of β assuming γ = β and the chain

normal to the surface (θ = 0) in both cases. As expected, the equilibrium length increases (almost

linearly) with the asteroid rotational period. In fact, larger rotational periods will decrease the

effect of the centrifugal-induced acceleration in the effective potential, thus increasing the altitude

of the EPs and requiring longer chains for equilibrium. When the chain is anchored at φA = π/2 the

equilibrium length becomes longer, as shown in Fig. 4 (the difference with respect to the case φA = 0

is more evident for more prolate ellipsoids). It can be shown that when γ < β the equilibrium length

decreases for a given period.

Figures 5c and 5d show the equilibrium length as a function of the chain angle θ for anchoring

longitude φA = 0 (left), φA = π/2 (right) and a range of β assuming again γ = β. It is apparent

that when θ 6= 0 the equilibrium length increases (the plot is the same for θ ∈ [0,−π/2] due to

symmetries and the case with φA = π and φA = 3π/2 would be equivalent to φA = 0 and φA = π/2

respectively). Larger (smaller) asteroid densities will also increase (reduce) the magnitude of the

gravitational acceleration thus increasing (reducing) the equilibrium length.
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Figure 5: (a), (b): equilibrium length Lmin as a function of the asteroid period for anchoring longitude φA = 0 (a)
and φA = π/2 (b) assuming θ = 0 in both cases. (c), (d): equilibrium length as a function of the chain angle θ for
anchoring longitude φA = 0 (c) and φA = π/2 (d) assuming θ = 0 and a rotation period of 5 h.
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3.4.2. Siphon steady state velocity

The siphon steady state velocity vss is defined as the velocity of the chain when the time t→∞

for a given fixed θ, using a continuous mass distribution for the chain. This parameter is known

from earlier work for a discrete mass of distribution of n masses [7]

vss =

√
2W

1−
(
n−1
n

)2 (29)

where W is the work per unit mass done by the gravitational and centrifugal-induced forces to pull

the chain up by the distance between two consecutive payload masses l:

W =

∫ l

0

adσ (30)

with a being the acceleration of the chain. For a continuous mass distribution n→∞, l→ L/n→ 0

and the work per unit mass becomes

W = a
L

n
(31)

where the acceleration can be written as

a =
fr|n→∞

(1 +D)L
(32)

with fr|n→∞ given by Eq. (26). Note that the denominator of Eq. (32) is the overall mass of

the siphon under the continuous mass distribution approximation, comprising the LS and DS.

Substituting Eq. (31) into Eq.(29) and calculating the limit for n → ∞, the steady state velocity

can be written as:

vss =

√√√√1−D
1 +D

(∫ L

0

∇U(s) · ûrds

)
(33)

When D = 1 (i.e., the LS is unloaded) it can be seen that vss = 0. Similarly, if the chain length is

equal to the equilibrium length then, by Eq. (27)

∫ L

0

∇U · ûr = 0 and again vss = 0. Conversely,

when the ratio mp/mb � 1 (D → 0) the chain velocity is maximum, for a given asteroid, chain

length, anchor longitude and angle θ. The terms including θ̇ do not appear in Eq. (33) as the steady

state velocity is defined for fixed θ.

It is instructive to simplify Eq. (33) in case of a spherical asteroid (β = γ = 1), which admits
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the closed-form solution

vspheress =

√
1−D
1 +D

[
1

2
(r2
L − 1)− 1

ω2

rL − 1

rL

]
(34)

where rL =
√

1 + L2 + 2L cos θ is the distance between the CS and the center of the asteroid.

Setting D = 0 and taking chain normal to the asteroid surface (θ = 0) Eq. (34) reduces to the value

found in [7]

vspheress =

√
L

2

(
2 + L− 2

(1 + L)ω2

)
. (35)

3.4.3. Siphon equilibrium angle

This parameter is defined as the angle θeq such that the overall torque T with respect to the

anchor point is zero, when the chain is approximated with a continuous mass distribution and

ṡ = vss. As it will be shown in Sect. 4, θeq is an indicator of the average oscillation θ of the siphon.

