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Abstract:  15 

During development and metastasis, cells migrate large distances through complex 

environments. Migration is often guided by chemotaxis, but simple chemoattractant gradients 

between a source and sink cannot direct cells over such ranges. We describe how self-generated 

gradients, created by cells locally degrading attractant, allow single cells to navigate long, 

tortuous paths and make accurate choices between live channels and dead ends.  This allows 20 

cells to solve complex mazes efficiently. Cells’ accuracy at finding live channels was determined 

by attractant diffusivity, cell speed, and path complexity. Manipulating these parameters directed 

cells in mathematically predictable ways; specific combinations can even actively misdirect 

them.  We propose that the length and complexity of many long-range migratory processes, 

including inflammation and germ cell migration, means self-generated gradients are needed for 25 

successful navigation. 

 

One Sentence Summary: 
 

Cells navigate through complex environments and solve mazes by creating their own 30 

chemotactic gradients.   
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Main Text:  

Cells migrating in embryogenesis (1–3), immune responses (4, 5) and neural pathfinding (6, 7) 

steer using chemotaxis, migrating up gradients of attractants such as chemokines and netrins.  

Simple chemotaxis, in which gradients are established between a localised attractant source and 35 

an external sink, only provides short-range guidance (8). It becomes inefficient at distances 

above 500µm (9), cannot resolve complex paths, and is only effective over a narrow range of 

attractant concentrations. These restrictions have confounded our understanding of how 

chemotaxis drives longer-range phenomena such as neural crest migration (10) and cancer 

metastasis (11).  However, when cell groups locally break down an attractant found throughout 40 

the surroundings, they create their own local, dynamic gradients (1, 12–14). These typically 

direct migration away from areas with a high density of cells, promoting metastasis (15). Such 

self-generated gradients work over arbitrarily long distances, and work equally robustly with a 

wide range of attractant concentrations (16).  Here we set out to test their role in resolving 

complex paths, as for example a cell migrating through an embryo would follow. We found that 45 

cells using self-generated gradients could make accurate choices about paths they had not yet 

encountered. This enabled them to solve complex mazes, even when the initial environment was 

homogeneous and the correct destination was distant. Computational models, combined with live 

observations using microfluidic devices (17), reveal that the accuracy of decisions in complex 

environments is determined by the complexity and lengths of the paths, and the migration speeds 50 

of the cells.  This mechanism explains how cells can be guided over far greater distances than 

can be explained by simple chemotaxis, and can interpret environmental features in a way that 

would be impossible with simple attractant sources.  

 

Self-generated gradients promote long-range chemotaxis. 55 

Chemotactic cells detect attractant gradients by comparing receptor occupancy at different 

places. Cells can resolve 1% differences (18) between the occupancy at their fronts and rears, but 

this is only enough to navigate short distances.  Beyond 0.5-1mm, gradients contain zones that 

are either too shallow or too saturating to cause a 1% occupancy difference, and thus become 

undetectable (9). However, cells can make sharp, local gradients by breaking down attractants. 60 
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The resulting dynamic, self-generated gradients are usually impossible to measure directly.  They 

are best analysed using computational models, with the predictions of the models tested 

experimentally in quantitative experiments on living cells. Fig. 1A & Movie S1 show modelled 

cells responding to a passive 1mm gradient or to a self-generated gradient in which the attractant 

is broken down by a cell-surface enzyme.  Passive gradients of this distance are either too 65 

shallow or, if steeper, rapidly saturate the receptors; cells therefore always steer poorly in simple 

1mm gradients.  In contrast, the self-generated gradient gives robust chemotaxis throughout, 

because the gradient is always sharp and local to the group of cells that makes it, resulting a non-

saturating attractant concentration around the cells (Fig. 1A & Movie S1). Secreted enzymes 

give similar results (9). Real cells behaved the way the model predicts (Fig. 1B, Movie S1). 70 

 

Self-generated gradients allow cells to make long-range route decisions 

Chemotaxis studies often ignore diffusion, because they consider the steady state of imposed, 

linear gradients (19, 20). For dynamic gradients, such as self-generated gradients, diffusion is a 

key determinant. Interactions between the depletion of attractant by cells, the diffusion of fresh 75 

attractant towards cells, and the movement of cells in the resulting gradients can lead to 

counterintuitive results. We therefore modelled the way cells make decisions at junctions (Fig. 

1C-E).  Even in the simple case of two equivalent routes to an attractant reservoir (Fig. 1C), self-

generated and static gradients elicited different behaviours. In the static gradient each cell chose 

a route randomly. The self-generated gradient, on the other hand, robustly directed equal 80 

numbers of cells into each branch.  Stochastic variations were balanced out – branches 

containing more cells evolved shallower attractant gradients, so newly-arriving cells were 

directed into the other branch (shown quantitatively in Fig. 1F).  If one of the branches was 

closed off from the reservoir (Fig. 1D), the number of cells entering the closed branch was small, 

because the first arrivals rapidly depleted the attractant and prevented further recruitment.   85 

When the closed branch was shorter (Fig. 1E), an unexpected behaviour emerged from the 

models.  Before the migrating cells reached the junction, they cleared the attractant from the 

short branch by diffusion and therefore never made the decision to enter the short branch.  In 
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essence, the cells sensed the space ahead of themselves at a distance, making accurate 

predictions about the outcome of pathways they have never visited. 90 

The effect depended strongly on the length of the dead end. Fewer than 10% of cells commited 

to dead ends shorter than 250µm (Fig. 1G).  The time taken for attractant to diffuse out of the 

dead end increases quadratically with the length of the channel, so cell commitment increases 

dramatically with the length of the dead end. Dead ends longer than 600µm attracted 40% of 

exploring cells. 95 

To investigate how cells sense closed paths without visiting them, we modelled cells following 

self-generated gradients through complex routes, analogous to physiological problems like 

finding a path from a tumour into a blood vessel.  In our models, a single correct path, 1050µm 

long, connected each starting well to a reservoir of attractant; the number and nature of dead 

ends varied.  Parameters were taken from measurements of Dictyostelium cells (21, 22), which 100 

chemotax towards 3’,5’- cyclic adenosine monophosphate (cAMP) while breaking it down using 

a cell-surface phosphodiesterase (23). We verified the models’ predictions by fabricating 

identical microfluidic mazes in polydimethylsiloxane (PDMS; Fig. S2).  Cells could find the 

correct route through all designs, despite starting with uniform chemoattractant so there were 

initially no directional cues.  As shown below, the simulations accurately predicted the behaviour 105 

of real cells (Figs 2,3,5,6). 

 

Self-generated gradients allow cells to navigate mazes 

We found that Dictyostelium cells were able to navigate environments of surprising length and 

complexity by combining the long range of self-generated chemotaxis with the ability to detect 110 

dead ends ahead (Fig. 2).  To ensure that the cells were not convolving the results by generating 

their own cAMP signals, we generated a new adenylyl cyclase (acaA) mutant in a wild-type 

(NC4) parent, which is healthier and migrates better than more widely used axenic strains.  

These cells recapitulated the models’ predictions with remarkable accuracy (Movies S2-4; 

compare Figs 2A/B, 2D/E & 2G/H).  We confirmed that the gradients were self-generated using 115 

a nondegradable ligand.  Cells made almost no progress when the breakdown-resistant cAMP 

analogue Sp-cAMPS (24) was used instead of cAMP (Fig. S1, lower panels). To minimize 
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confounding hydraulic effects, we used 40µm x 25µm maze channels that are much wider and 

taller than Dictyostelium cells (<10µm wide and about 5µm tall). 

These results show that self-generated gradients allowed cells to steer themselves through long, 120 

complex mazes that would be impossible to navigate using simple gradients. 

 

Accuracy of decisions is controlled by length and complexity of paths 

We designed three different mazes to test the accuracy of cells' decision-making strategies (Fig. 

2A, D & G). Each had the same correct path, but “simple” mazes had three short, dead ends (Fig. 125 

2A-C), “short” mazes had dead ends half the length of their live channels (Fig. 2D-F), and 

“long” mazes had symmetrical live and dead channels, with the only difference being the 

connection to the attractant reservoir (Fig. 2G-I). We tested the model’s predictions using two 

very different cell types: Dictyostelium cells, and mouse pancreatic cancer cells that self-generate 

gradients of lysophosphatidic acid (LPA) in serum (25). 130 

The model predicted that most cells avoid dead ends in the simple mazes (Fig. 2A, Movie S2).  

