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Abstract: Plasmonic sensors exploiting the localized surface plasmon resonance (LSPR) of noble metal
nanoparticles are common in the visual spectrum. However, bio-sensors near the infra-red (NIR)
windows (600–900 nm and 1000–1400 nm) are of interest, as in these regions the absorption coefficients
of water, melanin deoxyglobin, and hemoglobin are all low. The first part of this paper reviews
the work that has been undertaken using gold (Au) and silver (Ag) particles in metal enhanced
fluorescence (MEF) in the NIR. Despite this success, there are limitations, as there is only a narrow
band in the visual and NIR where losses are low for traditional plasmonic materials. Further, noble
metals are not compatible with standard silicon manufacturing processes, making it challenging
to produce on-chip integrated plasmonic sensors with Au or Ag. Therefore, it is desirable to use
different materials for plasmonic chemical and biological sensing, that are foundry-compatible with
silicon (Si) and germanium (Ge). One material that has received significant attention is highly-doped
Ge, which starts to exhibit metallic properties at a wavelength as short as 6 µm. This is discussed in
the second part of the paper and the results of recent analysis are included.
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1. Introduction

At the interface between materials with different signs for the real part of the permittivity, surface
plasmon polaritons (SPPs) can be excited. The requirements for the negative permittivity material are
normally met by noble metals, gold (Au) and silver (Ag), since the wave is on the boundary of the metal
and an external medium it is very sensitive to any change of this boundary. The excitation of surface
plasmons by light is termed surface plasmon resonance. The resultant resonant interaction between
the SPPs and the metal surface results in a significantly enhanced electromagnetic near-field [1]. SPPs
have many applications in subwavelength optics, including in chemical sensors and biosensors [2,3].

If Au or Ag nanoparticles (of dimensions much smaller than the wavelength of excitation) are
considered, incident light can excite localised surface plasmons (LSPs), where the charge density
oscillations are confined to the metallic particles. An external field is able to displace the free electrons
in the nanoparticle with respect to the fixed ionic core [1]. This displacement sets up a restoring
force leading to coherent oscillations of the charge density, and hence, a resonant frequency. This is
termed localised surface plasmon resonance (LSPR) and has been widely researched and applied in
sensors [4–7], solar cells [8,9], and spectroscopy [10].

One application that exploits the LSPR, which has received much attention for the purpose of
bio-sensing, is metal enhanced fluorescence (MEF) [11–28]. MEF is now a well-recognized form of
technology wherein the near-field interaction of fluorophores with metallic nanostructures can lead to
substantial fluorescence enhancement.
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Fluorescent molecules emitting at wavelengths in the infra-red window, in which penetration
depth is high and the autofluorescence minimum is of particular interest, are potentially an attractive
technology for bio-applications [27]. However, the low quantum yield and poor photostability of
near infra-red (NIR) dyes currently limits their applicability. Design and synthesis of NIR dyes with
high quantum yield and photostability have proved to be extremely challenging, due to the complex
synthetic routes required for these large, complex molecules [27]. The amplification of light from NIR
fluorophores by MEF is a promising strategy for dramatically improving both the detection sensitivity
and image enhancement, thereby realizing the potential advantages of the NIR fluorophores. Section 2
of this paper discusses the physical process of MEF and reviews some of the published work by
the authors.

NIR losses arise in Au and Ag from intraband (or Drude) losses. There is, therefore, only a narrow
band in the visual and NIR range where losses are low for traditional plasmonic materials. A further
challenge associated with noble metals is that they are not compatible with standard silicon manufacturing
processes. Further, noble metals diffuse into the semiconductor, forming deep-level traps which have
an adverse effect on device performance. While Au and Ag are the obvious choice for visible and
NIR applications, there is a desire and need for chemical and biological sensing in the mid-infrared
(MIR) range [29–31] using materials that are foundry-compatible with silicon (Si) and germanium (Ge),
that might lead to on-chip integration of devices governed by plasmonic effects [25,26]. One material
that has received significant attention as a potential plasmonic material in the MIR is highly-doped
Ge [29,32,33]. In Section 3 of this paper we explore the advantages of highly-doped Ge as a MIR
plasmonic material. By analyzing data available in the literature for doped Ge thin-films we discuss,
using computational electromagnetics, some of the fundamental issues related to future applications
and exploitation.