From Eq. (19), substituting the sums with integrals, θeq can be found as the solution of

L2

2
(D − 1)vss(θeq) + L2M∗∇U(L) · û⊥ + (1 +D)

∫ L

0

∇U(σ) · û⊥sdσ = 0 (36)

where vss(θeq) is the steady state velocity calculated at the equilibrium angle. Here M∗ is the mass

of the CS scaled with respect to the total mass on the LS of the siphon.

4. Results

In this section the orbital siphon dynamics (Eqs. (20)) are integrated for a given choice of

asteroid and siphon parameters. Unless explicitly specified in the text, the baseline simulation

parameters are listed in Table 1.

Figure 6 shows the angle θ (Fig. 6a), siphon angular velocity θ̇ (Fig. 6b), chain velocity ṡ (Fig. 6c)

and CS mass M (Fig. 6d) as a function of time for two different initial states:
{
s0, ṡ0, θ0, θ̇0

}
=

{0, 0, 0, 0} (case A) and
{
s0, ṡ0, θ0, θ̇0

}
= {0, vss, θeq, 0} (case B). In case A, the siphon is initially

aligned with the local vertical and is at rest. In case B, the siphon is initialized at its equilibrium

angle θeq for the initial CS mass M0, and its initial velocity ṡ0 is the steady state velocity at θeq.

Figures 6a and 6c also show the equilibrium angle θeq (blue, dashed line) for the current CS mass

at time t and the steady state velocity vss respectively. Some relevant information can be inferred:
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Figure 6: Siphon angle θ (a), non-dimensional siphon angular velocity θ̇ (b), non-dimensional chain velocity ṡ (c)
and non-dimensional CS mass M , (d), as a function of time. The blue dotted curve in Figs. 6a and 6c represent the
instantaneous equilibrium angle (Eq. 36) and the steady state velocity (Eq. (33)) respectively.

Table 1: Baseline simulation parameters. All units are non dimensional. The selected siphon length corresponds to
1.5Lmin. The parameter ω corresponds to an asteroid with density ρ = 2.5 g cm−3 rotating with period 2π/ω̄ = 5 h.

Asteroid
Angular velocity ω 0.84

Extent
β 0.5
γ 0.5

Siphon

Length L 0.96
Initial CS mass M0 100
Number of payloads 2n 70

Initial state
{
s0, ṡ0, θ0, θ̇0

}
{0, 0, 0, 0}

DS to LS mass ratio D 0
Anchor longitude φA 0
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1. The siphon exhibits a damped oscillatory behaviour. In both cases, the siphon angle θ os-

cillates about the equilibrium angle θeq , and θeq → 0, as t → ∞. The amplitude of the

oscillations is smaller if the siphon is initialised at the equilibrium angle (case B).

2. The period of the oscillations is comparable with the asteroid period.

3. The chain velocity changes at two different frequencies (see Fig. 6c): a lower frequency is

associated with the variation of the siphon angle θ (which regulates the magnitude of the

net radial force on the chain) while the higher frequency is due to the bucket refilling. Note

that at each bucket refilling, the chain velocity changes according to Eq. (21). In the long

term, the chain velocity does not diverge but oscillates about an average value which is well

approximated by vss .

4. The CS mass varies almost linearly over time and it is slightly larger in case B due to the

larger velocity of the chain at the beginning of the simulation.

As anticipated in Sect.3.3.1, the damping effect is progressively reduced as the mass of the CS

increases and the siphon exhibits stable oscillations about θeq. Figure 7 shows the results of a

longer simulation (33 days) in the phase space (θ, θ̇) for case A (7a) and B (7b). The initial state at

t = 0 is marked with a cross. As expected, the equilibrium of the system gradually shifts towards

(θ, θ̇) = (0, 0) and the damping effect is progressively reduced over time.

Figure 8 shows the siphon angle and chain velocity as a function of time for variable initial CS

masses M0. The initial CS mass influences the amplitude of the oscillations, in particular, the initial

overshoot. As the initial CS mass increases, the Coriolis torque becomes negligible with respect to

the centrifugal-induced torque caused by the CS, thus reducing the magnitude of θ.