Both cell types fulfilled this prediction, with a leading group of cells migrating accurately 

through the maze, and a few cells deviating into the dead ends (Fig. 2B-C, Movie S3-4). 

Decisions were poorer in short mazes (Fig. 2D-F), and in long mazes many cells erroneously 

chose the dead ends (Fig. 2G-I).  135 

To measure the dynamic fidelity of decisions, we recorded the cumulative number of cells 

committing to the dead ends and live channels. We observed that the error rate was highest in the 

first decision in each maze in both simulations and experiments, and therefore focused on the 

behavior at this branch point (Fig. 3A, B). The results confirmed that longer dead ends lead to 

poorer decision fidelity - cells performed consistently better in simple vs. long mazes, and better 140 

in general in short vs. long mazes (Fig. 3C-E; blue line shows numbers of cells choosing the 

correct path, and red the number committing to the dead end). Long mazes were significantly 

less biased over the first hour than the other designs (Fig. 3F; one-way ANOVA and Tukey’s 

test, a=0.05).   
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The behaviour of cells in long mazes changed over time. Initially there was little difference 145 

between the numbers of cells choosing correctly and incorrectly, but as cells depleted the 

attractant in the dead ends their decisions became more accurate (Fig. 3C, D, G). The cancer 

cells (in homogeneous medium, where the attractant derived from the 10% serum) moved much 

more slowly than the Dictyostelium cells, but showed the same trends in decision-making (Fig. 

3E, Movie S4). The similarity in behaviour between these different cell types indicates that these 150 

are general features of the chemotactic response to self-generated gradients. 

Cell speed and attractant diffusivity 

We supplemented our modelling and experimental approaches with a mathematical analysis that 

considered the effects of the lengths of the live channel and dead end on a decision at a T 

junction (described in detail in SI section 3.1). As real cells are not static when they decide a 155 

direction at junctions, we developed a mathematical mapping connecting the cell speed to a static 

waiting time; this was validated by comparing it to simulations. The analysis yielded three key 

predictions, shown in Fig. 4A.  First, shorter dead ends gave more accurate decisions; second, 

shorter live ends also gave more accurate decisions; and third, decisions were more accurate if 

cells took longer to make them. 160 

We had already observed the first prediction experimentally, giving confidence in the others. The 

second prediction resulted from two factors: for short live channels, equilibrium was quickly 

reached, and the resulting well-to-junction gradient was steeper. The third prediction resulted 

from cells having a longer time to clear attractant diffusing out of dead ends before deciding 

which path to take.  This explains the cells’ greater accuracy in the second and third decisions in 165 

the mazes (for example Fig. 3G, Movies S2-3). The same pattern was observed when cell speed 

in the simulations was altered, as slower cells effectively took longer to make decisions (Fig. 4B; 

note similarity to 4A).  

 

These findings raised an apparent contradiction.  We predicted that slower cells would make 170 

better decisions than faster ones, yet Dictyostelium, which solve mazes in two hours, performed 

similarly to cancer cells that take roughly two days. The attractants for these cells, cAMP (26) 

and LPA (15), have similar molecular masses, so we expected them to have similar diffusivities. 
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However, lipids are often carried by proteins such as albumin, slowing their effective diffusion. 

We predicted (Fig. 4C) the relationship between the diffusivities of cAMP and LPA that would 175 

lead to equal decision fidelity, and then performed a photobleaching assay on fluorescently 

labelled LPA and cAMP (Fig. 4D-E). As expected, the measured effective diffusivity of LPA 

was much lower than that of cAMP, and close to the value predicted by our model (10% of the 

cAMP value vs about 5% in our prediction, see SI Section 3.2).  

This result highlights how much the accuracy of decisions in a maze depend on the rate of 180 

diffusion of the attractant. We therefore simulated the three maze designs using attractants with a 

range of diffusivities. The mathematical analysis predicted that high diffusivity would yield 

excellent decisions, and that fidelity would decrease with diffusivity to a limit where decisions 

were made with no information, so 50% of cells head in each direction. The models followed this 

prediction, with one surprising exception - cells in the short maze, but not the long maze, were 185 

predicted to do worse than 50:50 for slow-diffusing attractants with diffusivities around 1/10th 

that of a small molecule like LPA or cAMP (Fig. 4F-G). However, on detailed inspection, we 

found that in the short maze two dead-end channels were close enough to the junction to supply 

diffusing attractant molecules, whereas in the live channel molecules travelling a similar distance 

came from a single source. The quadratic relationship between diffusive flux and distance meant 190 

that branches further up the live channel had a minimal effect.  This explains the behavior 

reversal between the short and long mazes, and again emphasizes the importance of modeling in 

interpreting the complex behaviors of self-generated gradients. 

 

Complex topologies drive cells into incorrect decisions 195 

Analysis of the counterintuitive short maze result leads to a surprising prediction – a dead end 

can be more attractive than a live channel, if the dead end branches or widens.  This can create 

chemotactic mirages, which lead cells away from the source of attractant. 

We built new mazes to test whether mirages actually occur. Each maze connected the cell well 

and large attractant reservoir with a path of identical length (around 800µm). After a variable 200 

approach, cells encountered a T junction, at which they could either migrate toward the large 

reservoir of attractant or down a dead end, again of variable length, towards a smaller attractant 
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well (Fig. 5A-C). We created and tested 16 designs in total, with four approach lengths (150, 

300, 450 & 600µm) and four dead-end lengths (150,300,450 & 600µm).  

We expected shorter approach lengths to yield more severe mirages for two reasons. First, a 205 

shorter approach time gives cells less time to clear attractant from the dead end. Second, the 

attractant well down the live path would be further away, and would therefore signal more 

weakly. We also predicted that short dead ends would generate stronger mirages, as a shorter 

distance between the side well and the junction would give a greater supply of attractant 

molecules from the side well. Finally, we predicted that if the live path to the large reservoir is 210 

shorter than the path to the dead end, no mirage would occur.   

In simulations and experiments, short-approach, short-dead-end mazes produced a profound 

mirage, steering cells toward the trap (Fig. 5A, D, top panels). In intermediate designs, signals 

from the true reservoir were strong enough to cause some cells to reverse their initial, incorrect 

decision (Fig. 5 B, D, middle panels, & Movie S5). For long approaches and long dead ends, the 215 

stronger signal of the large reservoir dominates decision-making, so there is no mirage (Fig. 5C, 

D, bottom panels). A new prediction emerged from simulations of these designs - as these easy-

to-avoid mirages move the trap a large distance away from the cell well, attractant flux through 

the entrance of the maze was reduced, so fewer cells were recruited (Fig. 5D- compare top and 

bottom panels). We measured the decision bias through the first hour for each design and found 220 

that the relationship between the lengths and decision-making holds true across all conditions 

and is accurately predicted by the model (Fig. 5E).  The dead-end mazes confirm that most 

phosphodiesterase is bound to the cell surface; models where the enzyme diffuses reproduce the 

data much less well (Fig. S7) 

These results emphasise a key result that underpins chemotaxis using self-generated gradients: 225 

the most important external determinant for decision-making is attractant flux, not attractant 

quantity. In the mirage maze designs, long dead ends contain more attractant than short dead 

ends but signal more weakly.  This has obvious relevance to migration in vivo; cancer cell 

metastasis, for example, favours tracks with low resistance (27), which allow greater attractant 

flux. 230 
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Targeting specific outcomes in topology design.  

As a final test of our models, we made two pairs of closely-related mazes. For each pair, the 

paths to the source and dead-end space are similar, but one was designed to be “easy” (models 

predict accurate decisions) and one “hard” (Movies S6-7). Easy mazes had short, weakly 235 

branched dead-ends. Hard mazes had long, highly branched dead ends, with branching beginning 

near the entry to maximise the mirage effect (Fig. 6).  

The progress of cells was scored by counting how many passed a checkpoint after each major 

decision (Fig. 6A, yellow, blue & purple spots marking the checkpoints). Cell behaviour in 

“labyrinth” designs was strikingly similar to that predicted by the simulations (Fig. 6B & C show 240 

the first checkpoint for the easy and hard designs, respectively). Cells scored extremely 

divergently in the two designs, despite the similarity of the paths (Fig. 6D). A second pair, easy 

and hard “trident” mazes, (Fig. 6E-G) yielded very similar results (Fig. 6F-H). In both design 

pairs, large parts of the easy mazes were not visited, whereas the hard maze was thoroughly 

explored (Fig. 6I, J). Thus understanding the principles of chemotactic mazes can accurately 245 

inform how real cells respond to complex environments. 
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Discussion 

Our results have implications for many areas of biology. We find that the detailed structure of 250 

the environments that cells encounter strikingly affects their ability to steer accurately. In many 

cases, self-generated gradients allow cells to steer with an accuracy that seems intuitively 

impossible.  Changes in maze design that seem minor make a substantial – and predictable - 

difference to the accuracy and eventual destination of the cells.  As our experimental results are 

accurately predicted by mathematical and computational methods, we believe that our findings 255 

are general and apply to any system in which an attractant is degraded by the cells that respond 

to it. This mechanism is entirely different from that used by Physarum polycephalum to solve 

mazes (28), which relies on the plasmodium migrating down all branches simultaneously before 

pruning useless paths (29). 

