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Pooled milk is used for the surveillance of several diseases of livestock. Previous studies

demonstrated the detection of foot-and-mouth disease virus (FMDV) in the milk of

infected animals at high dilutions, and consequently, the collection of pooledmilk samples

could be used to enhance FMD surveillance. This study evaluated pooled milk for FMDV

surveillance on a large-scale dairy farm that experienced two FMD outbreaks caused

by the A/ASIA/G-VII and O/ME-SA/Ind-2001d lineages, despite regular vaccination

and strict biosecurity practices. FMDV RNA was detected in 42 (5.7%) of the 732

pooled milk samples, and typing information was concordant with diagnostic reports

of clinical disease. The FMDV positive milk samples were temporally clustered around

reports of new clinical cases, but with a wider distribution. For further investigation, a

model was established to predict real-time RT-PCR (rRT-PCR) CT values using individual

cattle movement data, clinical disease records and virus excretion data from previous

experimental studies. The model explained some of the instances where there were

positive results by rRT-PCR, but no new clinical cases and suggested that subclinical

infection occurred during the study period. Further studies are required to investigate

the effect of vaccination on FMDV excretion in milk, and to evaluate more representative

sampling methods. However, the results from this pilot study indicate that testing pooled

milk by rRT-PCR may be valuable for FMD surveillance and has provided evidence of

subclinical virus infection in vaccinated herds that could be important in the epidemiology

of FMD in endemic countries where vaccination is used.
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INTRODUCTION

Milk has been exploited for the surveillance of several pathogens of livestock including bovine viral
diarrhea virus (1, 2), Schmallenburg virus (3), Coxiella burnetti (4), bovine respiratory syncytial
virus (5), and Neospora caninum (6). The use of pooled milk samples has also been validated as
a rapid, cost-effective approach for the routine surveillance of diseases such as brucellosis (7) and
mastitis caused byMycoplasma spp. (8).
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Previous experiments have shown that the mammary gland
is an organ that is highly susceptible to foot-and-mouth disease
virus (FMDV) replication, and FMDV can be detected in milk
from experimentally infected animals before, during and after
the appearance of clinical signs (9–13). Additionally, it has been
demonstrated that FMDV can be detected and typed by real-
time reverse transcription polymerase chain reaction (rRT-PCR)
assays in milk from naturally infected cattle in endemic scenarios
and during an outbreak in a normally FMD-free country (9, 14).
Previous studies (9, 13) have suggested that it could be possible
to identify one acutely-infected milking cow in a typical-sized
dairy herd (100–1,000 individuals) using milk from bulk tanks or
milk tankers. This theory was based on the detection of FMDV
RNA in milk samples, collected from infected cattle, that had
been highly diluted over 10,000-fold in negative milk. Simulation
modeling using these data (13, 15, 16) support the requirement
for further research to assess the use of pooled milk as a useful
tool to enhance FMD surveillance.

Collection of pooled milk at the herd level could offer a
representative sampling framework for FMD surveillance on
large-scale dairy farms in endemic countries. Milk is routinely
collected and has several advantages over vesicular material or
serum by being non-invasive and potentially less susceptible to
selection bias in targeted (risk-based) surveillance. For example,
the use of milk does not rely on disease reporting by farmers
or veterinary professionals, and sub-clinically may be confirmed
using milk which would otherwise go undetected (14).

Results from the studies mentioned above have motivated
further investigations using pooled milk from different
production systems in endemic settings. Saudi Arabia is an
FMD endemic country in which a range of production systems
exist, including nomadic and small-scale herds containing small
ruminants and cattle, and large-scale dairy production systems
(17). Large-scale dairy farms can house in excess of 20,000
cattle, and often keep detailed records of individual cattle health,
movements, milk yields and vaccination status (18–20). In
recent years, Saudi Arabia has experienced outbreaks due to viral
lineages that are not normally present in this region, including
the A/ASIA/G-VII and O/ME-SA/Ind-2001 lineages (21, 22).
These FMD outbreaks also affected large-scale dairy farms,
despite regular vaccination and strict biosecurity practices,
where milk was being routinely collected as part of a herd health
monitoring program (18, 20).

