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Numerical Capture and Validation of a Massively Separated
Bluff-Body Wake

K. J. B. Tan* and H. Hesse'
University of Glasgow Singapore, Singapore 599493

P. C. Wang*
Singapore Institute of Technology, Singapore 138683

A flow over a bluff-body is numerically investigated and validated using a Detached-Eddy
Simulation (DES) technique at Re=21,400. An incompressible solver that is nominally second-
order accurate employing an implicit constant backward time-stepping scheme with blended
upwind-central differencing spatial discretization is used to study the massively separated wake
that is generated. Measurements are taken up to 6 downstream characteristic lengths, evaluat-
ing the wake time-averaged first- and second-moment statistics alongside near-wall boundary
layer quantities and surface-force integrals. Results advocate the use of DES methods, which are
found to be significantly more accurate for capturing wake statistics, compared to two different
Reynolds-Averaged (RANS) models calibrated with an identical grid. Although comparative
accuracy can be obtained with the RANS techniques for the boundary layer and surface-forces,
these techniques are unsuitable for modeling wake statistics as they are inherently dissipative,
evident through early velocity recovery when evaluated against experimental data.

I. Introduction

Wake phenomena and its encounter with nearby bodies are of engineering importance as these can affect aerodynamic
loads. This is critical, as flows over obstacles can produce wakes of aerodynamic significance to bodies in proximity.
These interactions concern a variety of engineering disciplines; such as the aerodynamics among building clusters due
to the convection of natural wind [1]], the handling qualities and flight simluation of rotorcraft encountering building or
ships wakes [12, 3], or even the controls for unmanned aerial vehicles under the influence of wind conditions induced by
urban environments [4-6]]. These examples demonstrate that the effects of a wake encounter emanated from nearby
sources can induce unfavorable—or even dangerous—conditions to aerodynamics and affects engineering design. Wake
encounters are a critical design consideration, and a high-fidelity simulation model that captures these wake physics of
interest accurately is required to predict any induced behaviors. Accurate capture of wake physics and vortex shedding
behavior is therefore a precursor that forms the foundation to modeling of consequent loads due to wake interactions.

As a myriad of possible geometry configurations can be responsible for a wake generator, the square beam bluff-body
(“square cylinder”) has been a long-standing benchmark geometry [/] for the validation of Computational Fluid
Dynamics (CFD) methods with experiments [8]. Although the geometry may be relatively simple, complex flow
phenomena can exist throughout flow regimes over the square beam. At lower, near laminar speeds (Re ~ 100), it has
been observed that flow separation does not necessarily occur at the leading edges but remains attached on the surface
of the geometry for half its width [9, [10]. At these slower and transitional regimes, several modes of flow invloving the
transition from laminar flow to the alternating von Kérman sheet across 50 < Re < 160 can also be observed. This mode
occurs through the shedding of shear-layer instabilities over the leading edges and their transition to turbulence, where
vortex shedding with wake dynamics become prevalent [11}[12]. The evolution of time-averaged drag and Strouhal
number as the flow becomes transitional also behaves asymptotically at higher (Re > 1.0 x 10*) Reynolds numbers [9].

As a wide range of flow phenomena is expected ranging from near-wall flow developments, to vortex shedding
and wake dynamics, numerical methods have the flexibility for entire domains to be discretised and measured freely,
without interference from the necessary physical apparatus required in experiments. In addition, the geometry favours
the generation of orthogonal grids for turbulence modelling and validation. However, general purpose RANS techniques
based on the Boussinesq hypothesis for eddy-viscosity dampens convection begin to exhibit non-physical dissipating
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behaviours even for attached flow regimes. This is observed to occur as close as two characteristic lengths downstream
[13L[14]. As bodies of interest can be located beyond this [2 3], accurate capture of wake physics at these distances may
be unsuitable for these techniques. This inadequacy can be further exacerbated under massively separated conditions,
despite good accuracy for surface force integrals. However, large-scale full- and half-loop vortex structures at transitional
Reynolds numbers could still be distinguished in the wake of a finite (AR = 7) cuboid [15]. Key quadrupole and dipole
wake structures were qualitatively identified in this transitional regime (652 < Re < 13 041) with Reynolds Stress
Models. In addition, findings on the asymptotic behaviour in the drag coefficient at Reynolds number range also agree
with other studies [9]].