Many situations where chemotaxis occurs in vivo – neutrophils extravasating to an infection in 260 

tissue (30), for example, or germ cells migrating through an embryo (31) – have equivalently 

complex migration paths.  Similarly, attractant degradation is widespread, with examples known 

in immunity (32), development (31) and cancer (33).  Chemotactic cells have a variety of 

mechanisms for depleting attractants, including receptor-ligand endocytosis (34), decoy 

receptors (1, 12, 35), and cell-surface enzymes that degrade attractants (33, 36).  Ligand 265 

breakdown is rarely considered when interpreting spatial patterns of chemotaxis data - its effects 

can be complex, counterintuitive and difficult to measure - but our results show it needs to be 

analysed and understood.  Additionally, many cells create attractants as well as degrading them, 

and additional attractants may influence behaviour independently. The need to analyse the 

interactions between these complex and counterintuitive processes points to the pivotal role of 270 

computational modelling, combined with quantitative experimental measurements, in the future 

of biology. 

We have described decisions within our mazes as correct or incorrect, but these loaded terms 

need not apply to in vivo contexts. Our aim is to understand how complex topology draws cells 

to locations that intuition would not predict. The chemotactic mirage, in which expanding and 275 

branching topologies provide more powerful chemoattraction than a direct source of 

chemoattractant, is particularly counter-intuitive. This could be crucial to understanding 
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migratory behaviour in complex in vivo environments (11), for example neutrophil extravasation 

into tissues, migration of melanoblasts through the embryonic dermis, or metastasis of 

glioblastoma through white matter tracts of the brain (37). 280 

In summary, the interaction between the degradation of chemoattractants by cells and the 

structure of the landscape explains how cells navigate over long distances in complex 

environments. Self-generated chemoattractant gradients represent an under-studied phenomenon 

that could offer answers to many unexplained physiological behaviors. 

  285 
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Methods 
Cell Lines: aca- D. discoideum were generated by homologous recombination in an NC4 

parental background using resuspended bacteria, according to ref (38), and were grown non-

axenically on bacterial lawns. To sensitise cells to attractant, they were collected at 1.5-3x107 

cells/ml in development buffer (DB) and shaken for 1h, then pulsed at 6min intervals for 3.5-4h 290 

with 300nM cAMP. Cells were then pelleted and resuspended in maze medium (DB + 2.5µM 

cAMP + 0.05% BSA), and inoculated into the cell well at high density (~90% confluency).  The 

cancer line used was KPC model murine pancreatic cancer (-kras -p53). Cells were cultured in 

DMEM+20%FCS, then trypsinised, resuspended in DMEM+10% fresh FCS and placed in the 

cell well of the maze. In these experiments, mazes were filled with DMEM+10% fresh FCS. 295 

 
Basic chemotaxis experiments: D. discoideum cells were harvested, collected at 1.5-3x107 

cells/ml in development buffer (DB) and shaken for 1.5h. Cells were then pulsed with 300nM 

cAMP for 4.5h at 6min intervals, bringing them into an aggregation competent state.  

For fig.1 an Insall chamber was used to create a stable attractant gradient in a viewing bridge 300 

between two connected reservoirs of attractant. For an imposed gradient, the inner attractant 

reservoir was filled with DB containing 1µM Sp-cAMPS and the outer reservoir with attractant-

free DB. For a self-generated gradient, both the inner and outer reservoir were filled with 10µM 

cAMP in DB. Cells were mixed into the outer well medium at a density of 2.5x106/ml. 

 305 

Maze design and fabrication: Design schematics for mazes are given in the SI. Microfluidic 

mazes were fabricated in polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning, US) using 

standard soft lithography techniques. Briefly, silicon masters were produced using SU8 3005 

photoresist (3000 series, MicroChem, US) on silicon wafers following the manufacturer’s 

protocol to achieve a final resist thickness of 25 µm. The resist was exposed through a 310 

photomask (JD Photo-Tools, UK) to collimated UV light and was developed in MicroPosit EC 

solvent (Rohm and Haas, US). To prevent PDMS adhesion to the silicon master, this was 

salinized by vapour deposition of 1H,1H,2H,2H perfluorooctyl-trichlorosilane for 1h. PDMS was 

poured onto the silicon master at a 10:1 ratio of base to curing agent, degassed in a vacuum 

desiccator chamber and cured at 70°C for at least 3 hours. PDMS devices were then peeled from 315 
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the mould, cut to the desired size and 2mm holes were punched to obtain inlet and outlet ports. 

PDMS devices were then cleaned and irreversibly bonded to glass-bottom petri dishes 

(manufacturer) using oxygen plasma.   

Maze use: Mazes were filled uniformly with medium by filling all inlet ports with the medium 

of choice (typically ~6µl per well) and then placing into a vacuum desiccator for around 20min, 320 

degassing the PDMS. When the vacuum is released, the pressure difference draws medium into 

all parts of the maze, including dead ends, although this functions best if additional medium is 

pipetted up and down in each well, as this dislodges residual gas bubbles. Mazes used for cancer 

cells were pre-filled with 0.05% BSA in sterile, deionised water in order to block the PDMS and 

prevent any attractants from adhering. The pre-fill was dried out by first draining the wells 325 

thoroughly with a pipette, then placing in a tissue culture hood for ~2h. As soon as a maze was 

observed to be dry, it was re-filled with experimental medium (which, for cancer cells was 

Dulbecco’s Modified Eagle Medium (DMEM)+10% FCS, freshly added). 

Simulations: Simulations were written in Java. Diffusion in a complex environment was 

simulated using the semi-implicit DuFort-Frankel method. Agent-based model cells then made 330 

decisions using a persistent, biased random walk. The persistent, random element comes from 

drawing a new direction at each step from wrapped-normal distribution centred on the current 

direction of motion. The attractant gradient direction is estimated from grid points that overlap 

the cell (all those grid-points within 6µm of the cell centroid) and this is used to generate a bias 

vector. The bias vector is added to the persistent, random vector to choose a final direction of 335 

motion, and the cell moves in this direction at its current speed unless it collides with a wall- in 

which case, its movement distance is reduced. 

   Cells degrade attractant at a rate r determined by Michaelis Menten kinetics, i.e.  

! = #!"# $
$%&!

, 

with attractant removed evenly from all grid points overlapped by the cell. 340 

Analysis: All decisions in mazes were binary, with cells committing to a live or a dead end. D. 

discoideum cells were counted as having committed once the whole cell body passed out of the 

junction into one or the other channel. Cancer cells, which are much larger, were counted as 

having committed once the nucleus left the junction. Decision reversals were tracked, with a cell 
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re-entering the junction lowering the score of its channel. In order to account for some stochastic 345 

variation from random movement, all mazes were timed from the arrival of the second cell. 

All maze figures involve comparisons between designs. In all cases, these different designs were 

tested against one another with the same cells on the same day. 

Long, short and simple mazes in Fig. 2 & 3: N=3, with 14, 14 and 12 technical replicates used 

for these mazes respectively. 350 

Mirage mazes in Fig. 5: N=4, with 9-12 technical replicates performed in total for each design. 

Easy and hard mazes in Fig. 6A: N=3, with 11 technical replicates of each in total. 

Easy and hard mazes in Fig. 6C: N=3, with 12 technical replicates of each in total. 

 

 355 
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Fig. 1: Self generated gradients allow cells to explore remote features. 470 

(A) Comparison of imposed and self-generated gradients guiding cells across 1mm to a full 

attractant well. (B) Experimental verification of (A) using Dictyostelium discoideum. The 

imposed gradient uses the non-degradable attractant Sp-cAMPS. The self-generated gradient 

uses uniform cAMP. Cells following the imposed gradient perform worse, especially after the 

halfway point. Bar 50µm. See Movie S1. 475 

(C-E) Simulated navigation past a junction. In (C) both branches are identical and connect to an 

attractant reservoir. Each recruits the same number of cells. In (D) one branch is a dead end. 