2. Metal Enhanced Fluorescence in the Near Infra-Red

MEF can be considered a three-stage process [24]. The first is the increased absorption of exciting
light by the dye molecule due to the enhanced electric field around the nanoparticle, caused by the
LSPR. Once in an excited state the molecule undergoes internal processes to bring it into the emitted
excited state. Although the metal can modify these processes, they are very fast compared to the
other two processes, and are not usually considered in the analysis of the MEF mechanism. Finally
the molecule decays, through the emission of a photon, to the ground state. The metal will modify
the radiative decay rate and create new channels of non-radiative decay, through energy and charge
transfer between the molecule and metal.

The fluorescence rate, Ψ, is the product of the excitation rate, γe, and the quantum yield, ϕ. At the
excitation wavelength of the molecule, λex, the incident light irradiates the metal nanoparticle and the
near-field around the particle excites the emitter. At the emission wavelength, λem, of the fluorophore
it behaves as an oscillating dipole. Since it is in the proximity of the metal nanoparticle the radiated
emissions from the fluorophore, and hence the quantum yield, are modified [34].

The quantum yield of an isolated fluorophore molecule is [34]:

φ0 =
γ0

r

γ0
r + γ0

nr
(1)

where γ0
r and γ0

nr are the radiative and non-radiative decay rates respectively. The superscript 0
indicates the fluorophore is isolated, rather than in the presence of a metal nanoparticle.

In the presence of a metallic particle there will be additional radiative and absorption channels,
giving a modified quantum yield [35]:

φm =
γm

r

γm
r + γm

abs + γ0
nr

(2)
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We consider a single fluorophore that is coupled to a nanoparticle to obtain values of modified
quantum yield and fluorescent rate enhancement. This requires a calculation of the decay rates γm

r ,
γm

abs, and γ0
r by considering the spontaneous emission of the fluorophore as a small electric dipole [35].

These decay rates can be found in terms of the Poynting vector, as described in [35], such that:

γr =

∫
s

Re(ET ×HT
∗)da

2
(3)

and

γm
abs =

−
∫
s

Re(ES ×HS
∗)da

2
(4)

where s is a surface that encloses the fluorophore molecule (small dipole) and nanoparticle.
In Equation (3) we consider the total electric (ET) and magnetic field (HT) crossing s, whereas in
Equation (4) it is the scattered fields (ES and HS) from the nano-cylinder that are considered, and hence
the subscripts T and S. To find γ0

r from Equation (3) only the small dipole has to be considered in
the calculation, while to find γm

r the metal nano-cylinder is added to the model and enclosed by
the surface.

The excitation rate is found by considering the local electric field at the position and wavelength
of excitation, E(xd, λex) and the emitters orientation, ep. If we consider the electric field in the presence
of the metal nanoparticle near the fluorophore molecule, then the excitation rate enhancement is [36]:

χ =
γe

m

γe0 =

∣∣E(xd, λex) · ep
∣∣2

|Ei|2
(5)

where Ei is the free space electric field (incident field) without the nano-cylinder being present.
The fluorescent rate enhancement, Ψenh, can now be found from:

Ψenh = χ · ϕ
m

ϕ0 (6)

From Equations (1)–(6) it is possible to calculate the emission enhancement from a fluorophore in
close proximity to metal particle, using computational electromagnetics [1,35,36].

Figure 1 shows the calculated electric field enhancement around cylindrical nanoparticles for
an incident plane wave of wavelength 650 nm. It can be seen that in most of the gap the magnitude of
the electric field exceeds that of the incident field (the scale is logarithmic). This leads to excitation
enhancement of fluorophores in this region. In the proximity of the corner, at the top of the
nano-cylinder, the magnitude of the near-field is seen to exceed that of the incident field by two
orders of magnitude. Previously published work used finite difference time domain (FDTD) analysis
to calculate both the excitation and emission enhancement of fluorophores. The results showed that it
is important, for the maximum fluorescent rate enhancement that the excitation and wavelengths of
the dye should be above the absorption maxima for the nanoparticle array [1,35].