At higher Reynolds numbers (Re > 1.0 x 10*), the wake shed by a bluff body can be described by several
characteristic quantities. Benchmark conditions [8l [16H21] at Re = 21400 showed that the time-averaged drag
coeflicient ranges approximately 2.1 to 2.4, with Strouhal numbers ranging 0.12 to 1.4. This shedding frequency
is correlated to the vortex shedding pair that forms due to the roll-up of the shear-layer instabilities at the leading
edges. Along the wake centre, it is observed that a region of lower pressure and recirculation zone exists leeward of
the geometry. As the momentum of the fluid recovers, a recirculation distance in the order of x/D where the local
velocity at a point along this wake centre can be found to stagnate. Past this, the width of the wake grows, and the
time-averaged (first-moment statistics) of wake centre velocity recovers towards the freestream. Some studies have
also extended beyond the focus of bluff-bodies to compare vortex shedding behaviours with streamlined shapes. At
flow separating attitudes without boundary layer reattachment, the shedding characteristics for symmetrical airfoils can
resemble those typical of bluff-body wakes—although the Strouhal numbers of streamlined bodies are more sensitive
to changes in Reynolds numbers at lower (<10°) angles of attack [22]]. At post-stall (15° to 90°), it is observed that
the Strouhal number tends to remain constant beyond Re. > 2.5 x 10*, which is similar in magnitude observed for
the square beam [9} 23]. The dominant frequencies in the wake spectra have Strouhal numbers ranging from 0.12 to
0.22, which coincides with those observable from bluff-bodies. However for streamlined bodies, a broader spectrum of
frequencies can be observed within the wake spectra due to the shear-layers emanated from the asymmetry with respect
to the flow direction caused by the leading and trailing edges [23},124].

More importantly, fluctuating quantities become increasingly dominant at these turbulent regimes. As they are of
engineering importance, Unsteady-RANS (URANS) methods become unsuitable as fluctuations can be lost through
the process of Reynolds decomposition (¢; = ®; + ¢7). Wake behaviour can therefore become numerically damped,
which is attributed to an excess of turbulent viscosity production [[16]. LES techniques are among those that have been
increasingly used for resolving the turbulent flows [17,[18]]. Mean moment statistics along the wake centre have been
captured using Scale Adaptive Simulations (SAS) [19], and one-equation dynamic models provided good agreement in
terms of the root-mean-square velocities [[17], evaluated against laser-Doppler measurements [8]. Near the walls, it is
suggested that the capture of near-wall features are key as shear layer (Kelvin-Helmholtz) instabilities at the points
of separation are propagated downstream into the von Kdrman sheet [20]. However, turbulent length scales approach
the order of the boundary layer thickness near the wall and LES depends on the filter width, with a sub-grid scale
spacing (¢; = ®; + ¢fGS) that can be limited towards DNS levels [21]]. This can become unnecessarily computationally
expensive in terms of wall grid resolution, especially for practical purposes.

However, advancements in turbulence modelling towards hybrid methods have alleviated such demands with a hybrid
length scale definition where a RANS solution is confined to the boundary layer region, with an LES-like activation
farther from the walls [25]]. Hybrid RANS-LES methods therefore provide a good compromise between RANS and
LES techniques [26,27]]. The evaluation of DDES (Delayed Detached-Eddy Simulation) capabilities determined that
the accuracy of the wake statistics increases with refinement of the subgrid-scale definition [28]]. The grid sensitivity
study was performed on refinement sizes in the order of A/D = [0.03,0.05,0.1] with agreeing results compared to
pre-existing experimental data [8]] were performed on a finer (0.03Ay/D) grid coupled with a modified Total Variation
Diminishing scheme. However, the two coarser Ay/D = [0.05, 0.1] refinement grids produced similar results, with an
approximate 0.1U/U., over-prediction in wake velocity recovery. A similar 0.05A/D grid resolution in the wake was
also used with spatial (upwind-based) schemes that are second-order accurate, although with comparatively slightly
better results [[L6]. Both examples successfully employed the hybrid method, by demonstrating reasonable accuracy in
representing the time-averaged velocity recovery and its root-mean-square statistics for the wake centre.