Figure 9 shows the siphon angle and chain velocity as a function of time for variable mass ratios

D. The mass ratio D mainly affects the chain velocity. As D increases, the ratio between the mass

of the payloads and the mass of the buckets decreases as dictated by Eq. (14), thus reducing the

radial force on the chain (Eq. (16)), eventually reducing its velocity. As a consequence, also the

steady state velocity decreases, as predicted by Eq. (33).

Figure 10 shows the siphon angle and chain velocity as a function of time for n = 20, n = 50

and n = 80. The number of payloads affects the magnitude of the Coriolis torque on the chain:

more payloads on the chain will lead to larger oscillations. The chain velocity is almost unaffected
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(a) (b)

Figure 7: Siphon trajectories in the phase space (θ, θ̇) for a 33 days simulation, for different initial conditions,{
s0, ṡ0, θ0, θ̇0

}
= {0, 0, 0, 0} (a) and

{
s0, ṡ0, θ0, θ̇0

}
= {0, vss, θeq, 0} (b). The insets are close-up views near (θ, θ̇) ≈

(0, 0).
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Figure 8: Siphon angle θ (a) and chain velocity ṡ (b) as a function of time for different CS mass at t = 0, M0 = 0,
M0 = 100, M0 = 1000.
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Figure 9: Siphon angle θ (a) and chain velocity ṡ (b) as a function of time for D = 0, D = 0.2 and D = 0.5.

even though as n increases the variation of ṡ between consecutive bucket-refilling events slightly

decreases (Fig. 10b): in fact, by increasing n with a fixed chain length, the distance l between

consecutive buckets decreases and therefore the frequency of payload refilling increases.

Figure 11 shows the siphon angle and chain velocity as a function of time for the two siphon

lengths L = 1.2 Lmin and L = 1.7 Lmin. A larger chain length will cause a larger radial velocity.

Note that, although the oscillations have slight different phases, the period of the oscillations does

not vary significantly between the two cases.

It has been noted that the parameters θeq and vss are good approximations of the siphon angle

and the chain velocity at steady state. Moreover, the CS mass varies almost linearly with time.

Therefore, it is instructive to investigate how the equilibrium angle and chain velocity vary as

a function of the CS mass M , by varying other parameters such as the asteroid shape and the

anchor longitude. Figure 12 illustrates the variation of θeq and vss as a function of the CS mass

for a range of chain lengths L and anchor longitudes (φA = 0, φA = π/4, φA = π/2), taking an

asteroid with β = γ = 0.3 and other parameters as indicated in Table 1. Figure 13, shows the same

parameters, with β = γ = 0.8. The siphon length is here chosen as a function of the minimum

siphon length Lmin, calculated for θ = 0 (1.1Lmin (black curve), 1.5Lmin (dashed red curve) and

2.5Lmin (dotted blue curve)). To guarantee impact avoidance with the surface of the asteroid, the

equilibrium angle θeq cannot exceed the threshold angle θlim, which depends on the anchor location

and β. The parameter θlim is defined as the angle between OA and the tangent to the anchor
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Figure 10: Siphon angle θ (a) and chain velocity ṡ (b) as a function of time for n = 20, n = 50 and n = 80.
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Figure 11: Siphon angle θ (a) and chain velocity ṡ (b) as a function of time for L = 1.2Lmin and L = 1.7Lmin.
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Figure 12: Equilibrium angle θeq as a function of the CS mass M∗, for a range of anchor longitude and β = γ = 0.3.
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Figure 13: Equilibrium angle θeq as a function of the CS mass M∗, for a range of anchor longitude and β = γ = 0.8.
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Figure 14: Maximum siphon angle θlim.

point in the equatorial plane, in the direction shown in Fig. 14 (the complementary to θlim is not

considered, since the siphon will rotate clockwise due to the Coriolis torque). For a siphon anchored

at the longest or shortest equatorial end, θlim = −π/2 independent of β, whereas for φA = π/4,