The aim of this study was to validate the use of pooled
milk for the surveillance of FMD in large-scale dairy production
systems in Saudi Arabia which would also inform potential
targeted/risk-based surveillance in FMD-free countries in the
event of an outbreak. The specific objectives were to (i) validate
the use of pooled milk collected from a large scale dairy
farm in Saudi Arabia for the detection and characterization of
FMDV by real-time rRT-PCR; (ii) compare the results obtained
by FMDV rRT-PCR with clinical incidence; (iii) model the
predicted CT values of pooled milk samples based on detailed
epidemiological data available from the farm; (iv) estimate the
sensitivity and specificity of this surveillance approach to assess
the usefulness of pooled milk as a cost-effective, non-invasive
surveillance tool.

MATERIALS AND METHODS

Study Area and Population
The study area was a large-scale dairy farm located in central
Saudi Arabia. The farm housed approximately 4,000 Holstein
Friesian cattle and was organized into management houses (H).
Lactating groups (n = 17) were milked four times a day. The
farm had a fenced outer perimeter and there were no other
FMD susceptible livestock or wildlife present on the farm. The
study population was all cattle on the farm that were in lactating
groups during the study period (10/09/2015 to 25/02/2016). The
farm had electronic recording systems for monitoring individual
animal health and movements. Lactating cattle were regularly
vaccinated every 105 days with a killed, aqueous adjuvanted
(aluminum hydroxide and saponin), NSP purified FMD vaccine
(containing O Manisa, O-3039, O-PanAsia2, A Iran-05, A
Saudi-95, Asia-1 Shamir, and SAT-2 virus strains) (Aftovaxpur,
Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein,
Germany) (20).

In September 2015, the farm had clinical cases of FMD due to
the then emerging A/ASIA/G-VII viral lineage (21), confirmed by
the OIE/FAO World Reference Laboratory for foot-and-mouth
disease (WRLFMD) at The Pirbright Institute, UK. In February
2016, 3 months after the last clinical case (on 12/11/2015), new
clinical cases were observed and confirmed as serotype O (ME-
SA/Ind-2001d lineage), with the last recorded clinical case on
07/03/2016. All recording of clinical cases was done by farm
staff supervised by veterinary surgeons employed by the farms
and entered into an electronic farm recording system. The FMD
case definition was any individual bovine seen with increased
salivation and any of the following additional clinical signs:
mouth lesions, feet lesions, teat lesions, fever, reduced feed intake,
and lameness. The farm policy was to isolate new cases of FMD
in a dedicated isolation facility. If the isolation facility was full, or
the number of observed cases in the group exceeded ∼5%, cases
remained within groups. Milk from clinical cases continued to be
collected along with that of the other cows in the house. Animals
were moved from isolation back to the main herd either after
complete recovery, or when sufficiently recovered, depending on
available space in the isolation facility.

Pooled Milk Sampling
As part of routine herd health surveillance, milk samples were
collected using a proportional in-line milk sampler, designed to
pull a representative sample from each house, and delivered to
the farm laboratory. Throughout the study period (10/09/2015
to 25/02/2016), milk samples (n = 732) were collected twice
weekly (between 10/09/2015 and 03/12/2015), and then weekly
or on an ad-hoc basis (between 10/12/2015 and 25/02/2016) due
to the infrequency of clinical cases, until the presumed end of
the outbreak. Milk samples were collected from 17 management
houses that contained lactating cows and on an ad-hoc basis from
two houses containing cows separated due to various diseases
including FMD (the “sick-cow pen”). All milk samples were
labeled with the date and house identification number and were
stored in a freezer at −20◦C until they were shipped to The
Pirbright Institute (TPI, UK) for FMDV detection.
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Laboratory Testing of Pooled Milk Samples
Viral Isolates

FMDV cell culture isolates were obtained from archival
stocks held in the WRLFMD repository. Cell culture isolate
O/SAU/1/2016 was diluted in unpasteurized whole milk, and
used as a positive control for the pan-serotypic rRT-PCR assay
and the serotype specific O (ME-SA/Ind-2001d lineage) rRT-
PCR assay. For the serotype specific A (ASIA/G-VII lineage)
rRT-PCR assay, cell culture isolate A/SAU/6/2015 was diluted in
unpasteurized whole milk and used as a positive control.