The objective of this paper focuses on the applied numerical methodologies for a canonical study of a wake generator
represented with a flow encountering a square beam bluff-body. Vortex shedding dynamics and wake physics are
simulated using the OpenFOAM CFD C++ toolkit, where the solvers validity and accuracy of the wake simulated
is evaluated against pre-existing experimental benchmark data. The extent of wake capture is first validated at the
source, where the suitability of the near-wall grid design is assessed to ensure adequate boundary layer and wall surface
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Fig.1 The square beam simulation domain.

(a) Computational domain with wake refinement block (b) Wall grid design, y* < 1

Fig.2 A structured O-H-grid topology with a block (H-grid) downstream used for cell refinement in the wake
region.

treatment. This translates to the time-averaged and fluctuating first- and second-moment statistics of lift and drag
surface-force coefficients. The frequency spectra of these forces also detail characteristics between their shedding
behaviours. Moving downstream, the wake centre and cross-stream profiles are measured up to 6x/D, where coherent
vortex structures are identified as part of the von Kdrman sheet. The formation of these structures are emanated from
the leading edges as shear-layer instabilities which roll-up and stretch into these larger, coherent vortex structures. The
work further distinguishes itself by establishing the extent of turbulent wake treatment with both DES and RANS
methods where the former agrees well to published results performed with LES and DNS methods 20. 21]]. Here,
the expected inherent dissipating characteristics of the RANS solutions also become evident, and are demonstrated
through its eddy viscosity ratio in the wake.

I1. Simulation Methodology for Wake Capture
The wall mounted Square Beam (SB) of characteristic length, D, with infinite span is placed adjacent to the
horizontal oncoming flow. The side boundaries of the domain spans 7D (AR = 7) across, with the inlet and outlet
spaced 40D apart. The top and bottom boundaries are spaced at 14D with the geometry located at the centroid of this
domain. These are based on a Cartesian coordinate system where the positive x direction is aligned with the flow, as
illustrated in Fig. [I]

A. Grid Description
An O-H-grid topology composed of 15 hexagonal blocks discretizes the fluid domain for the geometry as illustrated
in Fig. 2] The O-grid surrounds the beam at a distance of 0.3D from the surface for the boundary layer grid, where the



Table 1 Summary of grid statistics.

Topology Blocks y* Layers Growth,d Ay ake
Hex, Structured, O-H 15 <1 25 1.10 0.05D

first cell height resides within the viscous sub-layer at y* < 1. This first cell stretches at a cell growth rate of 1.1 over 25
layers. The Ax, z cell widths are also maintained at 0.05D, which transfers along parallel block edges for cell isotropy
in the wake block located downstream. The highest aspect ratio among cells which are at the wall are in the order of
100. Downstream, a single block is used for wake refinement, and extends up to 7x/D from the geometry origin at its
centroid. The grid then expands to the far field regions of the domain boundaries. With this grid design, the entire
computational domain comprises of approximately 4.1 x 10° elements. In terms of quality, the grid has a maximum
non-orthogonality of 47°, which occurs along the four leading and trailing edges of the geometry. Because of the high
orthogonality among all other cells, mostly in the volume of the wake block, the overall non-orthogonality quality of the
grid is strong which averages to 7°.