θlim ≈ −50 deg when β = 0.3 and θlim ≈ −70 deg when β = 0.8. In all the cases represented,

the equilibrium angle decreases as the CS mass increases and vss is constant when the ratio M∗

between the CS mass and the LS of the siphon is larger than 102. In particular, for φA = 0 or

φA = π/2, θeq → 0 as the CS mass increases, and this holds for any L > Lmin and does not depend

on the asteroid shape. Note that at these anchor locations, the direction θ = 0 corresponds to the

local vertical. Conversely, the effect of the asteroid shape influences θeq for intermediate anchor

locations: the equilibrium angle for large values of the CS mass decreases for prolate bodies and

this effect is enhanced if the siphon length is close to the equilibrium length (see Figs. 12b and 13b)

The equilibrium angle is not defined for some small values of M∗. In these cases, the siphon might

exceed θlim during the initial overshoot and impact onto the asteroid surface. For longer chains, a

larger initial CS mass is required to ensure |θeq| ≤ |θlim|. Therefore, for a given initial CS mass the

siphon cannot be arbitrarily long: it is possible to define an upper bound on the siphon length that

guarantees impact avoidance with the surface. Note that a lower bound also exist, to ensure that

L > Lmin.

In summary, the following remarks can be made:

• An orbital siphon effect is generated due to the larger mass on the LS: the buckets on the
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LS are therefore pulled towards the CS while buckets on the DS cycle back to the anchor for

refilling.

• The minimum siphon length required to generate the siphon effect depends on the anchor

location. Smaller chains can be used when the siphon is anchored at the longest equatorial

end.

• The orbital siphon effect introduces torques with respect to the anchor point, inducing damped

oscillation of the chain.

• The radial velocity of the chain does not diverge, although a positive force is always acting on

the LS. This is due to conservation of linear momentum during the bucket refilling process.

• The behaviour of the discrete chain can be approximated by a continuous mass distribution.

This allows an estimation of the equilibrium angle and the chain radial velocity as a function

of the CS mass and asteroid shape. The equilibrium angle approaches a constant value when

the mass of the CS is large. In particular, if the siphon is anchored at the longest or smallest

equatorial end, the siphon tends to align with the local vertical.

• By increasing the siphon length, the radial velocity of the chain increases and therefore the

rate of payload material released to the CS also increases. As expected, larger chain velocities

are achieved when the ratio D → 0, i.e., when the mass of the buckets becomes negligible

with respect to the mass of the payloads. In dimensional units, for siphon lengths comparable

with the asteroid largest semi-major axis, the chain velocity is on the order of centimetres per

second. For example, taking the asteroid Bennu (details in Sect. 5, Table 2), a siphon with

length L = 0.6ᾱ has a radial velocity of approximately 2.5 cm s−1.

5. Transfers to equilibrium points

It has been shown that as the siphon delivers material to the CS it will eventually reach a

condition of stable oscillation and the velocity of the chain does not diverge. Due to the requirement

L > Lmin a released mass cannot intersect either the asteroid or any EP, and will eventually escape

from the asteroid. This is a useful scenario if the material has to be sent to a higher energy orbit

or to escape.
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Table 2: Bennu physical parameters [17]

Extent
ᾱ 282.5 m
β̄ 267.5 m
γ̄ 254 m

Period 2π/ω̄ 4.297 h
Density ρA 1.26 g cm−3

The existence of equilibrium points, however, offers scope for further analysis. It has been shown

in Sect. 2.1 that if the period of the asteroid is above a critical value depending on its shape, the

CEPs are stable. Under such conditions, these points could be used in principle as gravitational

depots for material. Taking advantage of these equilibria may therefore be useful in a large-scale

mining scenario. For example, CEPs might host an orbiting catcher, receiving material from the

siphon, for temporary storage or further processing.

