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Abstract

Satellites launched by independent spacefaring agencies and firms create space congestion and col-

lision risk. Taking as benchmark the cost of a marginal reduction of the congestion rate, we discuss

tax mechanisms financing a debris removal effort. We compare the non-cooperative equilibrium

traffic when there is a tax on each new launch to recover cleanup costs, with the welfare optimal

traffic under a centralized tax. We find that under the latter it is twice as easy to recover cleanup

costs and increase traffic than under the former. We also show that a linear tax is twice as effective

as a quadratic one.

Keywords: Space debris, satellites, space agents, tragedy of the commons, collision, tax system,

game theory.

1. On a tragedy of space commons

Space is shared among all spacefaring agencies and firms, whose satellite launches create space

congestion and collision risk. There is a risk that each of them launches too many satellites because

they fail to internalize the impact of adding to the congestion on others than themselves. We

investigate to which extent space debris mitigation can be achieved by taxing satellites launches.

Space debris refer to artificially created objects in earth orbit such as old satellites and rocket

stages. It includes the fragments from their disintegration, erosion and collisions. Today there is a

total of 20 021 artificial objects in earth orbit including 2 060 operational satellites. There are also

more than 130 million debris smaller than 1 cm, about 900 000 debris 1-10 cm, and around 34 000

debris larger than 10 cm in orbit.
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URL: https://sites.google.com/site/bealpage/ (Sylvain Béal),
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Figure 1: Evolution of the Cataloged Satellite Population (Liou, 2020)

Figure 2: Number of objects and mass (OECD, 2020)

Satellites can avoid collisions with the larger debris by slightly changing their trajectories.

Their Whipple shields can also resist collisions with the smaller debris (less than 1 cm). The most

dangerous debris are the 1-10 cm debris which are too small and numerous to be tracked and

against which Whipple shields are useless. Given the important economic impact of satellites in

orbit, such collision would be disastrous. According to Adilov et al. (2018) space debris may render

orbits economically unprofitable before Kessler Syndrome.

To just give a rough order of magnitude about the money involved: 1/ on LEO there is the

Iridium NEXT satellite constellation which cost is estimated to 3.5 billions dollars, 2/ there is

also the ISS estimated by ESA at 100 billions euros, and 3/ Wiedemann et al. (2013) estimated

approximately the cost of removing 5 debris to 700 million dollars for the first year (that is before

higher cost efficiency). Cleaning space is therefore a crucial issue in the astronautic community.

Even, some of its members has already propose cost-benefit analysis both for space debris mitigation

measures (e.g Wiedemann et al., 2004) and satellite shielding (e.g Wiedemann et al., 2008).

It should be as important for economists, but the question of cleaning space and mitigating

satellites launches has received little attention in the economic literature. This assessment is shared

by Weinzierl (2018), who analyzes the space economy by pointing out features that are unique to

space.
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In this article, we introduce a simple model of space congestion and collision risk in which

independent spacefaring agencies and firms decide on the number of satellites to launch and this

interaction defines a non cooperative game, the outcome of which is a Nash equilibrium1 (simply

equilibrium or non-cooperative equilibrium henceforth), i.e., a situation in which no spacefaring

agency or firm can become better off by changing unilaterally its launching decision. The following

two papers also approach the problem of debris removal in game theoretic terms. Klima et al.

(2016) provide a very simple game-theoretical model involving only two or three space agents and

few launching strategies. They focus on simulation results in an evolutionary framework where

the collision risk evolves with time according to the past decisions. Singer and Musacchio (2011)

analyze the cost-savings from deorbiting satellites after their mission lifetime. In their model,

the costs and benefits are specified by estimations provided in the astronautic literature. Their

main results are numerical simulations in which the stable coalitions of spacefaring agencies are

identified, i.e. coalitions such that each coalition member is better by staying inside the coalition

and each non-member is better off by remaining outside the coalition.

