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Abstract

The development of economical LED technology has enabled the application of different light qualities and quan-
tities to control plant growth. Although we have a comprehensive understanding of plants’ perception of red and 
blue light, the lack of a dedicated green light sensor has frustrated our utilization of intermediate wavelengths, with 
many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light 
perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis dem-
onstrates that green light perception should instead be considered as a combination of distinct ‘green’ and ‘yellow’ 
light-induced responses. This distinction will enable clearer interpretation of plants’ behaviour in response to green 
light as we seek to optimize plant growth and nutritional quality in horticultural contexts.
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Introduction: light provides both energy and  
information to inform plant development

Light is a multifaceted signal for plants, providing comprehensive 
environmental information in addition to its role as an energy 
source for photosynthesis. Light intensity, quality, direction, and 
photoperiod are interpreted by a complex network of photo-
receptors that provide biochemical information to supplement 
the metabolic changes arising from photosynthesis. While great 
strides have been taken in our understanding of far-red-, red-, 
blue-, and UV-sensitive photoreceptors, it is notable that photo-
receptors have yet to be characterized that specifically respond to 
green or yellow portions of the visible spectrum. Consequently, 
although green light responses have been observed in plants, the 
mechanisms regulating these responses are poorly understood 
(Klein, 1992; Folta, 2004; Wang and Folta, 2013; Wang et  al., 
2013; Smith et  al., 2017). Our current understanding relies on 
the residual perception of these wavelengths by primarily red and 
blue photoreceptors, along with metabolic signals arising from 

photosynthesis. This combination of sensors complicates inter-
pretation of green light-specific data despite the emergence of 
green light-dependent phenotypes. In this review, we summarize 
our understanding of green light photoperception and suggest 
how green light could be utilized to modulate plant development.

Photoreceptors perceive green light

Photoreceptor sensitivity is defined by the biochemical con-
text of the associated chromophore and can span several of 
the colours distinguished by human perception (Fig.  1). In 
Arabidopsis, a suite of five photoreceptor families endow plants 
with an exceptional sensitivity to a spectrum of light ranging 
from ~280 nm to 780 nm, although plants lack any known 
green light- (500–530  nm) or yellow light- (530–600  nm) 
specific photoreceptors (Wang and Folta, 2013; Smith et  al., 
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2017). Characterized photoreceptor families include the red- 
(600–700 nm) and far-red- (700–780 nm) responsive phyto-
chromes (phytochrome A–E), the blue light- (400–500  nm) 
sensitive cryptochromes (cryptochrome1 and 2), phototropins 
(phototropin1 and 2), and the ZEITLUPE family (ZEITLUPE, 
FLAVIN-BINDING KELCH REPEAT F-BOX1, and LOV 
KELCH PROTEIN2), as well as the UV-B (280–320 nm) re-
ceptor ULTRAVIOLET RESISTANCE LOCUS 8 (UVR8; 
Whitelam and Halliday, 2007). Additionally, although the green 
region of the spectrum is absorbed relatively effectively by 
plant leaves, the absorbance spectra of Chl a and b are notably 
lower in green regions of the photosynthetically active radi-
ation (PAR) spectrum than in red and blue regions (Smith 
et al., 2017). Carotenoids provide a greater level of green light 
absorbance, though an absorbance trough is still present in the 
green–yellow region of the PAR spectrum (Smith et al., 2017).

LOV domain-containing photoreceptors

The LOV (Light, Oxygen, Voltage) domain is a modular se-
quence that binds an FMN chromophore (Christie et  al., 
2015). The LOV domain enables perception of UV-A and blue 
wavelengths (Fig. 1), and is found primarily in two families of 
higher plant proteins: the phototropins and ZEITLUPE fam-
ilies (Christie et al., 2015). Phototropins (typically phot1 and 
phot2) comprise two LOV domains that govern the activity 
of an integral kinase domain. Phototropins serve to optimize 
tropic movements that orientate plant tissues towards sources 
of light, while also contributing to subcellular movements of 
chloroplasts that optimize light harvesting (Christie et al., 1998; 
Kagawa et al., 2001; Sakai et al., 2001; Sakamoto and Briggs, 
2002; Takemiya et al., 2005; Inoue et al., 2008).