Transfer of material to EPs may also be beneficial if the mined asteroid is a rubble pile with

low cohesive strength [16], thus reducing the anchor force required to hold the orbital siphon to

the asteroid surface. A conservative estimate of the required anchor force, assuming the CS mass

M̄ is much larger than the mass of the siphon, is M̄ω̄2(ᾱ + L̄), i.e., the centrifugal-induced force

acting on the CS, for anchoring at the longest equatorial end (φA = 0) and θ = 0. For example,

for a siphon with length L = Lmin anchored at the asteroid Bennu (Table 2), the anchor force (in

Newtons) scales as 10−6M̄ . Achievable anchor forces on rubble piles are on the order of 10 N for

cohesion levels of 10 Pa [5]. In a large scale mining scenario, where the processed mass is larger

than 103 tonnes, the required force to keep this mass at the CS would be on the order of 102 N,

hence one order of magnitude larger then the value suggested in Ref. [5]. The reader is referred to

Ref. [12] for additional details on possible anchor devices for the orbital siphon.

A possible mechanism to deliver material to the CEPs is by employing a mass driver from the

surface. Although the energy requirements are expected to be very small (due to the low-gravity

on a typical near-Earth asteroid) it will be shown that the orbital siphon mechanism can offer in

principle a more energy efficient way to deliver payloads to the CEPs.

As an example, the analysis proposed in the following sections is referred to the asteroid Bennu

which has stable CEPs under the triaxial ellipsoid model.
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5.1. Material transfer from the surface to a stable CEP

The minimum amount of energy required to send material to any location around the asteroid

from a given position at the surface can be derived analytically. In particular, let E0 be the total

energy per unit mass at the initial location of the material and let Ec be the energy per unit mass at

the CEPs (note that the two CEPs have the same energy due to symmetry in the ellipsoid model).

If a change in velocity ∆v is applied at the initial point then, in order to intersect the CEP, the

energy of the transfer trajectory should satisfy

E0 +
1

2
∆v2 ≥ Ec (37)

If Eq. (37) is not satisfied, then the position of the CEPs would be inside the forbidden region

associated with the zero velocity curve of the transfer trajectory. Using dimensional units applied

to the asteroid Bennu, a transfer from the longest end of the ellipsoid to the CEP requires ∆v̄ ≥

6.1 cm s−1, whereas a transfer from the shortest end to the CEP requires ∆v̄ > 5.9 cm s−1. Let

∆v̄mindirect = 5.9 cm s−1 be the minimum of these two values, which will be used in later analysis.

Figure 15 shows an example of such trajectory departing from different longitudes. The trajec-

tories are obtained by solving a boundary value problem, controlling the initial ∆v at the departure

on the surface. Here, ∆v̄1 represents the change in velocity required to insert the particle into the

trajectory, whereas ∆v̄2 is the change in velocity required to stop the particle at the equilibrium

point.

5.2. Exploiting siphon dynamics to transfer material to a stable CEP

The proposed strategy is to exploit the siphon dynamics to induce oscillations to the chain in

order to increase the energy of the CS and make the CEP accessible.

A possible method to avoid the intrinsic damping observed in Sect. 4 is to stop the chain during

the counter-clockwise rotation of the siphon, to avoid the Coriolis torque which would reduce the

oscillation amplitude. In particular, for a siphon anchored at φA = 0 with θ0 = 0:

1. While the LS delivers material to the CS, the Coriolis torque will induce a clockwise rotation

(θ̇ < 0).

2. When θ̇ = 0 the chain is stopped, so ṡ = 0.
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Figure 15: Example of low-∆v transfer trajectories with a range of time of flight (TOF) from the surface of the
asteroid Bennu to one of the two CEPs.

3. As no Coriolis torque is now acting on the siphon (due to the braked chain), the siphon op-

erates like a standard undamped pendulum, reaching θ̇ = 0, without reducing the amplitude.

4. When θ̇ = 0 the chain brake is now released an the process repeated.

The maximum velocity which can be reached by the CS depends on the maximum amplitude of

the chain θmax and on the length of the chain L. The maximum amplitude θmax must guarantee

L > Lmin(θmax) where Lmin(θmax) is the equilibrium length calculated at θ = θmax. In any case,

θmax < π/2 is necessary to avoid contact between the siphon and the asteroid surface. The length

L is chosen such that, when θ = 0, the CS velocity vector is tangent to a periodic orbit (PO)

passing in close proximity to the CEPs. The PO is selected from the family displayed in Fig. 16a.