Some cells do still commit due to residual attractant in the channel. In (E), the dead end is much 

shorter, and is almost entirely free of attractant as the cells reach the junction. (F) Number of 

cells selecting the top channel through repeated simulations of (C). Concentration is tuned so an 480 

average of 24 cells commit. The self-generated gradient has a smaller standard deviation than a 

random choice, revealing active sorting. (G) The fraction of cells committing to a dead end as a 

function of its length. Few cells commit to short dead ends, but there is an apparently linear 

increase from 250µm-650µm. Above this, the fraction plateaus at about 0.4.  

 485 
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Fig. 2: Real cells can solve mazes.  490 

(A) Simulation of cells navigating the maze with short dead ends, at time-points past the first, 

second and third decisions. In this design, cells are predicted to almost always commit to the 

correct path to lead them to the attractant well. (B) Dictyostelium cells migrating through the 

same maze design, initially filled uniformly with the attractant cAMP. (C) Pancreatic cancer 

cells in the same maze design, with an initial background of 10% FCS. (D-F) Simulations of the 495 

short-branched maze (D), compared with Dictyostelium (E) and pancreatic cancer (F) cells 

navigating the same design. (G-I) Simulations of the long-branched maze design (G), compared 

with Dictyostelium (H) and pancreatic cancer (I) cells.  See Movies S2 (A,D,G) , S3 (B,E,H) & 

S4 (C,F,I). Device width 850µm; channel width 40µm; channel height 25µm. 

  500 
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Fig. 3: More distant and complex dead ends are harder to resolve.  

(A) Simulations of the long-, short-, and simple-branched mazes as the cells reach the junction 505 

between the live path and the first dead end. (B) The same simulations at a later time. Cell colour 

has been altered for those that have committed to the live end (deep blue) or dead end (red). 

Uncommitted cells are shown in the original grey blue. (C-E) Running totals of cells committed 

to the live end (blue) and dead end (red), as pictured in (B). Results are shown for simulations 

(C), Dictyostelium (D) and pancreatic cancer experiments (E), with t=0 when cells first reach the 510 

entrance to the maze. Light blue shading highlights the difference between these values. (F) 

Decision fidelity scores for Dictyostelium cells at the first junction of each maze. The simple- 

and short-branched mazes both differ significantly in their fidelity to the long-branched maze 

(one-way ANOVA, a=0.05). (G) Overall decision fidelity scores for the simulations compared 

with their experimental counterparts. Decision fidelity is 〈" − $〉/〈" + $〉 over a 1hr window, where 515 

t	 and f are the number currently committed to the correct and incorrect paths. Later decisions 

generally have higher fidelity. 

 

 

  520 
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Fig. 4: Slower cells and faster diffusion lead to more accurate decisions. 

(A) Mathematical model of decision fidelity at a T junction. Each panel shows a snapshot after a 

different waiting time at the junction before making decision. Lengths of the live and dead ends 525 

on x and y axes, respectively. (B) Decisions made by simulated cells moving at different speeds, 

and therefore taking different times to reach the junction so as to correspond with the panels 

above. (C) To correct for cell movement sharpening the gradient, we create a mapping from the 

solvable static model to an adjusted model. The static and adjusted models are shown for three 

cell speeds against the true gradient seen in the simulations. (D) Photobleaching of 8-fluo-cAMP 530 

and TopFluor Lyso PA. (E) Recovery curves & fits for the photobleached areas suggest that the 

effective diffusivity of LPA is ~1/10th that of cAMP.  Bar 50µm. (F) Expected decision fidelities 

for the short-branched maze across time, simulated over a variety of attractant diffusivities. 

Notably, a phase change in behaviour occurs for lower diffusivities, in which a majority of cells 

choose the dead end. This does not happen in the long-branched maze, revealing that, in 535 

branching topologies, shorter dead ends may in fact lead to worse decisions. (G) Snapshots of 

three simulations at the three numbered points in (F). 

 

Fig. 5: Cell decisions depend on the rate of attractant transport. 

(A-C) Using 4 dead-end lengths and 4 junction approach lengths (labelled in (B)), we generate 540 

16 mazes in total with varying predictions of cell behaviour. We show real cells (left) and 

simulation predictions (right) for 3 of the 16 designs. (A) shows short approach length and dead-

end length (both 150µm). (B) shows a 150µm dead end and a 450µm approach, with cells faring 

better than in (A). (C) shows an approach length and a dead-end length of 600µm. In this case, 

cells overwhelmingly steer correctly toward the large reservoir. Dynamics of (A-C) can be seen 545 

in Movie S5. Distance between reservoirs 800µm. (D) Total number of cells committing to the 

live- and dead-ends on average for the designs shown in A-C. Blue filling shows a positive bias 

(favouring the live end), while red filling shows a negative bias (favouring the dead-end). For a 

short approach and a short dead end, real cells have a strongly negative bias which is not 
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overcome within the hour-long observation (top-left). This was predicted by simulation (top-550 

right). An intermediate approach-length and a short dead end causes a brief chemotactic mirage, 

but the dead-end is short enough that the misdirected cells then receive attractant flux from the 

large reservoir and rectify their mistake (middle left). This again is predicted (middle-right). A 

long approach and long dead-end (bottom-left) has two features. Firstly, the bias is consistently 

positive and no mirage forms. Secondly, this design recruits fewer cells overall. Both features 555 

were predicted by the simulations. (E) Average bias score over a 45min observation for all 16 

designs. The general trend of short approach and dead ends both causing negative bias, predicted 

by the model (right), is seen clearly in the experimental data (left). 

  

Fig. 6: Deliberate misdirection of live cells.  560 

(A) Designs for easy and hard labyrinth mazes. Though both have the sa me amount of dead-end 

space, the hard labyrinth is designed with fewer, longer, and more branched dead ends. We note 

that the easy labyrinth is harder to solve visually. Checkpoints are marked (coloured dots). These 

are used to score the navigational success of cells. Devices 800µm wide. (B-C) Example images 

of cells passing the first checkpoint in both labyrinths, alongside the behaviour predicted by 565 

simulations. See Movie S6. (D) Number of Dictyostelium cells passing each checkpoint in (A) as 

a fraction of maze entrants. The checkpoint colour tag is shown above each value. (E) Designs 

for easy (left) and hard (right) trident mazes along similar principles to (A).  Devices 810µm 

wide.  (F-H) Similar images of cells navigating trident designs. See Movie S7. Pairwise t-testing 

the final decision yields p<0.05 for both design pairs. (I-J) Cell images taken at 5min intervals 570 

are colour-coded by time and superimposed on the unmoving, median image of the mazes for all 

four designs, showing the path taken by cells. 
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Materials and Methods

Cell Lines
aca- D. discoideum were generated by homologous recombination in an NC4 parental background
using resuspended bacteria, according to ref (38), and were grown non-axenically on bacterial
lawns. To sensitise cells to attractant, they were collected at 1.5 � 3x107 cells/ml in development
buffer (DB) and shaken for 1h, then pulsed at 6min intervals for 3.5-4h with 300nM cAMP. Cells
were then pelleted and resuspended in maze medium (DB + 2.5µM cAMP + 0.05% BSA), and in-
oculated into the cell well at high density ( 90% confluency). The cancer line used was KPC model
murine pancreatic cancer (-kras -p53). Cells were cultured in DMEM+20%FCS, then trypsinised,
resuspended in DMEM+10% fresh FCS and placed in the cell well of the maze. In these experi-
ments, mazes were filled with DMEM+10% fresh FCS.

Basic chemotaxis experiments
D. discoideum cells were harvested, collected at 1.5� 3x107 cells/ml in development buffer (DB)
and shaken for 1.5h. Cells were then pulsed with 300nM cAMP for 4.5h at 6min intervals, bring-
ing them into an aggregation competent state. For Fig.1 an Insall chamber was used to create a
stable attractant gradient in a viewing bridge between two connected reservoirs of attractant. For
an imposed gradient, the inner attractant reservoir was filled with DB containing 1µM Sp-cAMPS
and the outer reservoir with attractant-free DB. For a self-generated gradient, both the inner and
outer reservoir were filled with 10µM cAMP in DB. Cells were mixed into the outer well medium
at a density of 2.5x106/ml.