The NIR windows (600–900 nm and 1000–1400 nm) are of interest as they are regions where the
absorption coefficients of water, melanin deoxyglobin, and hemoglobin are all low. Most of the reported
works on MEF for the enhancement of NIR fluorescent dyes are based on gold nanostructures including
nanorods, nanoshells and porous Au films by dealloying [27]. This is primarily because Au has a lower
plasma frequency than Ag, so the LSPR peak is at a longer wavelength, as well as having a higher
chemical stability. However, Ag can be an attractive material since it has a lower absorption efficiency
and a higher scattering efficiency. This leads to larger field enhancement at the LSPR, leading to a larger
excitation enhancement in MEF. The LSPR is dependent not just upon material but also on the shape
of the nanoparticle, and MEF has been successfully demonstrated in the NIR using triangular-like Ag
nanoparticles immobilized on glass substrate [26,27], nanocylinders [22], and Nanostar [23]. Table 1
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summarizes some of the results presented in published work by the Xie group at Imperial College
for MEF in the NIR, for both Au and Ag nanoparticles, for excitation wavelengths up to 780 nm.
It should be noted that the emission rate enhancement is limited by the unmodified quantum yield.
If the fluorescent molecule already has a high unmodified quantum yield, then the emission rate
enhancement will be low. NIR fluorophores have relatively low unmodified quantum yields, typically
less than 0.1. Hence, emission rate enhancements of an order of magnitude are obtainable, although
excitation rate enhancement is the main contributor to overall fluorescent enhancement.Chemosensors 2018, 6, 4  4 of 13 
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Figure 1. Electric field in the gap between two gold cylindrical nanoparticles for an incident plane
wave of wavelength 650 nm. The nanoparticles are in a two-dimensional hexagonal array and have
a diameter of 170 nm, height 50 nm, and center-to-center separation of 300 nm. The electric field
magnitude is normalized to the magnitude of the incident field. Note the scale is logarithmic from 0
(dark blue) to 2 (dark red).

Table 1. Metal enhanced fluorescence in the near infra-red using gold (Au) and silver (Ag) nanoparticles.
The excitation and emission rate enhancements are found from lifetime measurements and are not
available in every case.

Fluorophore
Excitation

Wavelength
(nm)

Emission
Wavelength

(nm)

Fluorescent
Enhancement Factor

Excitation Rate
Enhancement

(χ)

Emission Rate
Enhancement

(ϕm/ϕ◦)

Type of
Nanoparticle Reference

AF 790 780 790 68.8 - - Au, Nanotriangle [26]

AF 790 780 790 83 11.5 7.2 Ag, Nanotriangle [27]

AF 750 730 750 235 25.2 9.3 Au, Cylinder [22]

AF 750 730 750 321 107 3 Au, Nanostar [23]

AF 790 780 790 195 18.6 10.5 Au, Nanostar [23]

Ag2QD 780 1205 40 - - Au, Nanostar [23]

The geometry and dimensions of the nanoparticles presented in Table 1 are summarized. The Au
Nanostar had a core size of 134 nm, with spike length 60 nm. The Au cylinders had a diameter
of 256 nm and height 50 nm and were immobilized on a glass slide, in a hexagonal array with
center-to-center separation of 300 nm. The nanotriangles were also immobilized in hexagonal arrays
in glass slides. The Ag ones had sides of 208 nm and tip-to-tip separation of 60 nm. The Au ones
had sides of 141 nm and tip-to-tip separation of 17.7 nm. The main contribution to the fluorescent
enhancement is the increased electric field, due to the LSPR extinction peak, causing excitation rate
enhancement. The position of the LSPR extinction peak is a due to a number of factors, including
nanoparticle material, particle shape and size, inter-particle separation and the surrounding dielectric
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medium. Computational electromagnetic modelling is carried out to find the extinction peaks and
field enhancement due to the metal nanoparticles. For a full description of the particle geometries
readers should refer to the references provided in Table 2.