B. Governing Equations and Numerical Schemes
Flow conditions are at Re = 2.14 x 10*, with reference to standard sea-level conditions, assuming fully turbulent,
incompressible, isothermal conditions of the Navier-Stokes (continuity and momentum) equations where:
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The equations in the general form are discretised with schemes that are nominally second-order accurate. Spatially,
the divergence terms are discretised with a blended central-upwind differencing scheme (CD-UD) [29]:

(1b)

¢r=1-y)or)up+v(df)cD, (2)

where discretisation of the arbitrary primitive variable ¢ is blended with the coefficient y, weighted at 0.75. As
boundedness is not guaranteed with central differencing, an upwind-blended scheme provides boundedness resulting
in better numerical stability and accuracy. Time discretisation is achieved with a second-order implicit, backward-
differencing scheme [30], where:
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A segregated approach is taken where the pressure-velocity coupling for the time-marching solution is achieved with
the PISO (Pressure-Implicit with Splitting Operators) algorithm. The semi-discretised form of the momentum equations
are then a, U, = H(U) — Vp, where a,, and H(U) are the diagonal and the off-diagonal (convective and diffusive)
coeflicient matrices, respectively. A constant time-step selection that is adequately fine ensures that the algorithm
is conditionally stable with diagonal dominance. This is based on the maximum Courant number in the domain, by
referencing the smallest cell sizes with highest relative local velocities due to the shear layer instabilities that are located
over the leading edges of the geometry. Under these conditions, the wake C,, ~ 0.2, and translates to Az, = 6.25 x 1073
which satisfies the Courant—Friedrichs—Lewy condition [31]].

For time-averaging, the solution time-history is limited towards a sufficiently large instance relative to fluctuations to
ensure that the statistical average (mean) is sufficiently sampled to be insensitive to the amount of time samples taken.
After allowing a flow development phase of approximately 50 characteristic lengths, a subsequent sample size of 250 is
sampled for the URANS case. Due to the turbulent extent of the DDES solution, this sample size is further increased to
950. Table 2] summarises and compares the case parameters alongside the existing studies.




Table 2 Case comparisons of wake block grid cell size, characteristic time step, Courant number, and
time-history sample size for the Square Beam (SB) case.

Cases Type Re x 10° Awake, D A1 x 1073 Co T
SB URANS (DDES) 214 0.05 6.25(3.125) 0.27 250 (950)
Boudreau et al. [I6] URANS (DDES) 21.4 0.05 10 0.2 209.5(1507.5)
Barone and Roy [28] DES 19.4  0.095-0.032 3.2 - 250.8"
Sohankar et al. [T7]  LES 22.0 0.1-0.16 12.5 - -
Fureby et al. [18] LES 21.4 - - 0.5F -
Trias et al. [21]] DNS 22.0 - 097&1.71 - 605

T Relative to local wake cell size.
* Average of three reported cases.
* A reported domain maximum.

C. Turbulence Modelling
The Spalart-Allmaras (SA) one-equation turbulence model solves for a single transport quantity given by:
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this is related to turbulent viscosity through:
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The variant used here excludes the f;, trip term, calibrated with the model coefficients that are as recommended by
the source [32,133]]. Being a one-equation model, it neglects turbulent kinetic energy in the Boussinesq hypothesis for
Reynolds stresses where:

— — 2
- pui’uj’ = 2,u,Sl~j - §pk6ij, (6)

becasue of this its performance can therefore be impeded especially for the modelling of massively separated flows or
those with adverse pressure gradients such as in this case.

The second RANS model that is considered is the k-w SST model that based on two-equations for the transport
of turbulent kinetic energy and specific dissipation rate. It is also highly regarded [14] which offers a blend between
the standard k-w and k-e models [34,[35]. The additional equation obtains turbulence intensity, which in contrast to
the one-equation model, addresses turbulent kinetic energy in the Boussinesq hypothesis. The transport equations for
turbulence kinetic energy and specific dissipation rate are given by:
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where F| is the blending function that distinguishes the definition between the boundary layer and the freestream, and
all model constants and sub-functions are taken as given by the source [34].

The DES formulation is built upon the SA model that is based on the correlation of its production (cp1 75) and
destruction (¢, 1 f1 (¥/d)) terms in its transport equation [26]. Balancing these terms gives a relationship that scales the
eddy-viscosity with the local deformation rate and distance to the wall. This is analogous to the Smagorinsky model
where it scales with its sub-grid scale eddy-viscosity and grid spacing instead. With this, the distance to the wall in the
original SA model is replaced with a hybrid length scale:

d=d - f;max(0,d — CpesA), (8a)



Table 3 Summary of boundary conditions for the computational domain.