FMDV Detection Assays

RNA extraction and the pan-serotypic rRT-PCR were carried
out as previously described using an optimized method (9).
Briefly, RNA extractions were carried out using the MagMAXTM

Pathogen RNA/DNA Kit (Applied Biosystems R©) using a sample
input of 200 µL on a MagMAXTM Express 96 Extraction Robot
(Applied Biosystems R©) according tomanufacturer’s instructions.
VetMAXTM XenoTM Internal Positive Control RNA (Applied
Biosystems R©) was added prior to extraction. Negative extraction
controls consisted of unpasteurized whole milk added to
lysis buffer.

The pan-serotypic rRT-PCR assay was performed using the
reagents, parameters and thermal cycling conditions previously
reported (23) with primers and probes described by Callahan
et al. (24). One microliter per reaction of VetMAXTM XenoTM

Internal Positive Control LIZTM Assay (Applied Biosystems R©)
was also included in the reaction mix. All rRT-PCR assays were
performed in duplicate using an Applied Biosystems R© 7500 Fast
Real-time PCR System. Any milk sample with a CT value of
≤50 was considered positive, and was also tested in duplicate on
both lineage-specific rRT-PCR assays for A/ASIA/G-VII (25) and
O/ME-SA/Ind-2001d (22) using the reagents, parameters and
thermal cycling conditions previously reported. Additionally,
samples with amplification below the 0.2 fluorescence threshold
(which therefore were not considered positive) by the pan-
serotypic rRT-PCR assay (termed “inconclusive” for this study),
were also tested on the lineage specific rRT-PCR assays, as lower
CT values have previously been observed for the A/ASIA/G-VII
rRT-PCR assay when compared with the pan-serotypic rRT-PCR
assay (25).

Development of a Model to Predict FMD
Virus Concentrations (CT Values) in Pooled
Milk
To assess the limitations of the milk sampling approach, the CT

values of pooled milk samples were predicted using information
supplied by the farm, and from the literature. These “predicted”
CT values were then compared with the “observed” CT values
obtained by the pan-serotypic rRT-PCR assays described in
the previous section. The values used for each parameter are
described below.

a) Equating CT ValueWith the Number of Virus “Units”

The limit of detection of FMDVRNA inmilk using the pan-
serotypic rRT-PCR assay was based on a previous experimental
cattle infection study (9), as this is the only study in the
literature that uses the same rRT-PCR methodology. In the

previous study, 10-fold serial dilutions of a whole milk sample
from an infected animal gave a limit of detection of 10−6 (9).
For this study, a viral genome unit value of 1 (subsequently
referred to as a “virus unit”) was assigned to this last dilution
at which FMDV RNA could be detected (i.e., 10−6), and
subsequent virus unit values were assigned to each 10-fold
dilution on a log scale (Figure 1). Linear regression was
applied so that a CT value could be predicted from the fit, when
the total virus unit value (V) in the pooled milk was known
(R2 = 0.9612, y=−4.155x+ 48.75).

b) Estimating the Number of Virus Units Excreted per Cow at

Each Stage of Infection (Ui)

Using data from a previous cattle challenge study (9),
FMDV RNA could be detected by the pan-serotypic rRT-PCR
assay in the milk between 3 and 28 days post infection (DPI),
and clinical signs were first observed at 4 DPI. As the day of
infection for each cow on the large-scale farm in Saudi Arabia
was unknown, the model assumed that the day clinical signs
were first recorded was day [D] 0. Consequently, an excretion
profile was created using the mean CT values based on data
collected from two in-contact animals from the challenge
study (9) between D-1 to D24, subsequently referred to as
the “stage of infection” (i) in the model (Figure 2). Missing
values were interpolated, by retrieving values from the fitted
line between the two nearest values. From these CT values, the
virus unit value (U) was predicted for each stage of infection
(i) using the linear regression model fitted in Figure 1.