The ZEITLUPE family pair a single LOV domain with an F 
box and a region of Kelch repeats (Ito et al., 2012). These pro-
teins have a longer photocycle than phototropins, and instead 
contribute to circadian timing and the regulation of flowering 
time (Baudry et al., 2010; Takase et al., 2011; Pudasaini et al., 
2017; Kim et  al., 2020). The eponymous ZEITLUPE regu-
lates the degradation of the core circadian clock protein 
TOC1 where it may have a role in regulating temperature 

compensation (Más et al., 2003; Kiba et al., 2007; Fujiwara et al., 
2008; Kim et al., 2020).

Absorption of light induces photobleaching of the LOV do-
main, with negligible change in the absorption spectra above 
500 nm (Salomon et  al., 2000). Such data suggest that LOV 
domains do not contribute to green light sensitivity in planta. 
However, these data do not exclude a role for LOV domains 
in responses where experimental green light sources include a 
fraction of <500 nm photons (Wang and Folta, 2013).

Phytochromes

Phytochromes are bilin-binding dimers which photo-convert 
between two forms, the inactive, red light-absorbing Pr form 
and the active, far-red light-absorbing Pfr form (Fig. 1; Legris 
et  al., 2019). The different absorption spectra of these con-
formers consequently inform the composition of the total 
phytochrome pool, enabling plants to infer spectral quality and 
intensity. The phytochrome family has been subject to dupli-
cation and diversification over evolutionary time, with three 
predominant families (Mathews, 2010). PhytochromeA (phyA) 
is light labile, and predominates under dim light, whereas phyB 
and phyC are stable in the light and can switch between Pr 
and Pfr forms dependent on light quality (Legris et al., 2019). 
Interestingly, phytochromes heterodimerize, thereby enabling 
additional interpretation of light signals (Sharrock and Clack, 
2004). Phytochromes are primarily involved in major develop-
mental transitions during a plant’s life cycle including germin-
ation, de-etiolation, floral transition, and senescence; however 
they also play a role in low-light avoidance and, notably, the 
circadian clock (Somers et al., 1998; Devlin and Kay, 1999; Hu 
et al., 2013; Jones et al., 2015). Although characterized as red/
far-red sensors, phytochromes have a broad absorption spec-
trum that extends into the yellow and blue portions of the 
spectrum in both Pr and Pfr forms (Fig. 1; Butler et al., 1964). 
This broad sensitivity ensures that green light is sufficient to 
alter the proportion of Pfr within a population, and thereby 
suggests a role for phytochromes as green photoreceptors 
(Hartmann, 1966; Klein, 1992).

Cryptochromes

In Arabidopsis, the cryptochromes cry1 and cry2 are UV-A/
blue photoreceptors with some function under green light 
(Lin et  al., 1995; Folta and Maruhnich, 2007; Sellaro et  al., 
2010). Cry1 and cry2 have partially overlapping functions in 
Arabidopsis, with cry1 mainly functioning during de-etiolation 
and cry2 contributing to flowering (Wang et al., 2018). Cry1 
and cry2 have been associated with entrainment of the cir-
cadian clock, light-regulated guard cell development, stomatal 
opening, and light regulation of root development (Somers 
et  al., 1998; Yu et  al., 2010). Approximately 10–20% of gene 
expression changes that occur during seedling de-etiolation 
under blue light can be attributed to the action of cry1 and 
cry2 in Arabidopsis (Folta and Spalding, 2001; Ma et al., 2001; 
Ohgishi et al., 2004).

As for phytochromes, the absorbance spectra of 
cryptochromes includes green wavelengths, particularly in the 