3. Ge as a Plasmonic Material in the Mid Infra-Red

Germanium (Ge) is a promising material for replacing silicon as a substrate for metal oxide
semiconductor (MOS) devices. Further downscaling of silicon-based devices will lead to the short
channel effect (SCE) that will result in an increase in the leakage current [37–39]. This leakage current
will increase the power consumption of devices, while also reducing the performance. High drive
current capability of devices without further downscaling process can be realized by increasing the
carrier mobility in the substrate. Ge has emerged as one of the potential candidates to replace Si
as a substrate for MOS transistors, due to its higher electrical carrier mobility (3900 cm2/V·s for
electrons and 1900 cm2/V·s for holes) [37]. Furthermore, its similarity with conventional Si will ease
the replacement process in manufacturing lines. It would therefore be very attractive if plasmonic
sensors could be based on Ge for on-chip integration.

To consider this further we start from the free electron response in metals, given by the well-known
Drude model:

ε(ω) = ε′+ ε′′ = ε∞ −
ω2

p

ω2 + iωγ
= ε∞ −

ω2
p

ω2 + γ2 + i
ω2

pγ

(ω2 + γ2)ω
(7)

where ε∞ is the high frequency relative permittivity, ωp is the plasma frequency, and γ is the Drude
relaxation rate.

The optical response of free carriers is described by Equation (7). If we consider the real part and
define a cross-over frequency, ωc, where the real part becomes zero, we get:

ω2
p = ε∞(ω2

C + γ2) (8)

Rearranging (8) gives:

ωc =

√
ω2

p

ε∞
− γ2 (9)

This is the shortest wavelength where the semiconductor can exhibit metal like properties, that is
have a negative real part of permittivity. The required free carrier concentration, n, in the semiconductor
for a cross-over frequency can be found from [33]:

n =
ω2

pm∗

4πε0e2 (10)

where ε0 is the free space permittivity, m* is the effective mass of the carrier and e is the electron charge.
As can be seen the higher the free carrier concentration the higher the cross-over frequency.

It should be noted here that in the literature it is often assumed that the plasma frequency and the
cross-over frequency are the same. In fact this is only the case for the lossless case where γ = 0 and
if interband transitions are ignored (ε∞ = 1). This is discussed in depth by Frigerio et al. [33]. To fit
the Drude model to the dielectric function the value of ε∞ is approximately the dielectric constant of
undoped semiconductor in the MIR (≈16 for Ge).

In the visual-NIR the analysis and design of plasmonic devices requires accurate determination of
the dielectric function. This is then used to find the electromagnetic field, or find the dispersion relation,
using computational electromagnetics. To do this the parameters ε∞, ωp, and γ need to be found and
applied in an electromagnetic simulation. The parameters can be found by using a multilayer-based
model to calculate the reflectance from the doped Ge film and iteratively modifying the parameters
to obtain a good fit to measurements. These can be obtained in the MIR using Fourier transform
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infra-red (FTIR) spectroscopy (rather than UV-VIS-NIR spectroscopy). The calculation of reflection
can be done using the transfer matrix method [40] [see for example the code from Steven Byrnes at
http://sjbyrnes.com]. However, since the reflectivity measurements are made on a thin film it is very
fast to calculate reflection using a finite difference time domain (FDTD) model, as the only spatial
discretization required is in the direction of the incident plane wave, which is normal in this case.
The advantage of using FDTD is that the Drude model can be implemented directly [41].

In this work, we have first considered published data from Frigerio et al. [33] and Prucnel et al. [29].
In both cases we derive the Drude model from their experimental data. We also fit data from FTIR
measurements we have undertaken on Ge thin films manufactured using ion implantation and rapid laser
annealing [37].

Frigerio et al. [33] have considered heavily-doped films produced using a low-energy-plasma-enhanced
chemical vapor deposition (CVD) reactor, using phosphorus as the n-type dopant. They present the dielectric
functions for samples with carrier densities (η) up to 3.0× 1019 cm−3. We have then used the RefFIT code [42]
to extract the parameters for the Drude model for two samples, shown in Table 2. These are then used in
an FDTD code [43] to calculate the extinction properties and electric field enhancements.

Table 2. Drude parameters for phosphorus-doped Ge derived, from [33] using RefFIT [42]. The
thicknesses of the germanium films reported in [33] are of 2 µm.