Maze design and fabrication
Design schematics for mazes are given in the SI. Microfluidic mazes were fabricated in poly-
dimethylsiloxane (PDMS; Sylgard 184, Dow Corning, US) using standard soft lithography tech-
niques. Briefly, silicon masters were produced using SU8 3005 photoresist (3000 series, Mi-
croChem, US) on silicon wafers following the manufacturer’s protocol to achieve a final resist
thickness of 25 µm. The resist was exposed through a photomask (JD Photo-Tools, UK) to colli-
mated UV light and was developed in MicroPosit EC solvent (Rohm and Haas, US). To prevent
PDMS adhesion to the silicon master, this was salinized by vapour deposition of 1H,1H,2H,2H
perfluorooctyl-trichlorosilane for 1h. PDMS was poured onto the silicon master at a 10:1 ratio of
base to curing agent, degassed in a vacuum desiccator chamber and cured at 70� C for at least 3
hours. PDMS devices were then peeled from the mould, cut to the desired size and 2mm holes
were punched to obtain inlet and outlet ports. PDMS devices were then cleaned and irreversibly
bonded to glass-bottom petri dishes (manufacturer) using oxygen plasma.

Maze use
Mazes were filled uniformly with medium by filling all inlet ports with the medium of choice
(typically 6µl per well) and then placing into a vacuum desiccator for around 20min, degassing
the PDMS. When the vacuum is released, the pressure difference draws medium into all parts of
the maze, including dead ends, although this functions best if additional medium is pipetted up
and down in each well, as this dislodges residual gas bubbles. Mazes used for cancer cells were
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pre-filled with 0.05% BSA in sterile, deionised water in order to block the PDMS and prevent any
attractants from adhering. The pre-fill was dried out by first draining the wells thoroughly with a
pipette, then placing in a tissue culture hood for 2h. As soon as a maze was observed to be dry, it
was re-filled with experimental medium (which, for cancer cells was Dulbecco’s Modified Eagle
Medium (DMEM)+10% FCS, freshly added).

Simulations
Simulations were written in Java. Diffusion in a complex environment was simulated using the
semi-implicit DuFort-Frankel method. Agent-based model cells then made decisions using a per-
sistent, biased random walk. The persistent, random element comes from drawing a new direction
at each step from wrapped-normal distribution centred on the current direction of motion. The
attractant gradient direction is estimated from grid points that overlap the cell (all those grid-points
within 6µm of the cell centroid) and this is used to generate a bias vector. The bias vector is added
to the persistent, random vector to choose a final direction of motion, and the cell moves in this
direction at its current speed unless it collides with a wall- in which case, its movement distance is
reduced. Cells degrade attractant at a rate r determined by Michaelis Menten kinetics, i.e. , with
attractant removed evenly from all grid points overlapped by the cell.

Analysis
All decisions in mazes were binary, with cells committing to a live or a dead end. D. discoideum
cells were counted as having committed once the whole cell body passed out of the junction into
one or the other channel. Cancer cells, which are much larger, were counted as having committed
once the nucleus left the junction. Decision reversals were tracked, with a cell re-entering the
junction lowering the score of its channel. In order to account for some stochastic variation from
random movement, all mazes were timed from the arrival of the second cell. All maze figures
involve comparisons between designs. In all cases, these different designs were tested against one
another with the same cells on the same day. Long, short and simple mazes in Fig. 2 and 3: N=3,
with 14, 14 and 12 technical replicates used for these mazes respectively. Mirage mazes in Fig.
5: N=4, with 9-12 technical replicates performed in total for each design. Easy and hard mazes in
Fig. 6A: N=3, with 11 technical replicates of each in total. Easy and hard mazes in Fig. 6C: N=3,
with 12 technical replicates of each in total.
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1 Supplementary text

1.1 Analytical solutions for live and dead ends of a single-choice maze

Consider a maze design that presents cells with a single binary decision. They enter a channel of
length L0 from the cell well. At the far end of this channel they reach a junction. To one side, at
the end of a channel of length LT , is the attractant well. To the other, at the end of a channel of
length LF , is a dead end.

If we imagine the cells reaching this junction very rapidly, then sitting still and pondering their
decision for some time t, we can describe the state of the maze piecewise, with the concentration
profiles of the true and false branches cT (x, t), cF (x, t) evolving according to the heat equation,

@tc(x, t) = Dc@xxc(x, t), (1)

where Dc is the diffusivity of the attractant. Taking the decision point to be the origin for each
branch, the boundary conditions for the true and false branches are:

A) cT (0, t) = 0, cT (LT , t) = c0, cT (x, 0) = c0
B) cF (0, t) = 0, @xcF (LF , t) = 0, cF (x, 0) = c0
The solution method for these conditions is well known, but briefly we use variable separation

to find the Fourier series solution. In both cases we can apply the first boundary condition to restrict
ourselves to the Fourier sine series. In order not to violate the boundary conditions, the true branch
must also include the steady state solution of a linear gradient. At this stage, we have:

cT (x, t) =
c0x

LT
+

1X

n=1

Bn sin
n⇡x

LT
exp

�
� n2⇡2Dct/L

2
T

�
, (2)

cF (x, t) =
1X

n=0

Bn sin
(n+ 1

2)⇡x

LF
exp

�
� (n+ 1/2)2⇡2Dct/L

2
F

�
, (3)

where in each case the Bn can be found by Fourier transformation of the initial conditions.
This gives us the complete forms of cT (x, t), cF (x, t):

cT (x, t) =
c0x

LT
+

1X

n=1

2c0
n⇡

sin
n⇡x

LT
exp

�
� n2⇡2Dct/L

2
T

�
, (4)

cF (x, t) =
4c0
⇡

1X

n=0

1

2n+ 1
sin

(n+ 1
2)⇡x

LF
exp

�
� (n+ 1/2)2⇡2Dct/L

2
F

�
. (5)

We assess the desision fidelity by taking the ratio of the number of cells committing to the true
branch and the number of cells committing to the false branch. We can reasonably assume that the
number of cells recruited to each branch is proportional to the attractant gradient of that branch at
x=0:
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@xcT (0, t) =
c0
LT

✓
1 + 2

1X

n=0

exp
�
� n2⇡2Dct/L

2
T

�◆
, (6)

@xcF (0, t) =
2c0
LF

1X

n=0

exp
�
� (n+ 1/2)2⇡2Dct/L

2
F

�
(7)

This dependency is not due to chemotactic biases: if each cell were to sense both branches,
we would expect them to commit exclusively to the steeper option. It is rather that, at the point of
decision, a new self-generated gradient begins in each direction. It is because that attractant flux at
x = 0 is linearly proportional to the gradient (by Fick’s first law), and that, as we have previously
reported, the number of cells recruited in a self-generated gradient is the number of cells required
to break down all incoming attractant.

A rather simple review of the decision of Eqns. 6-7 shows that cells will make better decisions
the longer they wait at the decision point. Comparing the ratio of the two will always show an
increasing decision fidelity over time, and in the limit, as t ! 1, the stationary state of the true
branch is a static gradient, where the stationary state of the false branch is zero everywhere. We
use these results to further explore the expected decision fidelity for any value of LT and LF over
time in the main text.

1.2 Diffusivity of cAMP and LPA

In spite of Dictyostelium taking two hours to navigate a maze and KPC cancer cells taking two
days, their decisions are strikingly similar. How, then, does this suggest that the other system
dynamics have changed?

If we assume that decisions are made in proportional to attractant flux, we can describe this
similarity by equating the ratios of Eqn. 6 to Eqn. 7 for their respective parameters:

f(t) = cT (t)/cF (t),

=
LF

2LT

1 + 2
P1

n=1 exp
�
� n2⇡2Dct/L2

T

�
P1

m=1 exp
�
� (m� 1/2)2⇡2Dct/L2

F

� . (8)

As the maze design parameters LT and LF are invariant here, this implies that Dc1t1 = Dc2t2,
and, as each has to migrate the same distance in order to reach the junction, that

Dc1

Dc2
=

v1
v2

(9)

and that, as the speed of Dictyostelium migration is about 12µm/min compared with a KPC cell
speed of around 0.6µm/min, the diffusivity of cAMP is correspondingly 20 times that of LPA.
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1.3 Effective time approximation for the effect of cell migration on gradient steepness

A major assumption in the previous section is that the attractant profiles evolve from their initial
state entirely after the cells reach the decision point. In reality, the attractant profile evolves prior
to their arrival at the decision point, and the cells respond very rapidly to the current state of the
maze as they reach it. We therefore need to find a way of estimating the correct value of t to use
in predicting the state of the maze when the cells arrive at the decision point. The simplest choice
would be to assume that the actual time taken between entering the maze and reaching the decision
point tT can be used in place of t, however we intuitively expect that our attractant-degraing cells
sharpen the gradient as they migrate up it. Can we demonstrate that this is the case? And if so, can
we determine an effective time to use in the stationary solution as a function of the actual length
of time that has passed?