Fig. 1. Absorption spectra for phytochrome, cryptochrome, and 
phototropin. Spectra are approximately re-drawn from primary sources 
from Butler et al. (1964), Banerjee et al. (2007), and Jones et al. (2007).
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light-irradiated state (Fig.  1). Cryptochromes perceive light 
via associated chromophores; primarily FAD and potentially 
5,10-methenyltetrahydrofolic acid (MTHF) (Liu et al., 2010). 
These chromophores absorb photons whose energy is sub-
sequently used to confer conformational changes upon the 
protein, initiating downstream signalling events including 
photooligomerization (Liu et  al., 2010; Ahmad, 2016; Wang 
et al., 2018; Liu et al., 2020). Whilst there are competing hy-
potheses regarding the nature of the cryptochrome photocycle, 
it is apparent that photoexcitation by blue light excites the 
FAD chromophore into an intermediate form (FADH·) that is 
able to absorb broad-spectrum green light (Kottke et al., 2006; 
Bouly et al., 2007; Liu et al., 2010). This transition provides a 
mechanism by which green light could be perceived, although 
it should be noted that the dark-adapted chromophore also 
has the potential to absorb shorter wavelengths of green light 
(depending on its precise oxidation status in vivo). Absorption 
of green light has been proposed to shorten the half-life of the 
FADH·intermediate, thereby diminishing the available pool of 
the active FADH·form (Bouly et  al., 2007). Cryptochromes 
have consequently been proposed as reversible blue–green 
sensors in Arabidopsis, although the precise photochemistry 
underlying this has yet to be elucidated (Banerjee et al., 2007; 
Bouly et al., 2007).

Photomorphogenesis is induced by green 
light signalling

Photomorphogenesis refers collectively to the changes which 
plants undergo throughout their life cycle in response to 
prevailing light conditions, coordinating both photoreceptor 
and photosynthetic cues. Photomorphogenesis plays a vital 
role in plant development, altering gene expression and modi-
fying morphology throughout the plant life cycle (Arsovski 
et al., 2012).

Studies of photomorphogenesis often focus upon the 
range of rapid changes which occur during de-etiolation 
(the processes by which the plant develops from an etiol-
ated, embryonic state dependent upon the energy stored 
within the seed to a fully photoautotrophic state). As photo-
synthesis is not required for the initiation of de-etiolation 
and plays little part in this stage of plant development, the 
study of de-etiolation has facilitated the development of 
much of our knowledge of photoreceptor proteins and their 
downstream signalling independent of photosynthetic path-
ways. Prior to de-etiolation, skotomorphogenesis domin-
ates seedling growth between germination and initial light 
exposure, encouraging etiolated growth in order to rap-
idly expose the cotyledon and other light-sensitive organs 
to light. De-etiolation leads to the induction of gene ex-
pression, chloroplast development, repression of hypocotyl 
elongation, and expansion of the apical hook (Wu, 2014; 
Armarego-Marriott et al., 2020). Upon perception of light, 
expression of ~30% of the transcriptome is altered, leading 
to complex crosstalk which optimizes the rate and manner 
in which plants respond to make best use of the prevailing 
light (Ma et al., 2001; Wu, 2014).

Although a specific green photoreceptor has yet to be iden-
tified (see above), many of the green light-induced phenotypes 
observed are modulated by the manipulation of canon-
ical photoreceptors. Plants are less responsive to green light 
than to other wavelengths within the photosynthetically ac-
tive spectrum (Folta and Maruhnich, 2007; Wang and Folta, 
2013; Smith et al., 2017), with hypocotyl elongation only being 
modestly inhibited by increasing fluence rates of green light 
(Ahmad et  al., 2002; Battle and Jones, 2020). Green light is 
sufficient to induce seed germination in a phyA-dependent 
manner (Shinomura et  al., 1996), whereas overexpression of 
CRY1 induces green light hypersensitivity (Lin et  al., 1995; 
Bouly et al., 2007). The absence of cry2 inhibits green light-
induced accumulation of salicylic and jasmonic acid, as well 
as supressing root elongation (Sato et  al., 2015). Green light 
is also sufficient to induce changes in gene expression (pri-
marily repressing accumulation of plastid-encoded transcripts; 
Dhingra et al., 2006), while green light also maintains circadian 
rhythms in seedlings in a cryptochrome-independent manner. 
Despite this, cryptochromes regulate the pace of the circa-
dian system under these conditions (Battle and Jones, 2020). 
It consequently appears that green light is perceived by mul-
tiple, interconnected photoreceptor inputs to initiate a subset 
of photomorphogenic responses in response to illumination.