These orbits are direct POs generated using standard differential correction algorithms. Suitable

initial conditions were found via Ref. [14] and a continuation method was used to extend the

family. Figure 16a shows some of the POs passing in close proximity to the CEPs. The orbits

of this family are particularly interesting as they cross the x-axis with ẏ = 0, and therefore they

match the velocity direction of the CS when θ = 0. In particular, the trajectory represented in

red, intersects both CEPs. This PO, with a period of 12.62 h, is selected as a candidate transfer

trajectory which will deliver material from the CS to one of the two CEP, where an orbiting catcher

is envisaged to capture the transferred material. It can be shown, using the stability index method
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Figure 16: (a): Family of periodic orbits around Bennu. The trajectory intersecting the two CEPs is marked in red.
(b): velocity of the periodic orbit intersecting the CEPs. Lower value of the velocity are reached at the intersection
with the CEPs.

explained in Ref. [18], that this periodic orbit is stable. The velocity of this PO as a function of

time is represented in Fig. 16b using dimensional units. The maximum velocity v̄po = 13.8 cm s−1

is reached at the crossing with the x-axis, whereas the lowest velocity is reached at the intersection

with the two CEPs. The selected PO crosses the x-axis at x = 2.02 and therefore, with the siphon

anchored at φA = 0, the siphon length must be L = 2.02−α = 1.02, i.e., L̄ = 288 m. The maximum

angle θmax which guarantees L > Lmin(θmax) is θmax = 80.3 deg.

Figure 17 shows the chain angle (a), CS velocity magnitude (b) and CS mass (c) as a function of

time, during the angular acceleration of the siphon using the sequence described above, assuming

n = 40, M(0) = 50 and D = 0. The braking phases are plotted with a red line. It takes

approximately 175 h to reach the maximum amplitude θmax and the CS mass at this point is Mf =

1937. In such conditions, the maximum velocity reached by the CS at θ = 0 is v̄maxcs = 12.2 cm s−1.

Note that variations of the initial CS mass (that depends on the volume of material the CS can

host, the mass of the processing units and other sub-systems) will clearly affect Mf and the time

required to reach θmax. In particular, larger M(0) will lead to larger final mass and longer time to

reach the maximum amplitude.

Once θmax is reached two different methods are proposed to deliver material to one of the two

stable CEP. In the first scenario, the entire CS is released from the siphon and inserted into the

PO intersecting the CEPs, whereas in the second scenario the CS remains attached to the chain
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Figure 17: Chain angle (a), CS velocity (b) and CS mass (c) as a function of time during the acceleration process.
The red lines represent the braking phases, when ṡ = 0.
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Figure 18: Two proposed release scenarios to transfer payload material from the siphon to the CEP. (a): the entire
CS is released from the siphon once the maximum CS velocity vmax

cs is reached. (b): a payload unit is released from
the CS, while the CS remains attached to the siphon.

and sub-units of payload material are inserted into the PO intersecting the CEPs (Fig. 18).

Scenario 1. The entire CS is released from the siphon and inserted into the PO by applying a small

∆v̄ = v̄po − v̄maxcs = 1.6 cm s−1. The CS will then release the material to a catcher located at one

of the two CEPs while the siphon oscillation is reduced through a dissipation mechanism at the

anchor. After one period of the PO, the CS will dock with the siphon, transferring its angular

momentum and thus inducing a rotation on the siphon. Assuming a perfectly inelastic impact, the

siphon angular velocity θ̇ after docking will be

θ̇ =
M0Lvpo∑2n

i=1mis2
i +M0L2

(38)

with M0 = M(0). The delivery of payloads to the CS then restarts, until Mf is reached again and

the process continues. Note that, due to θ̇ 6= 0 after the CS docking, the time to reach θmax will be

shorter in this phase.

The overall outcome of this process is the periodic transfer of material from the asteroid surface

to a CEP with ∆v̄ < ∆v̄mindirect.