Our model innovates, both in terms in terms of modeling and results. We consider an arbitrary

large number of spacefaring agencies and firms that decide upon launching costly satellites with

the risk that some will not be operational due to collisions. Our model accounts for the launching

decisions contrary to Singer and Musacchio (2011) where the decisions are limited to deorbiting

efforts, and the launching possibilities are a priori not restricted contrary to Klima et al. (2016).

The probability of failure of a satellite is evaluated by the probability of collision with another

satellite. In order to approximate this probability, we model the space orbit as a set of boxes

and apply the pigeonhole principle. A satellite is operational if there is no other satellite in its

box (otherwise they destroy each other). This is a benchmark which rules out highly complex

mechanics such as residual atmospheric drag, radiation pressure, periodic occultation, magnetic

hysteresis, etc. A slightly more realistic approach leading to almost the same model as ours is

discussed at the end of the article. Moreover, our model is flexible enough to take into account the

specifications used in Singer and Musacchio (2011).

When launches are unregulated, our Lemma 1 provides a necessary and sufficient condition for

the uniqueness of an equilibrium and computes the equilibrium launching decisions. It turns out

that a decrease in the failure probability increases the equilibrium total number of satellites, but not

necessarily for all spacefaring agencies and firms. This equilibrium total traffic is also less than in

the fully regulated case, an utopian situation in which an international agency would have the power

to enforce socially optimal satellite launches. In the economic field, this is a classical illustration of

the tragedy of the commons in the sense of Hardin (1968).2 In order to mitigate this inefficiency,

we discuss tax mechanisms financing a debris removal effort by considering as benchmark the cost

of a marginal reduction of the congestion rate. We compare the non-cooperative equilibrium traffic

when we tax each new launch to recover cleanup costs, with the socially optimal traffic under a

1For further details on the theory of non-cooperative games and on the concept of Nash equilibrium, we refer to

Maschler et al. (2020).
2Ostrom (1990) compares theoretical predictions regarding the governance of commons with real-life outcomes.

Frischmann, Marciano and Ramello (2019) provide a recent overview of the main conclusions of her framework.
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centralized tax. We find that under the latter it is twice as easy to recover cleanup costs and

increase traffic than under the former. We also show that a linear tax is twice as effective as a

quadratic one. These results are stated in Lemmas 2, 3 and 4.

Finally, our article contributes to the literature on abatement of environmental pollution, in

which the stability of international agreement occupies an important place (see Carraro and Sinis-

calco, 1993; Barrett, 2001, for instance). And more generally to the discussion of tax policies to

regulate the provision of a public bad: see for instance Hindriks and Myles (2006).

The rest of the article is organized as follows.

2. Model

This section will show the basis on which we will compare in section 3 different institutional

configurations. We first propose a toy model of collision in orbital space based of the pigeonhole

principle, then we define how we represent the space agents and their benefit functions.

2.1. Collision in orbital space

Collisions in space are modeled by a pigeonhole principle3, which provides the survival

probability of a satellite or equivalently the probability that a satellite is operational. The orbit

3The pigeonhole principle is often attributed to Dirichtlet, even if it appeared two centuries before (Rittaud and

Heeffer, 2014). In the conclusion, an alternative and less sketchy model is introduced.
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space is partitioned into p boxes and the launched satellites are placed into these boxes with a

uniform probability. Hence, once the first satellite is placed, the second has a probability 1/p to

be placed in the same box, in which case they collide and are lost. Therefore, each satellite has a

probability 1− 1/p of surviving. The third satellite is then launched. There is again a probability

1/p of being in the same box as the first satellite, independently of the previous launch. Thus the

probability of survival for the first satellite becomes (1− 1/p)2. Finally, if x is the total number of

satellites in orbit, then every satellite has a probability (1− 1/p)x−1 of survival. This probability

is obtained by assuming that there is no fratricide collision: it seems plausible to suppose that a

satellite launcher is able to avoid to place two or more of its satellites in the same orbital box.