Green light modulates photoreceptor input 
throughout a plant’s life cycle

Photoreceptors are involved in a wide range of life-long 
photomorphogenic responses ranging from the long-term re-
sponses such as flowering time, to light stress responses such 
as reduction of leaf blade growth and increased petiole elong-
ation (Montgomery, 2016). Although the red:far-red ratio is 
the best understood shade signal (due to the well-documented 
role of phytochrome as a sensor of these wavelengths), broad-
band green light is also enriched by encroaching vegetation 
(Rockwell et  al., 2006; Casal, 2012; Smith et  al., 2017). In 
this context, the effect of green light is additive to far-red re-
sponses, with hypocotyl growth promoted alongside increased 
leaf epinasty, petiole elongation, and a reduction in leaf ex-
pansion (Zhang et  al., 2011; Wang et  al., 2015). Interestingly, 
supplemental green light has also been shown to inhibit blue 
light-induced phototropism in dark-grown seedlings but, 
contrastingly, to enhance blue light-induced phototropism 
in light-grown seedlings (McCoshum and Kiss, 2011). Green 
light consequently serves as an additional indicator of shade 
to maximize the shade avoidance response and promote the 
re-orientation of leaves to available light sources.

Green light may also serve to modulate stomatal behav-
iour. As green light is able to penetrate through the leaf sur-
face to illuminate the mesophyll cells on the abaxial surface 
of leaves from above, as well as being reflected up from leaves 
deeper in the canopy, green wavelengths provide a signal for 
stomata which are often primarily located in these shaded re-
gions (Smith et al., 2017). A pulse of green light is sufficient 
to eliminate the induction of stomatal opening by blue light, 
while the opening of stomata in the absence of green light is 
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lost in the absence of zeaxanthin and reduced in phototropin 
mutants (Frechilla et al., 2000; Talbott et al., 2006). Although 
this has led to the proposal of zeaxanthin as a green light-
absorbing chromophore, the associated photoreceptor remains 
obscure (Frechilla et al., 2000). Regardless, these observed be-
haviours may serve to limit transpiration within dimly illu-
minated canopies.

Interestingly, circadian gene expression reveals distinct roles 
for cryptochromes in plants illuminated with green and blue 
light. While cry1cry2 seedlings have low-amplitude rhythms 
under blue light, irradiation with green and blue light increases 
circadian amplitude in these lines while revealing an extended 
circadian free-running period. These observations suggest that 
either the cryptochromes play a role in circadian responses to 
green light distinct from those to blue light, or that additional 
photoreceptors, such as the phytochromes, operate in conjunc-
tion with the cryptochromes to regulate the circadian percep-
tion of green light (Battle and Jones, 2020).

Shades of green illuminate distinct 
signalling pathways

Responses to green light can be grouped into those that promote 
photomorphogenesis and those that antagonize cryptochrome 
signalling (Table 1). A survey of the literature reveals that studies 
utilizing shorter wavelengths (<530  nm, green) report syn-
ergetic effects of illumination, whereas longer wavelengths 
(>530  nm, yellow) tend to produce antagonistic effects on 
cryptochrome signalling pathways (Table 1). Additionally, green 
light phenotypes have mostly been reported under low fluence 
rates, suggesting that green light has a predominant effect under 
dim light (Zhang et al., 2011; Wang et al., 2013).

The mechanisms underlying the role of green and yellow 
light in modulating traditional photoreceptor-induced path-
ways remain to be elucidated, but some molecular aspects 
have been revealed. For instance, yellow light inhibits 
FLOWERING LOCUS T expression and  cry2 degradation 
in response to blue light illumination (Banerjee et al., 2007), 
leading to the inhibition of blue light-induced flowering 
(Zhang et  al., 2011; Wang and Folta, 2013). The disparity 
between the consequences of short- and long-wavelength 
green light irradiation suggests the involvement of additional 
photoreceptors (or light-activated pathways) in the modula-
tion of a green light signal absorbed by the light-irradiated 
cryptochrome FADH· chromophore (Table  1; Bouly et  al., 
2007; Battle and Jones, 2020). In this regard it is notable that 
phytochromes absorb yellow photons in preference to green 
light (Fig.  1; Butler et  al., 1964). As phytochromes interact 
with cryptochromes (Mas et  al., 2000), it is plausible that 
yellow light perceived by phytochromes contributes to the 
antagonism of cryptochrome-mediated signalling, whereas 
light 500–530 nm could prolong cryptochrome signals or ini-
tiate low-fluence blue light responses. As our understanding 
of interactions between the canonical red and blue light path-
ways increases, it is likely that additional opportunities for 
crosstalk between these traditionally distinct signalling cas-
cades will emerge (Pedmale et al., 2016).

