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Abstract  

This work demonstrates precision control of hydrogen content in La(Fe,Co,Si)13H for the 

development of environmentally friendly magnetocaloric-based cooling technologies, using 

an electrolytic hydriding technique. We show the Curie temperature, a critical parameter 

which directly governs the temperature window of effective cooling, can be varied easily and 

reproducibly in 1 K steps within the range 274 K to 402 K. Importantly, both partially (up to 

10%) and fully hydrided compositions retain favorable entropy change values comparable to 

that of the base composition. Crucially, we show in these second-order phase transition 

compounds, partial hydriding is stable and not susceptible against phase separation.  
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  Magnetocaloric cooling has attracted much attention due to potential to be more energy 

efficient and environment-friendly than conventional gas compression [1-3]. Refrigeration 

and cooling account for a considerable energy consumption meaning new cooling 

technologies are urgent and crucial for a low carbon future.  

  Two vital considerations towards the implementation of magnetocaloric effect (MCE) 

technologies are the design of the solid refrigerant and the choice of the constituent MCE- 

material. The magnetic materials that offer large isothermal entropy changes (ΔS) and 

adiabatic temperature changes (ΔTad) in response to magnetic fields of the order of 1 T, have 

a sharp first-order character to the magnetic phase transition, and operate effectively over a 

narrow temperature range (approximately 5 – 10 K, above their respective Curie 

temperatures, TC) [4-8]. To function over the required temperature range using an active 

magnetic regenerator cooling cycle, a “cascade” set of materials with individually controlled 

TC offset from each other by only 1-2 K increments are required [8,9]. 

  A promising attribute of La(Fe,Si)13, in addition to large ΔS and ΔTad due to the field-

induced paramagnetic (PM) to ferromagnetic (FM) transition [8,10], is the tuneability of TC 

and therefore the possibilities of TC-cascaded sets. Previous work has shown that the TC can 

be controlled monotonically by substitution on to the Si/Fe sites (e.g. with Co or Mn) [11-14], 

or by absorption of interstitial hydrogen atoms [15-19]. Although the amount of hydrogen 

absorbed offers the theoretical potential of targeted TC control, only full hydrogenation is 

practicable for such first-order (large volume change, sharp magnetic phase transition) 

compositions due to phase-separate effect where two separate spatial regions with distinctly 

differing TCs are formed when the material is thermally cycled through the magnetic 

transition or when it sits close to TC for several days. The origin of this instability is the 

lattice expansion in the FM state, prompting hydrogen atoms to diffuse from the PM into FM 
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regions of the material that transform first [20]. Partial hydrogenation therefore results in 

undesirable heterogeneous changes to the samples’ properties within very short time scales 

[21,22].  

 In the conventional hydrogenation process, molecular hydrogen must first dissociate 

requiring high temperatures and pressures. In contrast, electrolytic hydriding involves 

electrochemical processes and directly produces atomic hydrogen at the material surface, 

which then diffuses into the material at room temperature (RT). The technique is inexpensive, 

expedient, controllable and safe [23]. 

  La(Fe,Si)13 with Co substitutionally doped on to the Fe sites (with TC control of the order of 

2 K) [11,12,24] produces a second order broad transition at high Co concentration with 

impaired ΔS and ΔTad performance compared to the base material [11,12], and more accurate 

targeting of TC near RT is difficult due to very reliable variations in Co content of the order of 

1% required. This is similarly the case for Mn doping followed by full hydrogenation  (a 

first-order transition) [17,25-27]. However, a significant advantage in having a broad 

transition is that it offers a greater effective operation temperature range per composition, 

relaxing the stringency on the step size of TC in a cascaded set to perhaps 3 K. Nevertheless, 

accurate and reliable targeting of any compound’s TC is a strong advantage for future scale-up 

of MCE refrigerant production. To our knowledge, apart from a single patent application 

[28], there have been no literature reports of partial hydriding as a method of fine TC control 

in cobalt-doped or other second-order transition compositions of La(Fe,Si)13. 

  Here we show fine TC control across large temperature ranges (such as that required for 

domestic refrigeration) using room-temperature electrolytic hydriding of post-synthesised 

La(Fe,Co,Si)13. We are able to achieve a consistent, partially hydrided compound in which 

the MCE performance is not compromised - and the hydrogen distribution, and therefore 

magnetic properties, remain stable over time. 
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  Four compositions of La(Fe,Co,Si)13 were investigated to represent a range of Co doping. 

They were designated A, B, C and D, with systematic variations in Co contents and 

consequently TCs, in the range 272 K to 294 K. The compositions were measured by energy 

dispersive X-ray spectroscopy, and are shown in the supplementary information (SI).  