The survival probability can be rewritten as (1−1/p)x−1 = e−τ(x−1) where τ = − ln(1−1/p) will

be interpreted as the congestion rate. This is likely to be a very small number. Basing on previous

studies (e.g FP7 REVUS and P2ROTECT) it seems reasonable to point to a failure rate of less

than 10% over the operational lifetime, so we estimate that τx < 0.1. Example 1 below discusses

two realistic scenarios satisfying this inequality. As a consequence, we can use the approximation

e−τ(x−1) ' eτ (1 − τx) by using the first two terms of a Taylor series. Since τ is very small, we

can even use the simpler form (1− τx) for the probability that any satellite survives. We will use

it to get closed form solutions in our analysis. Thus, τx2 represents the total mass of debris

generated by the launch of x satellites.

2.2. Space agents

We consider a finite set N = {1, . . . , n} of space agents (henceforth called agents) who are

able to launch satellites. We denote by xi the number of satellites agent i ∈ N launches. For

analytical simplicity, and because the xi-s are large numbers, we describe them as real numbers.

We write x =
∑

i∈N xi the total number of launched satellites (the satellite total traffic).

Agent i’s marginal cost of launching one more satellite is ci+γixi and its marginal benefit is

normalized to 1. So, utilities are measured in “satellite equivalent”; in the economist terminology,

satellite traffic is taken as the numeraire. We assume ci < 1 for otherwise agent i has no interest

in launching anything. The quadratic coefficient γi ≥ 0 captures the decreasing returns to manage

a growing fleet of satellites. It can also be interpreted as the increasing option value of funding an

overseeing spatial agency, which would regulate the total satellite traffic.

If the agents choose to launch satellites (x1, . . . , xn), then agent i’s utility (or benefit) is given

by

ui(x1, . . . , xn) = (1− τx)xi − cixi −
γi
2
x2
i . (1)

In the rest of the article, without loss of generality, we shall assume that the agents are ordered by

increasing order of the constant part of their marginal cost, i.e. c1 ≤ c2 ≤ · · · ≤ cn.

A Nash equilibrium4 in this framework is a list (x1, . . . , xn) of launching decisions such that,

for each agent i ∈ N and each number of satellites yi ∈ R+ that i can decide to launch, it holds

4The concept of Nash equilibrium is the most central equilibrium concept in non-cooperative game theory. In

words, it is a context where no single player can obtain more payoff by changing her strategy if the others stick their

own. For more details and examples we refer to Kreps (2018).
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that

ui(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≥ ui(x1, . . . , xi−1, yi, xi+1, . . . , xn).

In words, if the agents decide to launch satellites according to (x1, . . . , xn), then agent i has no

incentive to change the number of satellites it launches.

3. Three institutional configurations

We consider three types of situations: the purely non-cooperative case where launches are not

regulated, the opposite case of a central agency regulating launches, and an intermediate situation

in a which a central agency sets up a tax (which can be linear or not) in order to improve upon

the unregulated case.

3.1. Unregulated launches

The basic non-cooperative model defined by (1) is a standard tragedy of the commons problem

where the failure rate is a public bad that the agents overproduce because they fail to internalize

the impact of adding to the congestion on agents other than themselves.

In order to state our first result, we define the following coefficients, for each i ∈ N :

αi =
1

τ + γi
and λi =

αi
1
τ +

∑
j∈N αj

Lemma 1. There is a unique equilibrium (x1, . . . , xn) ∈ RN++ where all space agents are actively

launching if and only if:

1− cn ≥
∑
j∈N

λj(1− cj). (2)

The equilibrium total and individual traffic levels are given by:

x =
1

τ

∑
j∈N

λj(1− cj) and xi = αi

[
(1− ci)−

∑
j∈N

λj(1− cj)
]

for all i ∈ N.