Application of green light in agriculture and 
horticulture

Plants are not irradiated with monochromatic green light in 
a natural environment. Instead, plants are most likely to en-
counter green-enriched or green-depleted conditions as part 
of an overall change in light quality due to vegetative shading 
or cloud cover (Casal, 2012; Smith et al., 2017). However, the 
development of cost-effective LED provides the opportunity 
to incorporate novel light treatments into lighting regimes to 
optimize crop quality and yield. The challenge remains, how-
ever, to determine how best to deploy green (500–530 nm) or 
yellow (530–600 nm) light to maximize desirable traits.

Despite the relative lack of green light sensitivity in photo-
receptors and photosynthetic pigments, total leaf green light 
absorbance is relatively high, comparable with that of blue 
light absorbance in plants such as coriander (Smith et  al., 
2017). Indeed, monochromatic green light has been shown 
to be sufficient to meet the respiratory demands of some 
deep canopy species such as mosses (Griffin-Nolan et  al., 
2018). Although most of the energy in sunlight is found 
within the green region of the spectrum, photosynthetic-
ally active pigments are less absorbent within this region 
than in red and blue portions (Smith et  al., 2017). It has 
been suggested that these green light absorbance troughs 
help to prevent photodamage under high light levels which 
would otherwise inhibit photosynthetic efficiency (Nishio, 
2000). Interestingly, once absorbed by the leaf, green light is 
highly efficient at driving photosynthesis (Terashima et  al., 
2009). Furthermore, it has been shown that green light plays 
a larger part in photosynthetic carbon fixation in cells the 
further they are from the leaf surface, where much of the en-
ergy has already been absorbed or reflected (Sun et al., 1998; 
Terashima et  al., 2009). Some plant species are more able 
to absorb green light than others, although relatively little 
change in absorption of red or blue wavelengths has been ob-
served in the same species (Inada, 1976; Nishio, 2000). Green 
light consequently has the potential to drive photosynthesis 
in addition to a role in modulating photomorphogenesis.

The addition of supplemental green light to LED lighting 
arrays has been shown to increase yield and leaf area in lettuce 
without significantly altering the rate of photosynthesis when 
compared with plants grown under red and blue light alone 
or under cool white fluorescent light (Kim et al., 2004; Kong 
et  al., 2015; Bian et  al., 2018). In wheat, supplemental green 
light increases the rate of development, with greater fluence 
rates leading to enhanced yield (Kasajima et al., 2008); notably, 
green light peaking at 540 nm had a greater effect than shorter 
or longer wavelengths (Kasajima et al., 2009). This may be due 
to the greater level of leaf and canopy penetration seen in green 
light than in red or blue light of similar intensities, which allows 
PAR to reach deeper into the highly folded leaves of lettuce 
plants (Klein, 1992; Kim et al., 2004; Bian et al., 2018). Evidence 
of similar roles for green light has been shown in spinach, where 
carbon fixation deep within the leaf is better stimulated by 
green light than by red and blue light (Sun et al., 1998).

Green LEDs have also been used to manipulate plant 
architecture, with reductions in secondary metabolite 
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accumulation also being reported under specific lighting 
conditions (Wollaeger and Runkle, 2014; Carvalho and 
Folta, 2016; Hasan et  al., 2017; Dou et  al., 2019). Similarly, 
green light is sufficient to regulate flowering when utilized 
as part of a ‘night break’ lighting regime (Jones, 2018; Meng 

and Runkle, 2019). Finally, green light irradiation has been 
reported to limit disease progression in oranges and straw-
berries (Kudo et al., 2011; Alferez et al., 2012), although the 
mechanism underlying these improvements remains to be 
determined.