Previous studies have described a reduced level of virus
excretion in nasal fluid, saliva, and esophageal–pharyngeal
fluid sample types in vaccinated vs. non-vaccinated animals
(26–28). As the effect of vaccination on the duration of
excretion or quantity of FMD virus in the milk is unknown,
additional factors were included to account for this possibility,
as milk samples in this study were collected from regularly
vaccinated cattle. Data from previous studies were therefore
used to inform the model (26–29), where significantly lower
levels of viral excretion (by over 102 copies/ml) were observed
in vaccinated animals compared with unvaccinated animals.
Consequently, in the model prediction for this study, three
“levels” of viral excretion were adopted: “1” as described above
(no vaccination), and then 10-fold reductions of “1/10” and
“1/100” (Figure 2). In the model prediction, each (“1,” “1/10,”
and “1/100”) virus unit value for each stage of infection (i) was
used separately to determine the effect this change has on the
resulting CT value in the pooled milk sample. Additionally,
the reduction was assumed to remain constant throughout the
course of infection (D-1 to D24).

c) Determining the Number of Cattle at Each Stage of

Infection (Ni) per Sampling Date (t)

Using records of the onset of clinical signs for each cow
and the movement data of individual cows between houses
available from the farm, the number of cows at each stage of
infection (Ni) per sampling date (t) per house was calculated.

d) Determining the Reduction in Milk Yield for

Infected Cattle

The only milk yield data available from the farm was the
average milk yield per house, per sampling date. To enable
simplification of the model, it was assumed that in each

Frontiers in Veterinary Science | www.frontiersin.org 3 May 2020 | Volume 7 | Article 264

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Armson et al. Pooled Milk for FMD Surveillance

house all lactating cows produced equal volumes of milk (Mu)
which was considered a reasonable assumption as cattle were
placed into houses on the basis of stage of lactation and
milk production.

Due to limited studies quantifying the reduction in milk
yield during FMDV infection in highly vaccinated cattle,
original milk yield data from a large-scale Holstein-Friesian
dairy farm in Kenya that reported a FMD outbreak in August
2012 (30, 31), were used to inform this study. For our study,
the mean milk yield from 189 cattle was calculated for each
5 day period during infection (D0 to D4, D5 to D9, D10 to
D14, D15 to D19, D20 to D24) as a percentage of the mean
yield before infection (“normal yield”: D-10 to D-1). ANOVA
and Welch two sample T-tests demonstrated a significant
difference between D5 to D9 and normal yield (p = 0.001),
where the value of D5 to D9 was found to be 87% of the
“normal yield.” Therefore, a value of 87% of the normal yield
(Mi) was employed for each cow at stage D5–D9 of infection
when determining the final number of virus units in a pooled
milk sample.

e) Determining the Final Number of Virus Units in a Pooled

Milk Sample per Sampling Date [F(t)].

Using the input parameters calculated in a) to d), the
final number of virus units in a pooled milk sample per
sampling date [F(t)], per house, can be calculated using the
following equation:

F (t) =

∑24
i=−1MiUiNi(t)

∑24
i=−1MiNi(t)+MU(H −

∑24
i=−1 Ni(t))

Where:

• Ni is the number of cows at infection stage i
• Ui is the number of virus units excreted per cow at infection

stage i
• Mi is the amount of milk produced by a cow in infection

stage i
• MU is the amount of milk produced by a healthy cow
• H is the total number of cows contributing to the milk pool

f) Predicting CT Values for Each Sampling Date (t)

Using the value of F(t) for each house the CT value was
predicted from the linear regression model fitted in section
Equating CT value with the number of virus “units.”