Consider a concentration profile c(x, t) initially of a uniform concentration c0 for all x > 0,
and with the boundary conditions c(0, t) = 0, c(x, t) =

x!1
c0. We can satisfy these conditions with

the self-similar solution to the heat equation:

c(x, t) = c0 erf
xp
4Dct

, (10)

@tc(x, t) = � c0xp
4⇡Dct3

exp
�x2

4Dct
, (11)

@xc(x, t) =
c0p
⇡Dct

exp
�x2

4Dct
, (12)

@xxc(x, t) = � c0xp
4⇡D3

c t
3
exp

�x2

4Dct
(13)

Where the factor c0 has been chosen to satisfy the initial and boundary conditions, remembering
that erf x ! 1 as x ! 1. In this case, the perfect sink is stationary at x = 0. We must now find
a solution for a comparible situation, but where the boundary is able to move over time. We will
denote the position of this moving boundary with s(t), with the new boundary condition therefore
c(s(t), t) = 0. This boundary chemotaxes up the local conentration gradient according to the
relation:

@ts(t) =
k

c0
@xc(s(t), t), (14)

where k is some yet-to-be-determined constant relating the gradient to the instantaneous speed
of chemotaxis.

If we then consider the following solution to the heat equation:
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c(x, t) =
c0

erfc↵

✓
erf

xp
4Dct

� erf ↵

◆
, (15)

@tc(x, t) = � c0x

erfc↵
p
4⇡Dct3

exp
�x2

4Dct
, (16)

@xc(x, t) =
c0

erfc↵
p
⇡Dct

exp
�x2

4Dct
, (17)

@xxc(x, t) = � c0x

erfc↵
p

4⇡D3
c t

3
exp

�x2

4Dct
, (18)

As the boundary condition requires that c(s(t), t) = 0,

erf
s(t)p
4Dct

= erf ↵ (19)

s(t) = ↵
p

4Dct (20)

@ts(t) = ↵

r
Dc

t
(21)

In general, the motion of the wave of cells in mazes is at constant speed, rather than following
a 1/

p
t form. Nonetheless, we can compare the times taken to travel some distance L to provide

approximate estimate of ↵ in terms of cell speed v. Equating these times gives:

L

v
=

L2

4Dc↵2
(22)

↵ =

r
vL

4Dc
. (23)

We can now define the gradient at the position of the cell wave degrading a semi-infinite region
of chemoattractant in terms of measurable parameters, both for the case where the wave is station-
ary and where it is moving. We will now refer to the stationary case as cS(x, t) and the moving
case as cM(x, t). For an arbitary gradient steepness k where k > 0, there is clearly some time tS
after which @xcS(0, tS) = k. There is also a time tM for which @xcM(s(tM), tM) = k. Using this,
we can find tS as a function of tM as follows:

@xcS(0, tS) = @xcM(s(tM), tM) (24)
c0p

4⇡DctS
=

1

erfc↵
.

c0p
4⇡DctM

exp(�s(tM)2/4DctM) (25)

1p
tS

=
1

erfc↵
.

1p
tM

exp(�↵2) (26)

tS = �tM (27)
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where � = e2↵
2
erfc2 ↵. A simple sense check shows that, for v = 0 we get ↵ = 0 and � = 1,

showing that, where the is no movement, we see no change in the time taken to reach a particular
gradient steepness. For all ↵ > 0, � < 1, meaning that the time taken to reach a particular gradient
is longer when cells migrate, thereby confirming our initial intuition that such migration would
sharpen the gradient.

This finding rests on the assumption that cells migrate in a semi-unbounded domain. In order
to confirm the validity of this finding, and test its applicability to maze parts of finite length, we
performed simulations of cells migrating up to, or sitting still at a decision point (See Fig. S8A).
We varied the length of the dead end, and measured relative error for both the uncorrected solution,
and the solution corrected by �. The correction improved the accuracy of our analytical solution for
moving cells for all dead-end lengths, with a residual error peaking at 10% of the simulated value,
and improving as L increased. These differences are particularly low given that the simulations
also have different degradation dynamics and simulate movement and diffusion within channels of
some width.

1.4 Flux from a branching dead end

In trying to understand the chemotactic mirage discussed in the main text, we considered the
possibility that maze shape could change the profile of attractant flux, and that this may be the
key determinant of chemoattraction, rather than the absolute attractant quantity which is of course
much higher in the attractant well. We consider the decision cells face as they approach a T
junction, with an attractant well on one side and on the other a branching dead end of variable
length. We found that the number of branches (and thus, the attractant flux to the junction) similarly
influenced cell decisions. Numerical solutions to Eqs. 85 and 100 show that mirages are only
apparent for number of branches k > 1. For distances to the true attractant well of 1mm, mirages
require the the distance from the decision point to the branching point to be within 100µm (Fig.
S9). For long live ends (3mm or more), which are still reasonable distances in-vivo, mirages can
be much stronger, longer lived, and effective.

2 Assorted useful solutions to the heat equation

In this work, we are interested in the interaction between diffusible attractants or chemokines, a
population of cells, and a structured, complex environment. In order to simplify our model from
the full, coupled system of reaction, diffusion and advection driving it, we assume that advection
is negligible and that our main reaction of importance can be described with the appropriate choice
of boundary conditions. In all cases, we must still satisfy the diffusion equation for a molecule of
diffusibility Dc:

@tc(x, t) = Dc@xxc(x, t). (28)

The following sections describe some solutions that are useful for work on semi-1D diffusion
problems, such as those we have explored.
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2.1 Solution with Dirichlet boundary conditions

We desire a solution satisfying the fixed-concentration boundary conditions c(0, t) = c0, c(L, t) =
cL, c(x, 0) = cI . We begin by finding the steady state of the system cS(x):

c(x, t) ⌘
t!1

cS(x) (29)

@tcS(x) = 0 ··· @xxcS(x) = 0 (30)
cS(x) = A1x+ A2 (31)
cS(0) = c0 =) A2 = c0 (32)

cS(L) = cL =) A1 =
c1 � c0

L
(33)

cS(x) = c0 +
cL � c0

L
x (34)

As a linear combination of solutions must also be a solution, we can use this steady state to
find a related homogeneous problem:

u(x, t) = c(x, t)� cS(x) ··· u(0, t) = 0, u(L, t) = 0, (35)
@tu(x, t) = @tc(x, t)� @tcS(x), (36)

@xxu(x, t) = @xxc(x, t)� @xxcS(x), (37)

By separation of variables, with a separation constant �↵2, we can reach the Fourier solution
to the heat equation. As u(0, t) = 0, we reduce this to only the sine series:

u(x, t) =
1X

n=1

Bn sin↵x exp(�↵2Dct), u(L, t) = 0 =) ↵ =
n⇡

L
(38)

u(x, t) =
1X

n=1

Bn sin
n⇡x

L
exp

�
� n2⇡2Dct/L

2
�
, (39)

u(x, 0) =
1X

n=1

Bn sin
n⇡x

L
. (40)

Eq. 50 shows us that our Bn are simply the Fourier components of our initial condition. They
can therefore be found directly from the initial condition u(x, 0):
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u(x, 0) =
�
cL � c0

�✓
1� x

L

◆
, (41)

Bn =
2(cL � c0)

L

Z L

0

✓
1� x

L

◆
sin

n⇡x

L
dx (42)

=
2(cL � c0)

n⇡
(43)

c(x, t) = u(x, t) + cS(x) (44)

= c0 +
�
cL � c0

�x
L

+
1X

n=1

2

n⇡

�
cI � c0 + (�1)n+1(cI � cL)

�
sin

n⇡x

L
exp

�
� n2⇡2Dct/L

2
��

(45)

In this work, we only use the case where c0 = 0, as the lower boundary condition is held at this
value by the migrating wave of cells, and cI = cL as we fill each maze with an initially uniform
attractant profile. We therefore make note of the final simplification:

c(x, t) =
cLx

L
+

1X

n=1

2cL
n⇡

sin
n⇡x

L
e�n2⇡2Dct/L2

(46)

2.2 Solution with mixed boundary conditions

Here we represent a dead end at x = L, such that we can apply a zero flux boundary condition
there. As such, we have c(0, t) = c0, @xc(L, t) = 0, c(x, 0) = cL. The steady state is trivially a
uniform profile of concentration c0. We can therefore define the related homogeneous problem for
u(x, t) = c(x, t)� c0.