Some comments before proving Lemma 1. The (dimensionless) number 1 − ci is a margin

coefficient, the difference between the utility/value of a satellite (taken here as the numeraire) and

its direct cost. Next we compute

1−
∑
j∈N

λj =
1
τ

1
τ +

∑
j∈N αj

=
1

1 +
∑

j∈N
1

1+
γi
τ

This difference is never smaller than 1
n+1 , and close to 1

n+1 if the quadratic coefficients γi are

significantly smaller than τ . In the latter case inequalities (2) tell us that an equilibrium with a

large number of active space agents is only sustainable if their (linear) costs ci are close to one

another.5 Similarities between marginal cost parameters is plausible at an advanced stage of the

launching technology, supplied competitively by specialized firms.

5As γi � τ the λj-s are almost equal and (2) implies that the smallest margin 1−ci (largest ci) is at least 1− 1
n+1

times the average margin.
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On the contrary if the γi-s are larger than τ , as in the numerical Example 1 (just after the

proof below), the system (2) is compatible with fairly unequal cost parameters.

If the cost parameters are too different to have all agents active in equilibrium, the equilibrium

is still unique but only a subset of agents with the lowest costs ci are active.

Proof. (Lemma 1) Maximizing (1), we get the first order condition 1− τx− τxi− ci− γixi = 0,

or equivalently

xi =
1− ci
τ + γi

− τ

τ + γi
x.

By using notation introduced before the statement of Lemma 1, the latter expression can be

rewritten as

xi = αi(1− ci)− αiτx. (3)

Summing (3) on N , we obtain

x =
∑
j∈N

αj(1− cj)−
∑
j∈N

αjτx

and thus

x =
1

τ

∑
j∈N

λj(1− cj)

as desired. Replacing x in (3), we get the unique equilibrium quantity

xi = αi

[
(1− ci)−

∑
j∈N

λj(1− cj)
]

(4)

for each i ∈ N . It remains to ensure that all agents are active at equilibrium, which amounts to

have xi > 0 for each i ∈ N in (4), and leads immediately to

1− ci ≥
∑
j∈N

λj(1− cj)

for each i ∈ N . Since c1 ≤ c2 ≤ · · · ≤ cn, we get condition (2). �

Let us illustrate the mechanisms behind Lemma 1 by the following example.

Example 1. In this academic example, to keep things simple, we only limit ourselves to five space

agents, even if the example can be extended easily to more agents as underlined at the end of the

example. So let us set N = {1, . . . , 5}. For each i ∈ {1, 2, 3, 4, 5}, the cost parameters are given by

ci =

(
i

6

)2

+
3

10
and γi = 5i× 10−4. (5)

These values are essentially chosen so that the space agents differ in the efficiency of their launching

technologies (since both ci and γi depend on i). Agent 1 owns the most efficient technology while

agent 5 owns the least efficient technology. Furthermore, for each space agent i, note that the

7



quadratic coefficient γi is small and much less than the constant part of the marginal cost ci.

This implies that the extra cost of launching one more satellite increases only very little with the

satellite fleet. In the remainder, we are considering three scenarios described by three congestion

rate values for τ .

In the first scenario, suppose that τ = 2 × 10−5, i.e. a moderate congestion rate. In this

situation, condition (2) is satisfied for all agents except for the agent 5 which has the least efficient

launching technology. Therefore agent 5 will launch x5 = 0 satellite and everything happens as if

agents 1, 2, 3 and 4 are involved in a four-agent game. In this game, condition (2) is still satisfied for

all of them, meaning that they are all active in the equilibrium of the five-agent game in which agent

5 is inactive. More specifically, from (4), we get the following equilibrium quantities: x1 = 1211.2,

x2 = 535.8, x3 = 268.1 and x4 = 105.5. The resulting total satellite fleet x = 2120.6 is close to the

current total number of satellites. The probability of losing a satellite is then τx = 4.04%.

In the second scenario, suppose that space congestion becomes twice as high: τ = 4 × 10−5.

At equilibrium, only the first four agents are active once again, with the following equilibrium

quantities: x1 = 1055, x2 = 473.3, x3 = 231 and x4 = 79.8. The total satellite fleet x = 1839.1 is

reduced by 13% but is not far from real current level. Not surprisingly, the probability of losing a

satellite more than doubles to 9.2%.