Statistical Analyses
All data analyses were performed using R (version 3.5.3) (32)
within the RStudio IDE (33). In order to compare the “observed”
CT values obtained from pooled milk samples with “predicted”
CT values, values were plotted for visual comparison. For each
sampling date (t), “predicted” and “observed” CT values were
assigned a 0 or 1 for a negative (CT of >50) or positive (CT of
≤50) result, respectively. Additional diagnostic cut-off CT values
of 45 and 40 were also investigated. Contingency tables were
constructed for each house, and for all houses combined using
each virus unit value level (i.e., “1,” “1/10,” and “1/100”), for which
sensitivity, specificity, the proportion of observed agreement
(Aobs) and the Cohen’s Kappa statistic (κ) (34) were calculated.

FIGURE 1 | Linear regression used to predict CT values from total virus unit

values. Data taken from limit of detection studies performed by Armson et al.

(9).

FIGURE 2 | Virus unit values (U) were assigned to each stage of infection (i)

between days −1 and day 24 post infection, based on mean CT values of two

animals in studies performed by Armson et al. (9) (closed circles). Open

squares and triangles indicate the CT values represented by “1/10” virus units,

and “1/100” virus units, respectively.

TABLE 1 | Summary of outbreak data on the large-scale dairy farm in Saudi

Arabia.

Variable

Total number of lactating cattle during

study period (approximate)

4,000

Number of lactating houses 17

Number of lactating animals per housea

(mean, median, range)

227 (237, 44–240)

Number of lactating houses affected (%) 10 (58.8)b 4 (23.5)c

Number of clinical cases of FMDd 107b 33c

Overall incidence risk (number of

cases/total livestock on farm) (%)

2.8b 0.87c

Date of index case 02/09/2015b 15/02/2016c

aCalculated on milk sampling days throughout the study period.
bA/ASIA/GVII outbreak.
cO/ME-SA/Ind-2001 outbreak.
dCase definition used by the farm for FMD was any animal seen salivating with any of the

following additional clinical signs: mouth lesions, feet lesions, teat lesions, fever, reduced

feed intake, and lameness.

Potential clustering by management house was accounted for
by using a random-effects bivariate model which was used to
produce the presented sensitivity and specificity estimates (35).

Frontiers in Veterinary Science | www.frontiersin.org 4 May 2020 | Volume 7 | Article 264

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Armson et al. Pooled Milk for FMD Surveillance

RESULTS

Epidemiology of the FMD Outbreaks
Throughout the study period, the mean number of lactating cows
in each house was 227 (median 237, range 44–240). Details of
the farm and clinical incidence for the two FMD outbreaks are
shown in Table 1. Based on the total number of cattle present on
the farm, the overall incidence risk was 2.8% and 0.87% for the
two separate outbreaks beginning on 02/09/2015 and 15/02/2016,
respectively. The epidemic curves with corresponding sampling
periods are shown in Figure 3A.

Pooled Milk
During the study period 732 milk samples were collected of
which 42 (5.7%) were positive using the pan-serotypic rRT-PCR
(Table 2, Figure 3B). Of these positive samples (n = 42), and
for those not considered positive but had very low amplification
below the fluorescence threshold of 0.2 (“inconclusive,” n = 22),
32.8% were positive by the A/ASIA/G-VII rRT-PCR assay, and
9.4% were positive by the O/ME-SA/Ind-2001d rRT-PCR assay
(Figure 3C, Supplementary Data File 2). Additionally, 3.1% of
the samples tested on the lineage specific assays were positive
for both lineages. Of the samples that were positive on the pan-
serotypic rRT-PCR assay, 19/42 (45.2%) could not be typed. Of
the samples that were inconclusive on the pan-serotypic assay,
3/22 (13.6%) were positive for A/ASIA/G-VII, and 1/22 (4.5%)
was positive for O/ME-SA/Ind-2001d.