  Electrolytic hydriding experiments were carried out to partially and fully hydride the 

samples, and to assess the impact on the TC. Partial and full hydriding of the compounds (A 

and B) was performed under potentiostatic control in a conventional 3-electrode cell set-up 

where a Pt wire was used as the counter electrode, and Ag/AgCl/3 M KCl was used as the 

reference electrode against which the potential values are reported. The samples were held at 

fixed potentials in NaOH for various periods of time. NaOH is used as the electrolyte since 

the corrosion rates of La(Fe,Co,Si)13 alloys in alkaline solutions are relatively low [23]. Two 

types of working electrode were used: i) for hydriding times up to and including 1200 s, a 

single La(Fe,Co,Si)13 plate was used as the working electrode. A typical exposure area was 

0.5 cm2; ii) for hydriding times greater than 1200 s, a stainless steel gauze container with at 

least five sample plates was the working electrode. The second type was used to ensure 

sample stability over long hydriding time. Argon purging was carried out throughout the tests 

to avoid oxygen reduction during the hydriding process. All electrochemical tests were 

carried out using Ivium CompactStat at RT. 

  In order to resolve the small difference in lattice parameters of the partially hydrided 

materials, synchrotron-based X-ray powder diffraction of powdered samples was carried out 

with the multi-analysing crystal detectors on Beamline I11 at Diamond Light Source, UK 

(see details in the SI) [29]. Rietveld refinement, as implemented in the TOPAS program suite, 

was used to determine the lattice parameters of the matrix. Hydrogen contents of the partially 

hydrided samples were estimated through the extracted lattice constants, in conjunction with 



5 

 

literature data which demonstrates the relationship between content and lattice constant to be 

highly consistent for a large variety of La(Fe,Si)13-based compositions (see details in the SI) 

[29-35]. For accurate determination of the hydrogen content of the fully hydrided sample, 

Horiba EMGA-830 oxygen-nitrogen-hydrogen elemental gas analyser was used for a direct 

(albeit destructive) measure of composition.  

  Magnetisation, M, measurements were conducted using a Quantum Design Physical 

Properties Measurement System in vibrating sample magnetometry mode allowing applied 

fields, H, up to 9 T and a temperature range 2 – 400 K. All measurements were conducted on 

small (< 1 mm) pieces of material with varying size. M(T) measurements were performed in 

10 mT and 1 T. TCs were determined from the M(T) curves in 10 mT. Due to the relatively 

broad nature of the transition, TC is given to 1 K. Magnetic entropy curves were calculated 

from M(H) isotherms by the standard method of evaluating the Maxwell relation using 

numerical integration for 1 to 0 T change. 

   

  Table 1 shows TC, lattice parameters, a, and hydrogen contents of the pre-hydrided samples 

(A0, B0, with respective compositions La1.06Fe10.85Co0.88Si1.21 and La1.13Fe10.75Co0.99Si1.13), 

partially-hydrided samples (A1-A6, B1) and one fully-hydrided sample (A7). The table 

clearly shows that TC can be finely and highly controlled by adjusting the NaOH 

concentration, the applied cathodic potential and the hydriding time during the electrolytic 

hydriding process. TC is found to vary from that of the non-hydrided sample with systematic 

1 K steps – achieved by partial hydriding. The fine-tuning has been demonstrated over a 

temperature range of 11 K and is expected to be extendable over a larger range towards a 

maximum increase in TC corresponding to the fully hydrided sample (in the case of 

composition A, the maximum increase is 128 K, A7). Fine-tuning of TC is also applicable for 

other similar compositions, as demonstrated by samples B0 and B1: compared with pre-

hydrided sample B0, TC of B1 has increased by 6 K. The hydrogen contents for hydrided 
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samples indicate that the changes in H required to produce 1 K steps are on the order of 0.005 

to 0.01 per formula unit (note that this value is at the limit of resolution of determination). 

 

Table 1 Concentration of NaOH, applied potential (E) and hydriding time of electrolytic 

hydriding of the A and B samples, with measured TC, lattice parameter, a, of the 1:13 phase 

determined from synchrotron-based X-ray powder diffraction  patterns, and H (for A1-A6 

and B1) estimated using a linear best fitting of several reported values of a and H-content for 

La(Fe,Si)13 compounds in the literature (see Figure S2 in the SI). H-content for A7 was 

measured by a gas combustion analyser. 

Sample NaOH [M] E [V] time [s] TC [K] a [Å] Hest. [per f.u.] 