Boundary Type Velocity Kinematic pressure
Inlet Inflow ui =Us dp/on=0
Outlet Outflow ou;/on =0 p=0

Far fields - ou;jfon=u; -i=0 dp/dn=p-i=0
Walls No-slip u; =0 op/on=0

where:
Vi + v

NoTery
and fy = 0 yields RANS and LES modes for the hybrid length scale. The Cpgs constant is calibrated to 0.65. This
hybrid formulation allows a RANS-like behaviour and a Smagorinsky-like LES model that switches depending on the
proportions between the distance to the wall and local grid spacing. The sub-variant used here is the Delayed-DES
(DDES) model which provides an adjustment to the definition of the hybrid length scale that narrows the region of
uncertainty between RANS and LES modes. This improved variant has been demonstrated to perform more accurately
for massively separated flows [26].

fa=1—tanh([8r4]%), ra (8b)

D. Boundary and Initial Conditions

The solution domain is velocity-driven, with a freestream inlet and a static pressure outlet. No-slip boundary
conditions are imposed on the walls with all remaining far field boundaries taken to be of zero flux and normal
components. Computation of turbulent viscosity, v;, is constrained with a turbulent viscosity ratio of v;_ /v« = 0.01.
The turbulent viscosity for the inlet is determined using kinematic viscosity, v = p/p. For the SA model, the modified
eddy-viscosity term, ¥, where Vo, = 5v. for fully turbulent flows, and at the walls, v;,_,, = Vwai = 0 is used. The
k-w SST model introduces two additional terms, which are the turbulent kinetic energy, k, and specific dissipation, w.
The inlet values reference the freestream based on turbulent intensity where k;pnjer = 3/2(Uool )2, taking 7 = 0.01, and
specific dissipation, v; = k/w. For no-slip conditions, the turbulent kinetic energy, k,,41; = 0.

The grid is initially calibrated for grid independence with the SA model assuming steady flow conditions. The
internal fields from this steady solution is then subsequently used for the initialisation of the time-marching transient
calculations. The URANS solution is used for the initialisation of the DDES case where a development time of 50
convective time-steps is used for the solution to adjust to the updated turbulence model. These numerical solutions are
achieved through pisoFoam solver in the OpenFOAM library [36} 37].

I11. Turbulent Wake Capture Shed by a Bluff Body

A. Evaluation of Boundary Layer Grid

The near-wall grid is assessed independently as an extract of the top surface grid settings described in Table|I{under
identical flow conditions. A fully developed boundary layer over this distance is achieved with a cyclic inlet-outlet
interface where evaluation with the Law of the Wall is valid [38]. The dimensionless velocity is obtained as:

r2 X s L )
v Ur
where: 5
Ur = T—W, Tw = U (—u) (10)
P 9y /=0

Discrete points in Fig. [3|represent cell-centred values. Based on this boundary layer grid design, six cell centres
reside well within the viscous sub-layer at y* < 5. The same grid is run with the k-w SST model and compares well
against the SA results, and other numerical studies [32] with comparable flow conditions (Re = 1.0 x 10%). The cyclic
flow conditions for the present grid assumes attached flow but the formation of a separation zone over the leading edges
of the geometry would induce much lower local velocities over the upper and lower surfaces as seen in Fig. @] The
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time-averaged surface line integral convolution illustrates the leading edge separation vortices over the extend of the
characteristic width of the geometry. This is expected to result in a y* < 1 for the full case due to boundary layer
recirculation with lower local velocities. This result demonstrates adequate grid design for capturing boundary layer
effects.