Similarly to the previous case, we can use separation of variables and the left-hand boundary
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condition to arrive at the Fourier sine series solution:

u(x, t) =
1X

n=1

Bn sin↵x exp(�↵2Dct), (47)

@xu(L, t) = 0 =) ↵ = (n� 1/2)⇡/L (48)

u(x, t) =
1X

n=1

Bn sin
(n� 1/2)⇡x

L
exp

�
� (n� 1/2)2⇡2Dct/L

2
�
, (49)

u(x, 0) =
1X

n=1

Bn sin
(n� 1/2)⇡x

L
. (50)

··· Bn =
2
�
cL � c0

�

L

Z L

0

sin
(n� 1/2)⇡x

L
dx (51)

=
4(cL � c0)

(2n+ 1)⇡
, (52)

u(x, t) =
1X

n=1

4(cL � c0)

(2n� 1)⇡
sin

(2n� 1)⇡x

2L
e�(2n�1)2⇡2Dct/4L2

(53)

c(x, t) = u(x, t) + c0, (54)

= c0 +
1X

n=1

4(cL � c0)

(2n� 1)⇡
sin

(2n� 1)⇡x

2L
e�(2n�1)2⇡2Dct/4L2

(55)

Again, we are interested in the simplified case where, at the left-hand boundary, all attractant
is depleted by the wave of migrating cells, and so c0 = 0. This gives us our simplified case:

c(x, t) =
1X

n=1

4cL
(2n� 1)⇡

sin
(2n� 1)⇡x

2L
e�(2n�1)2⇡2Dct/4L2

(56)

2.3 Solution with time-dependent Dirichlet boundary conditions

When considering the branches of mazes, it may be more useful to consider the arcs between
them piecewise, with the junctions between them treated as time-dependent fixed-concentration
boundaries, the precise nature of which we will determine later. Our boundaries, then, are c(0, t) =
f(t), c(L, t) = g(t), c(x, 0) = cL, where for consistency we still use cL to describe the initial,
uniform concentration with which we flood all parts of the maze. We approach this using the
method of eigenfunction expansions. We first consider a solution to the related homogeneous
problem. The spatial component then gives us the eigenvalue problem:

@xx�n(x) + ↵2
n�n = 0, �n(0) = 0, �n(L) = 0 (57)

We can define a simple function s(x, t) that obeys the boundary conditions, such that for a function
u(x, t) = c(x, t) � s(x, t), the homogeneous boundary conditions apply. We then write u(x, t) as
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an expansion in terms of these spatial eigenfunctions as follows:

u(x, t) = c(x, t)� s(x, t), =) u(0, t) = 0, u(L, t) = 0, (58)

u(x, t) =
1X

n=1

un(t)�n(x), (59)

@tu(x, t) =
1X

n=1

@tun(t)�n(x), (60)

@xxu(x, t) =
1X

n=1

un(t)@xx�n(x), (61)

=
1X

n=1

�↵2
nun(t)�n(x). (62)

Here, we have assumed that term-by-term differentiation is allowable, and have used the eigenvalue
equation to substitute out our @xx�n(x) terms, in order that both infinite series are expressed in
terms of the unmodified spatial eigenfunctions. We can now return to our original problem by
substituting u(x, t) into the heat equation:

@tc(x, t) = @tu(x, t) + @ts(x, t), (63)
@xxc(x, t) = @xxu(x, t) + @xxs(x, t) ··· (64)

@ts(x, t) +
1X

n=1

@tun(t)�n(x) = Dc

✓
@xxs(x, t)�

1X

n=1

↵2
nun(t)�n(x)

◆
, (65)

1X

n=1

✓
@tun(t) +Dc↵

2
nun(t)

◆
�n(x) = Q(x, t), (66)

where Q(x, t) = Dc@xxs(x, t)� @ts(x, t) (67)

As we express the LHS entirely in terms of our spatial eigenfunctions �n(x), we now seek to
express Q(x, t) in terms of the same,

Q(x, t) =
1X

n=1

qn(t)�(x) ··· (68)

1X

n=1

✓
@tun(t) +Dc↵

2
nun(t)

◆
�n(x) =

1X

n=1

qn(t)�(x). (69)

It is very important to note that at this stage we have imposed on Q(x, t) a series of spatial
eigenfunctions chosen for meeting the homogeneous boundary conditions of u(x, t), even though
Q(x, t) almost certainly does not obey these conditions. The solution we construct therefore ap-
plies to the region excluding the boundaries, i.e. x 2 (0, L) but not x 2 [0, L].

As these eigenfunctions are orthogonal, this equation holds for each harmonic (i.e. each n)
separately, giving us:

@tun(t) +Dc↵
2
nun(t) = qn(t) (70)

12



where we can sift out the qn(t) by using the orthogonality of the eigenfunctions:

qn(t) =

R L

0 Q(x, t)�n(x) dxR L

0 �2
n(x) dx

. (71)

This reduces the problem to the solution of a first-order ODE for the un(t).
We must now begin to consider the specifics of our case. In order to achieve the homogeneous

boundary conditions required for u(x, t), we will have:

s(x, t) = f(t) +
x

L

�
g(t)� f(t)

�
, (72)

@ts(x, t) = @tf(t) +
x

L

�
@tg(t)� @tf(t)

�
, (73)

@xxs(x, t) = 0, (74)

Solution of the original eigenvalue problem for u(x, t) gives us �n(x) = sin(↵x) and ↵ = n⇡/L.
Eq. 71 therefore reduces to the expression for the coefficients of a Fourier sine series:

Z L

0

sin2 n⇡x

L
(x) dx = L/2 ··· (75)

qn =
2

L

Z L

0

Q(x, t) sin
n⇡x

L
dx, (76)

=
�2

L

Z L

0

@ts(x, t) sin
n⇡x

L
dx, (77)

=
�2@tf(t)

L

Z L

0

sin
n⇡x

L
dx�

�2
�
@tg(t)� @tf(t)

�

L2

Z L

0

x sin
n⇡x

L
dx, (78)

=
2

n⇡


(�1)n@tg(t)� @tf(t)

�
. (79)

Inserting this into Eq. 70 and multiplying through by the integrating factor e↵2
nDct gives

e↵
2
nDctdun(t)

dt
+ e↵

2
nDctDc↵

2
nun(t) = e↵

2
nDct 2

n⇡

d

dt


(�1)ng(t)� f(t)

�
(80)

d

dt

✓
e↵

2
nDctun(t)

◆
= e↵

2
nDct 2

n⇡

d

dt


(�1)ng(t)� f(t)

�
··· (81)

Z t

0

@⌧

✓
e↵

2
nDc⌧un(⌧)

◆
d⌧ =

Z t

0

2e↵
2
nDc⌧

n⇡

d

d⌧


(�1)ng(⌧)� f(⌧)

�
d⌧ (82)

e↵
2
nDctun(t)� un(0) =

2

n⇡

Z t

0

e↵
2
nDc⌧ d

d⌧


(�1)ng(⌧)� f(⌧)

�
d⌧. (83)

The un(0) are the Fourier components of u(x, 0) = c(x, 0) � s(x, 0), but at t = 0 all values of
concentration are uniformly cL, giving u(x, 0) = 0. Thus, these coefficients all evaluate to zero,
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leaving

un(t) =

2
n⇡

R t

0 e
↵2
nDc⌧ d

d⌧


(�1)ng(⌧)� f(⌧)

�
d⌧

e↵2
nDct

, (84)

which can be determined once the boundary condition functions are known. Our expression for
c(x, t) is, then,

c(x, t) =
1X

n=1

un(t) sin
n⇡x

L
+ f(t) +

x

L

✓
g(t)� f(t)

◆
(85)

As a basic test of the validity of this solution (and therefore, of the assumption made), we
will test its ability to recapitulate a small section of a known function. We will take the Dirichlet
solution with static boundary conditions as our test case, and see if we can recreate the section for
x 2 (L/4, 3L/4) using our solution with time-dependent boundaries.

f(t) =
cL
4

+
1X

m=1

2cL
m⇡

sin
m⇡

4
e�m2⇡2Dct/4L2

, (86)

@tft = �DccL
2L2

1X

m=1

m⇡ sin
m⇡

4
e�m2⇡2Dct/4L2

(87)

g(t) =
3cL
4

+
1X

m=1

2cL
m⇡

sin
3m⇡

4
e�m2⇡2Dct/4L2

, (88)

@tgt = �DccL
2L2

1X

m=1

m⇡ sin
3m⇡

4
e�m2⇡2Dct/4L2

. (89)

Inserting these into Eq. 84 and evaluating the integral gives

un(t) =
4cL
⇡2

1X

n=1

m

n

1

4n2 �m2


(�1)n+1 sin

3m⇡

4
+ sin

m⇡

4

�

.


exp

�
�m2⇡2Dct/4L

2
�
� exp

�
� 4n2⇡2Dct/4L

2
��

(90)

Substituting these un(t) into Eq. 85 recapitulates exactly the expected solution within the
specified domain (Fig. S10).