Table 1. Summary of studies examining a role for green (500–530 nm) and yellow (530–600 nm) light in planta

Peak wavelength used Species Photoreceptor  
mutants used

Phenotype reported Relationship with 
blue light signalling

Study

510 nm  
(green)

Nicotiana tabacum CRY1-OX Hypocotyl inhibition increased  Lin et al. (1995)

518 nm  
(green)

Arabidopsis thaliana CRY1-OX Hypocotyl inhibition increased  Bouly et al. 
(2007)

520 nm  
(green)

Arabidopsis thaliana cry1, cry2, cry1 cry2 Circadian rhythmicity maintained Distinct contributions 
of green and blue

Battle and 
Jones (2020)

520, 530, 540, and 550 nm  
(supplemental green or  
yellow light)

Triticum aestivum L.  Increased developmental rate  Kasajima et al. 
(2009)

525 nm  
(green)

Arabidopsis thaliana, 
Nicotiana tabacum

 Repression of gene expression  Dhingra et al. 
(2006)

525 nm  
(green)

Arabidopsis thaliana  cry1 cry2,  
phot1, phot2, phyA, 
phyB

Transient hypocotyl elongation  Folta (2004)

 525 nm  
(green)

Arabidopsis thaliana cry1, cry2, phot1, 
phot2, phyA, phyB

Hypocotyl inhibition repressed Green light antagonistic 
to red or blue light

Wang et al., 
(2013)

525 nm  
(supplemental green)

Arabidopsis thaliana  Reduced hypocotyl inhibition  
when etiolated seedlings  
are irradiated with RGB light

Green light antagonistic 
to red and blue light

Folta (2004)

525 nm (supplemental green) Arabidopsis thaliana cry1 cry2 Induction of shade avoidance Response retained in 
cry mutants

Zhang et al. 
(2011)

525 nm (supplemental green) Arabidopsis thaliana cry1 cry2,  
phot1 phot2, phyA 

phyB

Induction of shade avoidance  Wang et al. 
(2015)

530 nm (green, treatment at night) Arabidopsis thaliana cry1, cry2, jar1 Jasmonic and salicylic acid  
accumulation, suppressed  
elongation of roots  
and hypocotyls 

 Sato et al. 
(2015)

530 nm (supplemental green) Triticum aestivum L.  Increased developmental rate  Kasajima et al. 
(2008)

531, 540, 567, and 591 nm  
(yellow)

Arabidopsis thaliana  Cry2 degradation Yellow light antagon-
istic to blue light

Bouly et al. 
(2007)

535 nm  
(yellow)

Hordeum vulgare L.  Accumulation of alternatively  
synthesized Chl a

 Materová et al. 
(2017)

540 nm  
(yellow)

Vicia faba  Stomatal aperture Yellow light antagon-
istic to blue light

Frechilla et al. 
(2000)

540 nm  
(yellow)

Arabidopsis thaliana phyA, phyB Seed germination  Shinomura 
et al. (1996)

547 nm  
(yellow)

Arabidopsis thaliana cry1, phyA, phyB Hypocotyl inhibition increased Yellow light antagon-
istic to blue light

Sellaro et al. 
(2010)

552 nm  
(yellow)

Insect cell culture cry2 FADH· accumulation reduced Yellow light antagon-
istic to blue light

Bouly et al. 
(2007)

559 nm  
(yellow)

Arabidopsis thaliana  Prolongs half-life of FADH· Yellow light antagon-
istic to blue light

Banerjee et al. 
(2007)

560 nm  
(yellow)

Arabidopsis thaliana  Phototropism Yellow light antagon-
istic to blue light

McCoshum 
and Kiss 
(2011)

563 nm  
(yellow)

Arabidopsis thaliana  Hypocotyl inhibition Yellow light antagon-
istic to blue light

Bouly et al. 
(2007)

563 nm  
(yellow)

Arabidopsis thaliana  FLOWERING LOCUS T  
(FT) induction

Yellow light antagon-
istic to blue light

Banerjee et al. 
(2007)

570 nm  
(yellow)

Arabidopsis thaliana  Cry2 degradation Yellow light antagon-
istic to blue light

Herbel et al. 
(2013)

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/19/5764/5867161 by U

niversity of G
lasgow

 user on 08 April 2021



Green light perception | 5769

Concluding thoughts

The understanding of green light perception by plants remains 
constricted by the persistent absence of a dedicated photo-
receptor, complicated by irregular contributions of phyto-
chromes and cryptochromes to portions of spectra between 
500 nm and 600 nm. Our meta-analysis suggests that sensitivity 
to green light should be divided between shortwave (green) 
and longwave (yellow) responses, with shorter wavelengths of 
green light acting to complement blue light-induced responses 
whereas longer wavelengths antagonize blue light signalling 
events, either through the direct repression of cryptochrome 
signalling or via a phytochrome-dependent mechanism.
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