B. Vortex Shedding Dynamics and Surface Integral Statistics

Vortex shedding dynamics is made apparent through instantaneous contours of the von Kdrman street as illustrated
for the three cases in Fig. [5] Coherent three-dimensional flow structures are identified with iso-surfaces of wake vortices
identified with the 1,-criterion [39] based on the eigenvalues of symmetric and anti-symmetric parts (S* + ©?) of the
velocity gradient tensor (J = vU ) contoured with instantaneous velocity. Based on the contours, the DDES solution is
capable of capturing and identifying a greater resolution of smaller-scale vortex structures in comparison to the URANS
cases. The shear-layers emanated from the leading edges are convected downstream that eventually roll-up and stretch
into a larger coherent span-wise vortex structures trailing the geometry. This is observable for all cases but the DDES
solution distinguishes itself with much greater flow details.

The drag coefficient frequency oscillates at approximately twice that of lift based on Discrete Fourier Transform
with the analyses as shown in Fig. [} These are at 4.37 and 8.91 Hz for the SA results (Fig. [6a) and overall observations
for all three cases agree with the von Karman street dynamics as these parallel and perpendicular forces persist in
cross-flow directions [38]]. This relationship is easily distinguishable for the SA and k-w SST cases in their frequency
domains (Figs. [6a]and [6b) but not as apparent for the DDES case, which is only revealed in its power spectra (Fig. [6¢).
Both peak dominant frequencies for the URANS cases agree at approximately 4.3 Hz, whereas results from the DDES
are relatively higher by approximately 2 %. Using this frequency, a period of 0.225 s for the DDES case can be obtained
and reveals a resolution of 1126 time-steps per wave period. Despite the significant similarities between the models in
the frequency domain, their differences become apparent in the (log-log) power spectra, which shows that the hybrid
solution can capture more information compared against the eddy-viscosity solutions.

The results for dominant frequencies in Fig. [6|corresponds to a Strouhal number of 0.140 and 0.142 for the SA and
DDES solutions, respectively. This amounts to a difference of 1.43 % between the two techniques, but is over-predicted
by 7.58 % with respect to the experimental data [§]]. Table ] summarises these surface-integral statistics against other
comparable benchmarks of the same square beam geometry. Metrics are mainly based on the time-averaged lift and
drag coefficients alongside root-mean-square statistics of their respective signals. The obtained drag coefficient has a
good agreement with the benchmarks, accurate to a 100-count precision. Another parameter captured is shown in Fig.
that demonstrates the extent of the trailing recirculation zone aft of the geometry. The mean recirculation length of
the wake is also captured with a 5% error relative to the experiment [8] by taking the closest stagnation point along
the time-averaged wake centre. This difference accounts for the precision of the discrete measurement to the closest
cell-centre. In comparison, the DDES results under-predicts this length by less than 5 % relative to the experiment and
other numerical work [8, 20]].

To investigate the difference in Strouhal numbers, it was reported that a two-component Laser-Doppler Velocimetry
along the wake is used for monitoring velocity fluctuations [8]]. Identical locations along this centre (x/D = [1,2, 3, 6])
are similarly probed for their point vertical velocity component and the dominant frequencies at these locations coincides
with lift at approximately 4.44 Hz. Further investigation for sensitivity with regards to time discretisation by halving the
time-step size also reveals no appreciable difference in the Strouhal number. Other work (Table [) also lists numerical
cases that are corrected for blockage effects. This correction factor is applied to confined (ducted) spaces and non-slip far
field boundary conditions [[17}28]. However, blockage corrections should not apply considering the far field boundary
conditions for the present case as this does not lead to an increase in dynamic pressure across the domain. Despite the
over-prediction in Strouhal number relative to the experimental cases, the key results obtained are consistent with other
numerical cases for time-averaged drag prediction, Strouhal number, and mean recirculation length [18} 20} 21]].