In the third scenario, we would like to highlight how the congestion rate can influence the

number of active space agents at equilibrium. In order to do so, consider a considerable, but less

plausible, increase of the space congestion: τ = 4× 10−4. In this case, condition (2) is not satisfied

for agents 4 and 5. Space congestion is now high enough to drive out of the space activities the

agent with the second worst launching technology. In the four-agent game obtained after removing

agent 5, condition (2) remains unsatisfied for agent 4, while in the three-agent game obtained after

the further removal of agent 4, condition (2) is satisfied for agents 1, 2 and 3. As a consequence,

coming back to the initial five-agent game, both agents 4 and 5 will be inactive at equilibrium. The

resulting equilibrium quantities are: x1 = 425.3, x2 = 213.9, x3 = 84.5, x4 = 0, x5 = 0. This yields

a decrease of the total fleet and an increase in the failure probability, both substantial (x = 723.7

and τx = 28.9%).

Finally, this example can account, somehow artificially, for more space agents by adding agents

whose technologies are even less effective than agent 5’s technology. In this case, these new agents

will be inactive at equilibrium in each of our three scenarios and would not influence the aforemen-

tioned equilibrium quantities. �

The equilibrium quantities have a simpler form in the following two special cases.

Corollary 1. If ci = c for all i ∈ N , all agents are active in equilibrium and

x =
1− c

τ + 1
nH(τ + γ)

and xi =
H(τ + γ)

τ + γi

1

n
x, (6)

where H(τ + γ) is the harmonic mean of the n coefficients (τ + γi), i ∈ N .

Corollary 2. If γi = γ for all i ∈ N , the equilibrium has everyone active if and only if

1− ci
1− c

≥ 1

1 + 1
n(1 + γ

τ )
(7)
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and in this case it is

x =
1− c

τ + 1
n(τ + γ)

and xi =
1

τ + γ
(1− ci − τx) (8)

Comparing (6) and (8), and remembering that the harmonic mean is below the arithmetic one,

we see that, starting from the fully symmetric case where ci and γi are constant, a mean preserving

spread of the γi-s will increase total traffic. A mean preserving spread of the ci-s will not change

total traffic as long as the ci-s remain close enough, but it will quickly shut out some agents hence

reducing total traffic.

Comparative statics. Decreasing the probability of failure τ increases total equilibrium traffic in

the general case, but not necessarily for each agent. This is true for all agents if the γi-s are

constant, but not necessarily if only the ci-s are constant.

Decreasing ci for some agent i also increases total traffic in the general case, but not necessarily

for each agent. However the latter is true if either the ci-s or the γi-s are constant.

The effect of decreasing γi for some i on total and individual traffic is ambiguous in the general

case, not so if the ci-s are constant.

Finally if we add one agent, the effect is also ambiguous on total equilibrium traffic, even in the

fully symmetric case, because the new agent can break that symmetry. Of course the ambiguity

disappears if the new agent has the average parameters.

3.2. Paying for cleanup: linear and non linear tax

In this section, we ask if a feasible cleanup financed by the agents themselves would actually

allow total equilibrium traffic to increase. If the cleanup is too expensive, that may not be the

case. Our simple model yields a precise statement. We start from a fully symmetric problem where

ci = c and γi = γ for all i ∈ N . Hence, the total equilibrium traffic is given by (8). The overseeing

authority (thereafter the Agency) is considering a reduction of the failure probability/congestion

parameter from τ to τ −∆τ , which can be achieved at a cost ∆C.6

3.2.1. Linear tax

Suppose the Agency sets a linear tax θ on each satellite launched, so as to recover ∆C. We

study the impact on total satellite traffic in the resulting new equilibrium of the game. So let x

be the initial equilibrium traffic given by (8). When the tax is added, parameter c raises to c+ θ,

and the new total traffic is

x∆ =
1− c− θ

(1 + 1
n)(τ −∆τ) + 1

nγ
,

and the Agency collects θx∆ from the tax. Now, we have to compute θ so that x∆ = x, i.e. in

order to keep constant the equilibrium satellite traffic. We get

x∆ = x⇐⇒ θ

1− c
=

(1 + 1
n)∆τ

(1 + 1
n)τ + 1

nγ
⇐⇒ θ = (1 +

1

n
)x∆τ. (9)

6We do not specify/discuss the technology which enables such a change.
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From that tax θ the Agency collects

θx =
(
1 +

1

n

)
x2∆τ.