Material Number η (cm−3) ε∞ ωp (cm−1) ωc (cm−1) γ (cm−1) Sample Number in Reference [33]

1 2.3 × 1019 16.5 4032 974.3 189.83 9338
2 3.0 × 1019 16.2 4705 1147.4 224.64 9336

Using these parameters we have investigated the spectral response of a rectangular prism-doped
germanium (n-Ge) particles sitting on an un-doped Ge substrate, as depicted in Figure 2. Figure 3
shows the absorption, scattering and extinction for a particle that is 2-µm long, 1-µm wide and 1-µm
high. It can be seen that there are two extinction peaks, one at 490 cm−1 (wavelength of 20.4 µm) and
the other at 1050 cm−1 (9.523 µm).
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substrate is shown. 

n-Ge
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Figure 2. Depiction of the model used for the finite difference time domain (FDTD) calculations. Here,
a phosphorous doped, n-type germanium (n-Ge) rectangular particle on top of a germanium (Ge)
substrate is shown.

Considering the extinction peaks in Figure 3 it can be seen that the lower frequency peak, although
predominantly absorption, also has a significant scattering content. On the other hand, the higher
frequency peak is absorption dominated. Figure 4 shows the electric field enhancement at both
frequencies. It can be seen from Figure 4a that at 490 cm−1 the peak field enhancement is of two orders
of magnitude at the corners of the n-Ge particle, at the interface with the Ge substrate. Nevertheless at
least an order of magnitude (×10) enhancement is seen around the sides of the particle. In contrast
the field enhancement is much lower at 1049 cm−1, with a maximum of 1 order of magnitude very
close to the n-Ge surface. The sensitivity of an LSPR sensor is related to the increased electric field
enhancement around the particle.

http://sjbyrnes.com
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Figure 3. Spectral response for rectangular prism shaped n-type doped germanium (n-Ge) particle
(material 2 in Table 2) calculated using FDTD. Height 1 µm, length 2 µm, width 1 µm.

The LSPR mode at 490 cm−1 is strongly influenced by the undoped Ge substrate. This causes
strong field enhancement at the lower corners of the n-Ge particle, where it has an interface with both
air and Ge. There is also strong field enhancement within the Ge substrate. The high refractive index
of the Ge also causes this mode to have a low frequency.

At the higher wavenumber the resonance is close to the cut-off wavelength (ωc) that can support
surface plasmon Polaritons and hence an LSPR. This means that the magnitude of the real part of the
permittivity is small at this wavelength. There is negligible field enhancement in the Ge substrate
causing this mode to have a higher frequency.
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Figure 4. Electric field enhancement the extinction peaks of a 1-µm-high highly doped germanium
(n-Ge) particle. The excitation is (a) 490 cm−1 and (b) 1049 cm−1, respectively. The scale is logarithmic
and the electric field enhancement is normalized to the incident electric field. The plots are for
a cross-section through the center of the particle (mid-width) (The incident field is normal to the top
surface of the particle and polarized in the length direction).

The height of the n-Ge particle considered in the model was reduced to 0.5 µm and 0.1 µm,
respectively. The spectral response is shown in Figure 5 for both FDTD calculations. It can be seen
that the longer wavelength extinction peak is less much less pronounced for the 0.5-µm-high n-Ge
particle, while for the 0.1-µm case there is only a single observable peak, which is caused almost totally
by absorption.
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The electric field enhancement for the 0.1 µm high n-Ge particle at 651 cm−1 is shown in Figure 6.
The enhancement is much less than 1 order of magnitude and strongly confined to the sides of the
particle. This suggests that the use of n-Ge as LSPR sensors is limited by their height.

A higher carrier (doping) density is obtainable using ion implantation and annealing.
Prucnal et al. [22] achieved carrier concentrations of ~2.2 × 1020 using rear side flash-lamp annealing
(r-FLA). This gave n-Ge films of thickness 140 nm. Our analysis, based on their reflection measurements,
gave a ωc of 1850 cm−1 (wavelength = 5.4 µm). Our group has produced n-Ge films from ion
implantation and rapid laser thermal annealing [37]. The thickness of these films is between
40 and 90 nm on a Ge substrate. FDTD models were used to replicate the reflection obtained from
FTIR measurements. From this analysis it was found that an n-Ge film had the following Drude
parameters: ωp = 6500 cm−1, ε∞ = 16.5, γ = 241 cm−1. The comparison between the experimental and
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fitted results is shown in Figure 7. The analysis gives a ωc of 1582 cm−1 (wavelength 6.3 µm) and
a carrier concentration of 5.5 × 1019 cm3. (Reference [37] should be referred to for further discussion
of the fabrication process).Chemosensors 2018, 6, 4  9 of 13 
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Figure 7. Measured and modelled reflection from a phosphorous doped germanium (n-Ge) thin film of
thickness 40 nm, and cut-of frequency (ωc) 1582 cm−1.