C. First- and Second-Moment Wake Statistics

The DDES solution provides a significantly greater amount of information comparing the instantaneous velocity
magnitude and span-wise vorticity component contours in Figs. [§|and[9] The results from both the SA and k-w SST
solutions appear to convey the same degree of information in the instantaneous contours and therefore only that from the
SA solution is presented. Finer flow details are easily observable through the velocity contours (Fig. [8) and the amount
of mixing downstream, convected from the upper and lower shear-layers over the leading edges of the bluff-body is
evident in Fig. 0b] The significant loss of information through the process of Reynolds decomposition reduces the
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Fig. 5 Instantaneous vortical structures identified with 1,-criterion iso-surfaces contoured with normalised
velocity magnitude.
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Fig. 7 Surface line integral convolution of time-averaged velocity (surface streak-lines) from the DDES case.
The mean recirculation zone can be clearly seen downstream.
Table 4 Comparison of key vortex shedding parameters.
Case Type Rex 10> AR Cp S, A cp  c
Present study
SB URANS / SA-noft2 214 7 2.15 0.140 093 0.15 1.39
URANS / k-w SST 21.4 7 226 0.1383 093 0.16 144
DDES / SA 21.4 7 219 0.142 131 0.12 095
DDES / SA" 21.4 7 222 0.142 - 0.08 099
Numerical
Boudreau et al. [16] URANS 21.4 7 2.11 0.133 097 0.14 1.56
DDES 21.4 7 241 0.126 1.07 0.17 1.47
Barone and Roy [28] DES, corrected* 19.4 4 211 0.125 142 026 1.16
Fureby et al. [18] LES 214 8 2.1  0.131 125 0.17 1.30
Sohankar et al. [17] LES, corrected 22.0 4 2.09 0.128 1.07 0.27 1.40
Minguez et al. [20] LES, corrected 21.4 - 22 0.141 1.28 - -
Trias et al. DNS 22.0 4 2.18 0.132 1.04 0205 1.71
Experimental
Lyn et al. [8]] Laser-Doppler 21.4 9.75 2.1 0.132 138 - -
Minguez et al. [20]  Laser-Doppler 214 20 21 0130 - - -
Luo et al. [40] Water tunnel, corrected  34.0 92 221 013 - 0.18 1.21

* Present results are taken at the closest approximate zero-velocity discrete point.
" Results from a subsequent time-step sensitivity study.
* Corrected, with blockage corrections.
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entire turbulence spectrum such that only the mean flow statistics remain is therefore very apparent (Figs. [8a]and Da).
Furthermore, time-averaging the velocity fields—which also appear identical for the two URANS models—also reveal
a larger, diffused wake (Fig. [I0). However, the vertical extent of the shear layer emanated from the leading edges
are similar between both the URANS and DDES solutions, which extends to a width of approximately 2y/D. The
time-averaged velocity fields also reveal an earlier recovery in the SA solution (Fig. by almost 0.3U /U

The accuracy for the first-moments of the wake capture is evaluated in terms of its wake velocity recovery along the
centre, and wake profiles evaluated across 4 downstream stations. The normalised time-averaged stream-wise velocity
profile is presented in Fig. [[T]and evaluated against experimental data [§]] up to 6x/D. The URANS models over-predict
this velocity profile, characterised as an early recovery. On the other hand, the DDES model provides excellent accuracy
although marginally over-predicting beyond 3x/D. The second-moment statistics of velocity fluctuation is evaluated
along this same centre. Figure[I2]illustrates the freestream-normalised root-mean-square of stream-wise, RM S (u”) /U,
and transversal RM S(v’) /Uy velocities, up to the same downstream distance of 6x/D.