Therefore, if ∆C < (1 + 1
n)x2∆τ , it is possible for the Agency to choose a tax in the interval[

∆C/x, (1 + 1
n)x∆τ

)
so as to generate a higher traffic than x and to recoup the cleanup cost. We

summarize these steps and remarks in the following Lemma.

Lemma 2. A flat tax is enough to recover cleanup costs and increase traffic if and only if

∆C

∆τ
≤ n+ 1

n
x2.

3.2.2. Non linear tax

Assume now the Agency puts pressure on the quadratic part of the costs: agent i is charged

(1/2)δx2
i , so that γ̄ raises to γ̄ + δ. The tax is thus progressive: the per-satellite tax is higher

for space agents launching more satellites. We assume as above a reduction ∆τ of the congestion

parameter, and compute similarly the tax rate ensuring that the traffic remains constant:

x∆ =
1− c

(1 + 1
n)(τ −∆τ) + 1

n(γ + δ)
.

It is easy to find that x∆ = x if and only if δ = (n+ 1)∆τ . Then the Agency collects

1

2
δ
∑

x2
i =

1

2n
δx2 .

This yields the following Lemma.

Lemma 3. A quadratic tax is enough to recover cleanup costs and increase traffic if and only if

∆C

∆τ
≤ n+ 1

2n
x2.

We can compare Lemmas 2 and 3. The progressive tax is more demanding than the flat tax

in terms of technology, as measured by the ratio T = ∆τ/∆C required. This ratio can be seen

as the efficiency of technology, which reply to the question: how much is it possible to reduce

congestion for a given price? (i.e ∆τ = T.∆C). These results show that a progressive tax requires

a technology twice as efficient. It is also less efficient in the sense that, for a fixed technological

level T , a traffic preserving financial equilibrium requires a population satellite x =
√

2n/T (n+ 1),

41% larger with the progressive tax as compared to the flat tax. Indeed, from Lemma 2 we can find

x2 = n
T .(n+1) whereas we have x2 = 2n

T .(n+1) from Lemma 3: a difference of
√

2 between the two.

The example below illustrates the thresholds in Lemmas 2 and 3.

Example 2. Consider the first scenario in example 1, where τ = 2 × 10−5. For the sake of

comparison with the results in this section, we consider five symmetric space agents such that

ci = c̄ and γi = γ̄ for each i ∈ {1, . . . , 5}. From (5), this means that each space agent i is such that

ci = c̄ = 0.606 and γi = γ̄ = 0.0015. (10)
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The resulting equilibrium traffic is x = 1217.42, with each agent launching quantity 243.48, and

the failure probability is τx = 2.43%. In the rest of this example, imagine that the target is to

reduce the failure probability from 2.43% to 1.43%, which corresponds to a decrease by 41.1%

of the congestion parameter τ . Furthermore, assume that the cost ∆C necessary to attain this

objective is exactly the cost that preserves the total traffic.

According to Lemma 2, ∆C = 14.62. Such a cost represents only 0.66% of the total cost

generated by launching x. In this case, the flat tax is θ = 0.012, which represents only an increase

by 2% of the marginal cost c̄ in (10).

According to Lemma 3, ∆C = 7.31 and the quadratic tax is θ = 0.006, which represents an

increase by 400% of the quadratic parameter γ̄ in (10). �

3.3. Fully regulated launches

In this section, we assume that the Agency can centrally regulate launching, and that its

mission is to maximize total welfare, still measured in the satellite numeraire. We can develop

similar computations allowing heterogeneous parameters ci and γi, but for brevity we concentrate

on the fully symmetric case. The total sum of utilities is∑
i∈N

ui(x1, . . . , xn) = (1− τx)x−
∑
i∈N

(cixi +
1

2
γix

2
i ) = (1− τx)x− (cx+

1

2n
γx2).