A0 N/A N/A N/A 274 11.48610(3) 0 

A1 3 -1.35 450 280 11.49038(7) 0.096±0.002 

A2 0.5 -1.3 600 281 11.49066(7) 0.103±0.002 

A3 0.5 -1.3 750 281 11.49070(9) 0.103±0.003 

A4 0.5 -1.3 1200 282 11.49094(12) 0.109±0.003 

A5 3 -1.35 930 285 11.49269(11) 0.148±0.003 

A6 3 -1.3 1200 285 11.49441(13) 0.187±0.004  

A7 3 -1.4 10800 402 11.63108(2) 1.708 ± 0.127 

B0 N/A N/A N/A 294 11.49284(4) 0 

B1 3 -1.3 1200 300 11.50712(3) 0.321±0.002 

 

  Figure 1 shows the relationship between TC and a, for our experimental results (Figure 1(a)) 

and reported literature values for a number of varied compositions (Figure 1(b) and (c)) [30-

34,36]. Figure 1(a), as expected, reveals a close to linear correlation between TC and a, 

similar for both compositions A and B – specifically, the extent of increase in a caused by the 

introduction of interstitial hydrogen atoms strongly impacts the rise of TC. 

  The studies of La(Fe,Si)13-based compositions within the literature which report a, H 

content and TC as a function of hydrogen content reveal some interesting features regarding 

the general trends of the family (Figure 1(b) and (c)). Across the compositions (given in the 

legend) there are similarities in the change of TC with change of a in response to increasing H 

content, i.e. the slope. In particular, there is a reasonable agreement between the 
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LaFe11.57Si1.43 and LaFe11.5Si1.5 of Refs. [30-33] as should be expected since these are close in 

composition, and in addition Li et al. observed remarkable consistency in the slope as the Si 

content in the formula unit increases to 2.0 and 2.4 [36]. Indeed, these latter two 

compositions have a second-order phase transition, as do the samples A and B in this study. 

However, as Figure 1(b) and (c) also include other compositions that undergo sharp, first-

order transitions the implication is that the change of TC with H content (although not the 

absolute value) is insensitive to the order of the magnetic transition (or in other words to the 

strength of the magnetovolume coupling). We note that since hydrogenation as a technique is 

advantageous in that it raises TC without significantly degrading the MCE properties of the 

compound [15], it is predominantly used for first-order compositions with large MCE which 

after full hydrogenation retain their large MCE at temperatures close to RT. Therefore, there 

are few reports on hydrogenated second-order compositions for further comparison. With 

regard to the samples in this study, sample A in particular demonstrates a remarkably similar 

trend to the three LaFe13-xSix (x = 1.5, 2.0, and 2.4) compositions of Ref. [36], even though 

the compositions are significantly different. For comparison, increasing TC by Co doping, as 

shown by Lyubina et al. in LaFe11.8-xCoxSi1.2, shows a very different trend to that from 

hydrogenation (Figure 1(c)) [32]. It should also be noted that the magnetic state of the 

samples at RT (the temperature at which  measurements to obtain the lattice constants were 

performed) will determine the lattice constants obtained: those whose TC is above RT are 

measured in the larger lattice constant FM state creating a step change in the baseline lattice 

constant close to 300 K in first-order transition compounds (as reported previously [33] and 

apparent in Figure 1(b); see further details and discussion of the impact on second-order 

transition materials in the SI). 

  In Li et al. [36], the decreasing shift in TC and a between zero and fully hydrided as the Si 

content increases is explained by the smaller lattice of the non-hydrided sample, meaning that 
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less hydrogen is able to enter the lattice (although the corresponding H contents are not 

given). Consistent with this, due to Co increasing the lattice volume, we see a large lattice 

increase when composition A is fully hydrided. The change is comparative with the largest 

changes reported in the literature, indicating that it has a high hydrogen capacity, confirmed 

by the measured value of 1.71 per formula unit.  
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Figure 1 (a) TC dependence on lattice constants (1:13 phase) for the samples (listed in Table 

1) in response to various extents of hydriding, and (b) and (c) the same data with various 

La(Fe,Si)13-based samples reported in other studies included [30-34,36]. For each material, 

the non-hydrided base, partially and fully hydrided compounds are designated by open, 

partially filled and closed symbols, respectively. Increased a or TC for one composition 

reflects increased content of H. The three different compositions of LaFe13-xSix from Li’s 

work are linked by a dotted line for clarity and labelled [36]. The exception to all the 

aforementioned is the “LaFe11.8-xCoxSi1.2/Co-doped (no H)” sample set [32], in which there is 

no hydrogen and whose increase of a and TC is caused by increased Co content. 
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  Figure 2(a) shows the magnetisation as a function of temperature for all samples, showing 

no significant change in the shape of the transition as the hydrogen content is increased: 

specifically, there is no broadening of the transition, which would indicate non-uniform 

distribution of H atoms throughout the material [23]. Note that no samples show magnetic 

hysteresis, reflected in the M(H) data (examples for two samples are shown in the SI, Figure 