Scenario 2. In this scenario, the material collected is organized into sub-units with mass δM , then

accelerated by the CS through a spring system or a linear actuator to reach vpo. When a single unit
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δM is released, the siphon angular velocity decreases to conserve the overall angular momentum:

(
2n∑
i=1

mis
2
i +ML2

)
θ̇1 =

(
2n∑
i=1

mis
2
i + (M − δM)L2

)
θ̇2 + LδMvpo (39)

where θ̇1 and θ̇2 are the siphon angular velocities before and after the ∆v. If δM << M and the

inertia of the chain is much smaller than the inertia of the CS (which is true at the end of the

acceleration process) then

θ̇2 ≈ θ̇1

[
1− δM

M

∆v/L

θ̇1

]
. (40)

If the chain is stopped while the masses δM are inserted into the PO, the angular velocity of

the chain would decrease at each unit release according to Eq. (40) (since the CS mass M would

decrease). This problem can be circumvented by continuously delivering mass to the CS (using

the same sequence described at the beginning of this section) while releasing units δM after each

period of oscillation of the siphon. Nonetheless, since it is not possible to tune δM such that the

rate of incoming/outcoming mass to/from the CS is the same, part of the material delivered to the

CS has to be sent to escape, in order to keep the CS mass constant.

Using Eq. (39) coupled with the siphon equations of motion (20) it can be shown that δM = 1.65

units of mass can be transferred to the CEP every 6.4 h at the cost of 56 units of mass released to

escape in the same amount of time, while keeping ∆v̄ < ∆v̄mindirect.

The large ratio between the escape mass and the released mass in the second scenario makes

such solution less viable than the first one. However, a combination between the two methods

can be used. Whenever a large fraction of material has to be delivered to the CEPs for storing,

the method described in Scenario 1 is used. Conversely, if a large fraction of material has to

be released to escape (e.g., waste) the double release sequence described in Scenario 2 is used.

Although both methods pose a number of undoubtedly challenging engineering issues that should

be further discussed and the effects of additional perturbations (e.g., solar radiation pressure) should

be included in the future models, this preliminary study has shown that the siphon dynamics can

be leveraged to deliver resource payloads to the stable equilibrium points with smaller ∆V than

direct transfer from the asteroid surface using mass drivers, which can be beneficial in a large scale

mining scenario.
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5.3. Transfers to retrograde orbits

It was noted in Sect 2.1 that fast rotators are characterised by unstable CEPs. In this case,

material transfer to CEPs would not be effective, since small perturbations, for example due to solar

radiation pressure, will cause the material to migrate from the equilibrium towards the asteroid or

to escape. Moreover, when considering more complex asteroid shape models, the stability of the

centres might be very sensitive to small variations in the asteroid gravity field and shape [19]. A

different strategy for material transfer into orbit can be envisaged if CEPs are unstable, taking

advantage of retrograde periodic orbits. Retrograde orbits rotate opposite to the asteroid (with

respect to inertial space) and they are generally more stable than direct orbits or EPs [14].

In this case, the orbiting catcher would be placed on a stable retrograde orbit intersecting the

CS when θ = 0, and material is periodically transferred from the CS to the orbiting catcher, each

time the catcher completes one revolution around the asteroid (or at multiples of the revolution

period).

For simplicity, an example referred to retrograde orbits around Bennu is proposed here, however

this method can be easily extended to other asteroids with unstable CEPs. Figure 19a shows a

family of retrograde periodic orbits around Bennu. A lower bound on the minimum orbit altitude

can be defined to ensure that a siphon with L > Lmin can reach the orbit. In principle any stable

orbit in the family above such minimum altitude can then be selected as the nominal catcher

orbit, even though higher orbits will have a larger relative velocity with respect to the asteroid,

thus increasing the required energy for transfer to the catcher. Take, for example, the red orbit in

Fig. (19a) that intersects the x-axis in the same point as the direct orbit used in the previous section,

for transfers to CEPs. Figure 19b shows the velocity of the red periodic orbit over one period. At

the intersection with the x-axis, the velocity is about 34 cm s−1, more than two times larger than

the velocity of the direct orbit in Fig. 16a passing through the same point. However, using the

same swing-and-release technique described in the previous section, an additional ∆v ≈ 21 cm s−1 is

required to match with the velocity of the catcher at the intersection with the x-axis. In comparison,

the minimum ∆v for insertion into the same periodic orbit from the asteroid surface (calculated

using Eq. (37)) is approximately 32 cm s−1, suggesting that, even in this case, the siphon might

reduce the overall ∆v requirements in a large scale mining scenario.
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Figure 19: (a) Stable periodic retrograde orbits around Bennu. (b) Velocity profile for the periodic orbit displayed
in red. The largest velocity is achieved at the intersection with the x axis.