The first order condition (1 − 2τx) − c − γx/n = 0 can be rearranged to obtain the optimal

centralized traffic x∗:

x∗ =
1− c

2τ + 1
nγ
. (11)

This total traffic is less than the total traffic (8) in the unregulated case, but it is significantly

below only if nτ is commensurate to γ since

xdect − x∗

xdect
=

n−1
n

2 + γ
nτ

' 1

2 + γ
nτ

,

where xdect stands for the equilibrium traffic given by (8). As in section 3.2, we can also compute

the cost effectiveness of financing cleanup by a flat tax θ or a quadratic tax δ. With a flat tax, the

analog of equation (9) gives θ = 2x∆τ and the Agency collects 2x2∆τ . With a progressive tax, we

get similarly δ = 2n∆τ and a collection of x2∆τ . This entails the next Lemma.

Lemma 4. Under centralized launching:

(i) A flat tax is enough to recover cleanup costs and increase traffic if and only if

∆C

∆τ
≤ 2x2.

(ii) A quadratic tax is enough to recover cleanup costs and increase traffic if and only if

∆C

∆τ
≤ x2.
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When Lemma 4 is compared to Lemmas 2 and 3, a possible interpretation is that in the unreg-

ulated regime, the critical threshold of technology level for a cleanup technology financed by either

a flat or a quadratic cost, is approximately twice higher as in the centralized regulated regime

provided that n is not too small.

The example below illustrates Lemma 4 as in example 2.

Example 3. As in example 2, assume that τ = 2 × 10−5 and that the technology of each agent

i ∈ {1, . . . , 5} is described by (10). In the fully regulated case, the equilibrium traffic is then

x = 1160.13, which represents a decrease by 4.71% compared to the situation of unregulated

launches. The corresponding failure probability is τx = 2.32%. As in example 2, imagine that the

target is to reduce the failure probability by one point, from 2.32% to 1.32%, which corresponds

to a decrease by 43.1% of τ . Once again, we assume that the cost ∆C necessary to attain this

objective is exactly the cost that preserves the total traffic.

According to Lemma 4, ∆C = 23.2 if a flat tax is used. The flat tax is then θ = 0.02, which

represents only an increase by 3.3% of the marginal cost c̄ in (10). Similarly, ∆C ≤ 11.6 is a

quadratic tax is used. In this case, the quadratic tax is θ = 0.01, which represents an increase by

667% of the quadratic parameter γ̄ in (10). �

This section proved, in our model, the usual conclusions in economics. If space agents are

totally free to do what they want, they do not consider the bads they create (i.e debris): it is

the unregulated regime. As economists we are used to study the centralized case first in order to

achieve two goals. The first one is to estimate the bad created in the unregulated case. The second

one is to determine a desirable tax level when agents are free to choose how many launches they

want but have to pay a tax for each launch. The main result in this section is that a flat tax is

better than a progressive tax in our model.

4. A more realistic model of collisions

In this section, we discuss a variant of the model of collisions developed in section 2.1. As in

our model, we keep the assumption that all satellites are identical. Each occupies a “tube” in 4-D

space position× time. Suppose that the volume of one such tube is v. Collisions between satellites

are intersections of two of these 4-D tubes. The probability for a given satellite of colliding with

any of z satellites is evaluated by a function (not specified at this point) of the ratio of the total

volume zv of their tubes to the total available volume V of the portion of 4-D space where all

live. Let ε = v
V . In this variant, we can account for fratricides that follow with the same law as

other collisions. Finally, it is useful to introduce a parameter x0, which represents the number of

objects (satellites and debris) already in orbit at the start of the analysis. Now, the probability P

of a satellite colliding with any of z other objects during its life time will therefore be taken as a

function P = f(εz) with f(0) = 0, and ε a very small number, so that a reasonable approximation

is given by a first order expansion, where τ = f ′(0)ε is a small positive number: P ' τz. These