These results show that n-Ge films can be produced with large carrier concentrations and
cross-over wavelengths around 6 µm. Unfortunately, the thickness of the films is only of the order of
100 nm, or less, too thin to support large field enhancement from the LSPR of a particle. Nevertheless,
it may be possible that the thin film can be used to support propagating surface plasmon polaritons for
a plasmonic MIR sensor. The production of n-Ge films, with a high ωc, is an important first step along
this path but significant research is needed in the future to produce integrated plasmonic sensors.
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The real and imaginary parts of the dielectric constant derived from the two materials considered
in Table 2 are shown in Figure 8, where the frequency (x-axis) is normalized to ωp for both samples.
It is interesting to note that the real and imaginary parts for both materials overlay each other when
normalized. Hence, the results shown in Figures 3–6 could also be normalized (or scaled in dimensions)
to the plasma frequency, which is proportional to the free carrier concentration.

We carried out a similar exercise for n-Ge samples produced by ion-implantation and rapid laser
thermal annealing, rather than CVD, where the annealing conditions were different in each case. It was
found that in these cases there was significant variation in the normalized values of permittivity
between different samples. This was expected as the ion implantation induces considerable damage to
the crystalline germanium, producing an amorphous layer at the surface. The recrystallization of the
doped germanium, to produce crystalline n-Ge with high carrier activation, is strongly dependent on
the annealing conditions [37]. Annealing conditions also affects the diffusion of n-type dopant into the
Ge substrate material.
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Table 2 (Samples 9338 and 9336 in reference [33]). The frequency is normalized to the plasma
frequency. For these chemical vapor deposition (CVD) fabricated samples it is seen that the normalized
permittivities overlay each other, enabling scaling.

4. Discussion

In this paper we have discussed the application of the localized surface plasmon resonance to
infra-red chemical and biological sensors. Using metal enhanced fluorescence (MEF) it has been
demonstrated that traditional plasmonic materials, Au and Ag, can be used in the NIR window.
The excitation wavelength of the LSPR, though, is limited to short wavelengths in the NIR (~780 nm)
as intraband (or Drude) losses become increasingly large. In addition, it would be very attractive to
have on-chip integration of plasmonic sensors using materials that are compatible with silicon and
germanium. Germanium is a promising material for replacing silicon as a substrate for MOS devices
so the use of highly doped n-type germanium as a plasmonic material would be very beneficial.

While carrier densities in phosphorous doped germanium are high enough for cross-over
frequencies with wavelengths shorter than 6 µm the thickness of these films are only around 100 nm
or less. This is too thin to enable the fabrication of LSPR sensors with large field enhancement. This is
a fundamental limitation, because such high carrier densities are obtained using ion implantation and
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some form of rapid annealing. The thickness of the film can be increased, by increasing the annealing
times, but this would result in a lower carrier density and a subsequent decrease in the cross-over
frequency. Further electromagnetic modelling based on films presented in the literature produced
using low-energy-plasma-enhanced chemical vapor deposition (CVD) indicate that low frequency
LSPR modes have stronger field enhancement. This suggests that there are significant challenges
associated in the development of LSPR sensors for wavelengths shorter than 20 µm. SPP could be
supported at the shorter wavelengths, although this will present significant design challenges in
exciting the SPP and integrating the sensors onto an on-chip platform.

5. Conclusions

Au and Ag have been successfully used for plasmonic sensors in the visual and NIR. MIR
plasmonic sensors are much more challenging, but the initial work that has been carried out on highly
doping Ge substrates. Calculations of the cross-over wavelength, indicate that fully integrated MIR
plasmonic sensors are feasible for n-Ge material.
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