6. Conclusions

In this paper the behaviour of an orbital siphon anchored to an ellipsoidal asteroid has been

investigated. The siphon is envisaged as a chain of tethered-connected bucket masses containing

asteroid material (the payload). The buckets are free to slide frictionless on a support structure

anchored at the asteroid. If the chain is long enough, the centrifugal-induced forces on the upper-

most buckets can be large enough to pull the lower masses, thus initializing an orbital siphon effect:

the top payload masses are released while new payloads are connected to the bottom of the chain.

In contrast to previous publications on this topic, here large oscillations of the support structure

with respect to the anchor are considered and a collecting spacecraft at the top of the siphon is

envisaged to collect the payload material released by the siphon.

It has been shown that the siphon effect induces a torque on the chain with respect to the

anchor, thus inducing oscillations of the siphon with period comparable to the asteroid period. As

more mass is delivered to the collecting spacecraft the amplitude of these oscillations is reduced over

time and the velocity of the chain of masses does not diverge but rather reaches a constant value.

Longer chains are associated with larger chain velocity and, therefore, a larger rate of material

delivered to the CS.

It has been observed that prolate asteroids require a larger minimum chain length if the siphon

is anchored at the shortest end. Thus, for a prolate asteroid, the best anchor location of the siphon
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Figure A.1: Chain with n = 4 before (a) and after (b) the surface bucket is refilled with a payload.

is the longest equatorial end, where the centrifugal-induced acceleration at the surface is larger.

Moreover, it has been shown that the siphon dynamics can be exploited to insert the payloads

into a periodic orbit intersecting the centre equilibrium points associated with the effective potential.

If these points are stable, they could serve as gravitational depots for material, waiting to be further

processed or stored for later collection while the siphon keeps raising resources from the surface of

the asteroid.

Appendix A. Modelling payload refilling

In this section the radial velocity of the chain after the top payload is released and a new one is

connected at the surface bucket is calculated, modelling the refilling event as an inelastic collision.

Figure A.1 shows the chain configuration before (a) and after (b) the refilling event, for a chain

with n = 4. The absolute velocity of each mass on the siphon before (superscript I) and after

(superscript II) the refilling event is:

v̄I
i = ṡIûr + ω̄ × r̄i (A.1a)

v̄II
i = ṡIIûr + ω̄ × r̄i (A.1b)

where ri is the distance between the i-th mass and the centre of the asteroid. Similarly, the absolute

velocity of the waiting payload (wp) and the released payload (rp) are

v̄wp = ω̄ × r̄wp (A.2a)

v̄rp = ṡIûr + ω̄ × r̄rp (A.2b)

where it is assumed that the waiting payload is at rest on the asteroid surface. Then, conservation
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of linear momentum dictates:

m̄wpv̄wp +

2n∑
i=1

m̄iv̄
I
i = m̄rpv̄rp +

2n∑
i=1

m̄iv̄
II
i (A.3)

where the masses of the waiting payload and released payload are the same m̄wp = m̄rp = m̄p,

whereas m̄i = m̄b + m̄p for a mass on the LS and m̄i = m̄b. Substituting Eqs. (A.1a) and (A.2a)

into Eq. (A.3), performing a dot product with ûr on both sides and using non-dimensional variables

yields:

nṡI +DnṡI = nṡII + (1−D)ṡI + nDṡII (A.4)

Then, further simplifying:

ṡII =
n− 1

n
ṡI (A.5)

Note that the result is independent of the mass ratio D.
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