The results obtained from the URANS models generally under-predict fluctuations. However, the horizontal location
of the fluctuation peak is predicted with reasonable accuracy, positioned at x/D =~ 1.5. Thereafter, the fluctuations
depict severely damped results in the RMS of the velocity farther downstream, that plateau along u’/Us ~ 0.03 at
distances beyond x/D = 4 especially for the SA case. This is non-physical compared to the experimental results [8]], and
that observed from the DDES case. In contrast, DDES only models the turbulence spectrum partially, which are filtered
based on the smallest grid scales. Investigating the total effective viscosity (v + v;) of the instantaneous field reveals a
significant over-prediction in turbulent viscosity ratio, by approximately 50 times of that for the URANS cases compared
to DDES which showed only a time-averaged maximum of v, /v = 8 compared to 200 shown in Fig. The same order
of magnitude in this over-prediction of total effective viscosities is also reported [[16]. In contrast to the experimental
data, the DDES results predicts the fluctuation peak slightly farther downstream. This disagrees with that reported by
[21], where the peak is depicted to be farther upstream instead. The fluctuations are slightly over-predicted in the near
wake (2x/D) while it is expected for results to fall short due to damping from sub-grid scale viscosity. This observation
is also highlighted by other numerical work listed in Table 4] Regardless, excellent agreement is obtained farther
downstream, especially within 3 < x/D < 6 which predicts the range of rms(u’) /U =~ 0.3 against the experimental
data [8]]. The transversal fluctuations (Fig. yield similar results among the numerical cases within the x/D < 3
range, but begin to deviate past this distance as the URANS results begin to over-predict relative to the experimental
data while the DDES solution maintains some degree of accuracy (rms(u’)/Us = 0.1) for the remainder of the results.

Velocity deficit profiles for the normalized stream-wise velocity component are illustrated in Fig. [14]for x/D =
[1,2,3,6]. DDES results show excellent agreement with the experimental data at x/D, especially for the limits of the
wake width at approximately u/U.,. However, results for comparison at the farther downstream stations are unreported.
Nevertheless, the wake center velocities in Fig. [IT|correspond to those along the wake center in Fig. [[4] and therefore
confidence for the accuracy in the maximum wake momentum deficit is high. As expected for the URANS results, the
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wake velocity profiles model early wake recovery farther downstream and prove to be inadequate at capturing even the
first-moment statistics along this location.

The results obtained so far has demonstrated good correlation in terms of the wake descriptors and also quantitately
for vortex shedding parameters against the cited sources. Key vortex structures were also identified, illustrating different
orders of fidelty across the two tested turbulence modelling methods. These have good accuracy and are comparable
even to that of LES and DNS methods [17,21] among others, despite being conducted on an identical grid with the
RANS models.

IV. Concluding Remarks

Statistical and instantaneous results of vortex shedding and wake capture for a massively separated flow generated
by a bluff-body are provided with URANS and DDES methods obtained on identical grids. The solutions presented are
nominally second-order accurate using an implicit constant backward time-stepping scheme coupled with a blended
upwind-central differencing spatial discretization scheme. Shedding dynamics, including the Strouhal number, statistics
of lift and drag coefficients, along with time-averaged moment statistics of the wake profiles and stresses are among the
results presented. Although the Strouhal number is slightly over-predicted compared to experimental values, the effects
of blockage and the application of correction factors need to be considered when imposing the appropriate far-field
boundary conditions as this will influence the resulting shedding frequencies. Additionally, this dominant frequency was
insensitive to time-discretization studies with half a time-step size. Key vortex structures were also identified among
the models tested, and the von Karman sheet was identified of varying resolution based on the turbulence model used.
The amount of detail in the flow were also reflected in the respective force coefficient spectra, which showed good
correlation with existing sources for the dominant wake shedding frequencies.

For wake capture, the errors for URANS are attributed to inherent damping, evident as as inflation in total effective
viscosity that affects even the mean flow. The DDES results in comparison, demonstrate excellent accuracy that is even
comparable to that of LES [[17, 20] and DNS [21] methods for wake recovery and RMS statistics up to the measured
distance of 6x/D compared against experimental data [8]]. This supersedes RANS in terms of accuracy on the given
(RANS-calibrated) grid resolution (A = 0.05D), and the significant improvement in accuracy is achieved with just a
marginal trade-off in computational effort that is still much lower than that required of LES. The present work contributes
as an additional reference for future cases involving the modeling and verification of bluff-body wake capture. Based on
the results conducted under the present conditions, the outlined approach expands on the best practices for wake capture
and assessment, considering the robustness of accuracy and computational economy for DDES among the hierarchy
of turbulence modeling techniques. This applies especially for practical applications, where the importance accurate
capture precedes its interaction with downstream bodies for aerodynamic loads.
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