12



will be considered independent events. Thus, launching xi satellites results in an expected number

of “operational ” satellites given by

[1− f(ε(x0 +
∑

j∈N\{i}

xj))− 2f(εxi)]xi = [1− τ(x0 + x+ xi)]xi

if fratricides happen with the same probability as other collisions, and

[1− f(ε(x0 +
∑

j∈N\{i}

xj))]xi = [1− τ(x0 + x− xi)]xi

if fratricides are ruled out.

Introduce the fratricide index φ = 1 if fratricides are present and φ = −1 if they are ruled out,

and the coefficients

ai = ci + τx0 and bi = γi + 2φτ.

Coupled with the cost function cixi + γix
2
i /2, this leads to a utility of the form

ui(x1, . . . , xn) = (1− τx)xi − aixi −
1

2
bix

2
i .

The optimal quantities in the unregulated (Lemma 1) and fully regulated situations remain the

same in this variant of our model, provided that ai and bi replace ci and γi for all agent i ∈ N .

Nonetheless, the comparative static would be affected affected since parameter τ enters into ai and

bi.

In that model, the cleaning effect may be taken as lowering x0. Calculations very similar to

those performed in the this article show that the technology level T = ∆x0/∆C required to pre-

serve total traffic with a progressive tax is 2/τx, again twice that required with the flat tax.

The aim of this section was only to underline that even if our model of collision in orbital space

of section 2 is a toy model, we can find some arguments to consider it as a non totally physically

unreal model. This model already presents important issues in various situations that make sense

from an economical perspective. We think this is a preliminary step before scientists agree on the

collision model to use.

5. Conclusion

Nobody is able today to do without the services of the satellites. As an example, A. Wagner

(Airbus Defence and Space) recently reported to J-L. Fugit, a French deputy responsible for a

parliamentary note on satellites and their applications, that every smartphone user daily uses the

services provided by 40 satellites. Another example, given by Ch. Bonnal (CNES), concern the

global warming and underlines that on the 50 parameters to analyze it, 29 are only accessible from

space. This dependence on satellites is a major feature of our modern economies and it is growing

every day, given the proliferation of applications requiring satellites and the lower cost of access to

space.
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However, if nothing is done, the space debris problem (which currently leads the main satellite

operators to conduct avoidance maneuvers on average once a week) may become an economic

emergency for both space operators and all downstream markets that depend on them.

As economists, we consider that our discipline can help to protect the global common good of

space while preserving the dynamics of the “New Space”. The tragedy announced is not inevitable

if we agree on the institutional measures that can prevent it. By using our numeric example in

examples 2 and 3, our conclusions can be illustrated by a table:

Unregulated launches Fully regulated launches

Total traffic 1217.42 1160.13

Failure Probability (FP) 2.42% 2.32%

Linear tax for a 1pt FP decrease without

reducing traffic

+2% of c̄ +3.3% of c̄

Quadratic tax for a 1pt FP decrease with-

out reducing traffic

+400% of γ̄ +667% of γ̄

This problem is currently taking a turn since we are seeing the sending of many cubsats (around

500 per year) and the arrival of mega-constellations of satellites in Low Earth Orbit, such as SpaceX,

Amazon or OneWeb who respectively wish send 12 000 satellites, 3 000 satellites and 1 000 satellites.

This change of magnitude of the problem will inevitably change the rules governing space and

as economists we wish to participate in the important reflection on these. We actually work on

mechanisms which provide the compatibility of the individual incentives of agents who launch

satellites and the common good that represents a safe space available for all. We began to examine

this topic with some members of INRIA Sophia Antipolis and CNES, but we naturally wish to

engage discussions and work with all bodies that send satellites or plan to offer ways to remove

debris. Our approach seems to us complementary to those followed by astronautic community (e.g

Neish and Goka , 2001; Wiedemann et al., 2013).
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