S3), as we expect for second-order or continuous phase transitions. Figure 2(b) shows that 

hydrogen incorporation does not degrade ΔSm, even up to the fully hydrided sample A7, as 

similarly reported in first-order compositions [15,17]. Although TC can be increased by 

increasing Co content, ΔSm decreases, contrary to hydriding [24] (Figure 2(c) for samples A-

D). Consequently, the method of hydriding a lower Co content and low TC composition (e.g. 

at the colder end of the required temperature range) represents an effective way to both retain 

desirable ΔS properties and achieve the desired TC. 
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Figure 2 (a) M(T) of composition A with T rate 1 K min-1, normalised to the saturation 

magnetisation in 10 mT field, and (b) ΔSm(T) within 1 T of the two La(Fe,Co,Si)13 

compositions, without and with partial/full hydriding, showing the fine TC control afforded 

and that the entropy change is not significantly altered. (c) The peak entropy change as a 

function of TC for the cobalt-doped samples A, B, C and D (non-hydrided, compositions 

shown in Table S1 in the SI) and the partially/fully hydrided versions of both samples A and 

B as shown in (b). Increasing hydrogen content for samples A and B are shown by the black 

arrows, and increasing Co content is represented by the blue arrow. 
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  Figure 3 confirms the stability of the partially hydrided material prepared here. As 

previously detailed, an important issue for partially hydrided samples is the stability of the 

phase (against phase segregation) where the hydrogen diffusion in non-fully hydrogenated 

samples leads to a splitting into two TC volumes - a significant detriment to its cooling 

properties. However, in a second-order material, as studied here, the volume change at the 

transition is greatly reduced and, vitally, coexistence of two magnetic phases (i.e., two 

separate distinct volumes) does not occur, therefore we hypothesize that the driving force for 

redistribution of hydrogen will be absent or at least strongly reduced. In Figure 3 the M(T) 

properties of sample (A6) have been measured after two months at T = TC + 10 K, then 24 h 

and 48 h at TC (= 285 K), timescales over which significant hydrogen distribution instability 

is present in first-order compositions [20], and then finally after repeated fast cycling (15 

cycles) across the transition. As shown from the M(H) derivative, only one transition is 

observed and this is unchanged after all 4 protocols, demonstrating that the properties of 

partially hydrided samples are stable, behaviour we expect to be general for materials with 

second-order transitions. 
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Figure 3 The derivative of M(T) on cooling in 10 mT (inset: M(T) in 1 T and 10 mT on both 

cooling and heating, indicated by the arrows) for partially hydrided sample A6 showing that 

there is no splitting of the transition after several protocols, given in the legend. In the cycling 

protocol, the sample was driven in T between 280 K and 290 K, across the transition, for 15 

cycles at 10 K/min. 

 

  In summary, we have shown that electrolytic hydriding of second-order phase transition 

La(Fe,Co,Si)13 compounds is a highly controllable technique which can allow targeting and 

fine-tuning of the effective working temperature of the magnetic refrigeration cooling cycle, 

close to room temperature, with 1 K accuracy. This sensitivity has been demonstrated up to 

11 K above the TC of the non-hydrided compound. The magnitude of the entropy change 

associated with the magnetic transition shows no significant decrease with added hydrogen 

and raised TC. This work demonstrates that the technique would permit coverage of the full 

40 K TC span required (~273 to 313 K) for a working refrigerant with stepped-TC cascaded 

sets of material, derived from one base-composition. Such a set would also have a 

significantly larger MCE (by more than 30% for the highest partially hydrided sample 

measured) for increased temperature working plates compared with the equivalent 
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compounds prepared by increasing Co content [37]. Electrolytic hydriding is inexpensive, 

safe and rapid, which, added to the requirement of only one base composition, makes the 

application of this technique in the construction of an efficient magnetocaloric effect (MCE)-

based device promising. Finally, the partial hydrogen contents (up to around 10% of full 

saturation) required for this exquisite control in La(Fe,Co,Si)13 compounds are shown to be 

stable over time and with respect to magnetic cycling, a behaviour we associate with the 

second order nature of the transition. Further analysis of a wider compositional range of 

materials with variation in hydrogen should be carried out to establish whether this is a 

general feature of materials exhibiting a second order transition. 

   

Appendix A. Supplementary data 

Supplementary data to this article can be found online at xxxx. 
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