2.4 Solution with mixed time dependent boundary conditions

Much of our argument in this case is shared with the previous section. We are instead applying the
boundaries c(0, t) = f(t), @xc(L, t) = h(t), c(x, 0) = cL. The general argument up to Eqs. (70,
71) still applies. We instead choose s(x, t) to satisfy these boundary conditions:
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s(x, t) = f(t) + xh(t), (91)
@ts(x, t) = @tf(t) + x@th(t), (92)

@xxs(x, t) = 0 (93)

Following the logic of our previous example, we must now find the qn using our eigenfuctions
sin↵x, however here ↵n = (n� 1/2)⇡/L.

Z L

0

sin2 ↵nx dx = L/2 ··· (94)

qn =
2

L

Z L

0

Q(x, t) sin↵nx dx, (95)

= �2@tf(t)

L

Z L

0

sin↵nx dx� 2@th(t)

L

Z L

0

x sin↵nx dx, (96)

=
�4

(2n� 1)⇡

d

dt


f(t) +

2L

⇡

(�1)n+1

(2n� 1)
h(t)

�
, ··· (97)

un(t) =

� 4
(2n�1)⇡


2L
⇡

(�1)n+1

2n�1

✓
hn(0) +

R t

0 e
↵2
nDc⌧ dh(⌧)

d⌧ d⌧

◆
+
R t

0 e
↵2
nDc⌧ df(⌧)

d⌧ d⌧

�

e↵2
nDct

(98)

with the final step evaluating un(0) using the initial conditions. Four our study, we are cheifly
interested in the case where h(t) = 0, representing the no-flux condition of dead ends. This gives
us the somewhat cleaner:

un(t) = � 4e�↵2
nDct

(2n� 1)⇡

Z t

0

e↵
2Dc⌧ df(⌧)

d⌧
d⌧ (99)

Once the form for the boundary conditions is known, we have all we need to calculate c:

c(x, t) = f(t) + xh(t) +
1X

n=1

un(t) sin
(n� 1/2)⇡x

L
. (100)

We can test the ability of this form to correctly predict the latter half of the solution for static
mixed boundary conditions. Here, h(t) = 0, c(x, 0) = cL:

f(t) =
4CL

⇡

1X

m=1

sin (2m�1)⇡
4

2m� 1
exp

�
� (2m� 1)2⇡2Dct/16L

2
�
, (101)

un(t) =
16cL
⇡2

1X

m=1

2m� 1

2n� 1

sin
�
(2m� 1)⇡/4

�

4(2n� 1)2 � (2m� 1)2

.


exp

✓
� (2m� 1)2⇡2Dct

16L2

◆
� exp

✓
� 4

(2n� 1)2⇡2Dct

16L2

◆�
. (102)

As can be seen in Fig. S10, these un(t) recapitulate the region of the target solution precisely.
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Supplementary figures
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Figure S1: Progress into mazes relies on attractant breakdown. Progress in a similar maze at
0, 20 and 60 minutes for a self-generated cAMP gradient vs a linear gradient of non-degradable
Sp-cAMPS. Poor progress toward Sp-cAMPS confirms that attractant degradation is the driver of
our other observations.
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Figure S2: Maze designs used in this study. A) The long, short and simple mazes are shown to
the left, right and top respectively. The maze design toward the bottom is not used in this study. B)

Designs for easy and hard mazes. C) Design for the mirage maze device used in Fig. 5.
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Figure S3: Montages of experimental repeats. Two additional examples of D. discoideum solv-
ing each maze design from main text Fig. 2 are shown.
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Figure S4: Experimental repeats of labyrinth mazes. Two additional examples of D. discoideum
solving each labyrinth design from main text Fig. 6.
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Figure S5: Experimental repeats of trident mazes. Two additional examples of D. discoideum
solving each Trident design from main text Fig. 6.
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Figure S6: Montages of experiments in NC4 parental strain. Experiments and paired simula-
tions in the parental strain of the cells used in main text Fig. 2. Behaviour is similar to that of the
aca- cells. Though caffeine is used to block cAMP secretion, in the confined space of the maze
some streaming is still evident.

21



240

2400

-0.4

0

0.4

0.8

2400 24000
240

2400

5

15

25

35

45

# cells

Bias

D
eg

ra
de

r d
iff

us
iv

ity
 (µ

m
  /

 m
in

)
2

Atractant diffusivity (µm  / min)2

Membrane-bound degrader Secreted degraderA B C

D

Figure S7: Changes to maze dynamics when degrading enzyme is secreted. (A,B) Examples of
mazes with membrane-bound degrader and a secreted degrading molecule (SDM). When degrada-
tion is SDM dominated, attractant does not re-enter a maze after the initial wave of cells disperses,
and attractant even becomes slightly depleted in the large reservoir (red arrows). This prevents
the late recruitment of cells lost further down the maze that we observe both in the simulations
of a membrane bound degrader (blue arrows) and in the matching experiments (Movie S5). (C)

Bias scores for varying attractant and SDM diffusivities. Increasing the diffusivity of either moves
the simulaion out of the experimentally verified negative bias region, with cells instead steering
towards the large attractant reservoir. (D) A key difference between increasing attractant and SDM
diffusivity is the total number of cells recruited to the maze. While high attractant diffusivity
generally causes more cells to be recruited, high degrader diffusivity consistently causes fewer to
be.
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Figure S8: Analytical prediction for decisions in a simple maze. A) Diagram of the maze under
consideration, consisting of an entrance channel of length L0, a dead end of length LF , and a
channel connecting to the attractant well of length LT . B) Gradient steepness at the decision point
x = 0 for the true channel (blue), the false channel (red), and the ratio of these values (black,
dashed).
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Figure S9: Chemotactic mirages depend strongly on distance to the true attractant well.

Correct vs incorrect decisions are shown for various dead-end topologies. When k=1 and the dead
end is unbranching, decisions are always better than 50-50 and improve over time. When the live
end is around 1mm away, chemotactic mirages appear briefly, as long as the dead end branches
within 100µm of the junction at which the cells make their decision. For long live ends (4mm
shown here), chemotactic mirages can be strong and long-lasting.
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Figure S10: Various analytical solutions to the heat equation. L Solution for static (blue) and
time-dependent (red) Dirichlet boundaries, using realistic diffusion parameters. L Solution for
static (blue) and time-dependent (red) mixed boundaries, using realistic diffusion parameters.
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Captions for supplementary movies

Movie S1. Self-generated gradients overcome the range limitation of passive gradient chemo-

taxis. Top to bottom: 1. Simulation of passive gradient response. 2. Simulation of self-generated
gradient response. 3. D. discoideum chemotax to a passive gradient of Sp-cAMPS. 4. D. dis-
coideum chemotax to initially uniform cAMP. Movies correspond to simulations and experiments
in main text Fig. 1.

Movie S2. Simulations of maze solving via self-generated gradients. The three movies corre-
spond to the simulation panels in main text Fig. 2.

Movie S3. Maze solving by D. discoideum. Mazes are initially filled uniformly with attractant.
Movies correspond to experiments shown in main text Fig. 2.

Movie S4. Maze solving by cancer cells. Movies correspond to experiments shown in main text
Fig. 2.

Movie S5. Dynamics of chemotactic migrages. Simulations are shown first, then corresponding
experiments. In the left panel the majority of cells move into the small trap reservoir, rather than
steering toward the large reservoir. In the middle panel this is also the case, but many cells rectify
this decision, showing that the mirage does cease. In the right panel, the majority of cells steer
towards the large reservoir.

Movie S6. Navigation of easy and hard labyrinths. Cells navigating the easy and hard labyrinth
designs shown in main text Fig. 6. Simulations are shown first, then corresponding experiments.

Movie S7. Navigation of easy and hard trident mazes. Cells navigating the easy and hard trident
designs shown in main text Fig. 6. Simulations are shown first, then corresponding experiments.
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