Correlation Between Epidemiological Data
and FMDV RNA in Pooled Milk
Laboratory results from the pooled milk samples were directly
compared against clinical data collected during the FMD
outbreaks. The first period of clinical disease was seen in lactating
cows between the 02/09/2015 and 24/09/2015 (n = 99), with two
recurrences of clinical disease in a smaller number of cows in
mid-October (n= 1) and the first half of November 2015 (n= 7)
(Figure 3A). Clinical samples (vesicular epithelium/fluid) were
collected from clinically affected animals (n = 3) in September
and October 2015, and were characterized as belonging to the
A/ASIA/G-VII lineage. Further clinical disease was recorded
at the beginning of February 2016 (n = 33) and a clinical
sample identified the strain as from the O/ME-SA/Ind-2001d
lineage. Visual comparison of the epidemic curve and temporal
representations of rRT-PCR results indicates some clustering
of positive pooled milk samples around the occurrence of new
clinical cases but with a wider distribution (Figure 3). Clustering
of lineage A/ASIA/G-VII positive results can also be seen from
the commencement of sampling to the end of November,
concurrent with reports of this lineage from clinical samples.
The clinical incidence in lactating cows over the whole study
period was 3.6% (Table 1), while FMDV genome was detected in
5.7% of pooled milk samples (Table 2). A contingency table was
constructed to determine the sensitivity (Se) and specificity (Sp)
of the pan-serotypic rRT-PCR, using the number of new clinical
cases observed on milk sample collection days for all houses
sampled as the gold standard: Se = 49.3% (95% confidence
interval (CI): 30.7–68.1%), Sp = 92.5% (95% CI: 90.0–94.4%)
(Supplementary Data File 1).

FMDV genome was detected in pooled milk in 17 out of
the 19 (89.5%) sampled houses compared to 14/19 (73.7%)
houses that reported clinical cases. Of the latter, 13 houses were
PCR positive at some point during the outbreaks (Figure 4,
Supplementary Data Files 3, 4). Furthermore, four houses were
positive by rRT-PCR with no recorded clinical cases at any time
during the outbreaks. There were also a total of eight samples
taken where the rRT-PCR result was negative but there were new
clinical cases observed on that day.

Predicting CT Values in Pooled Milk
Predicted CT values were obtained for each house and compared
with the observed CT values from the pan-serotypic rRT-PCR
(Figure 4, Supplementary Data Files 3, 4). The potential effect
of reduced virus excretion that may occur due to vaccination
was also investigated, where CT values were predicted for
the different levels of virus excretion to accommodate the
possible impact of FMDV vaccination (“1,” “1/10,” and “1/100”)
(Figure 4, Supplementary Data Files 3, 4). Predicted CT values
were not calculated for some houses due to a lack of available
epidemiological data required for the analysis, or because the
house was used as a quarantine pen to isolate new cases of FMD
at the start of the outbreak, and therefore regular milk samples
were not collected (Houses 17 and 18). Additionally, House 12
is not included in Figure 4 as both the observed and predicted
results were all negative.

Visual comparison of observed vs. predicted CT values
revealed instances where (i) positive results were obtained for
both observed and predicted, with CT values that were generally
comparable, (ii) positive results were obtained for the predicted
values only, and (iii) positive results were obtained for the
observed results only, although this was less frequent than when
comparing observed CT values with new clinical cases (Figure 4,
Supplementary Data Files 3, 4).

The lowest predicted CT values (i.e., the highest viral RNA
concentration) obtained for “1,” “1/10,” and “1/100” were 30.4,
34.5, and 38.7, respectively, compared with 31.6 for the observed
results. A reduction in viral excretion increased the predicted
CT values and, in some instances, decreased the duration for
which milk samples from a house would remain positive (CT

≤ 50). Additionally, applying a diagnostic cut-off value of 45 or
40 decreased the likelihood and duration of predicted positive
CT values. Contingency tables for all houses combined indicated
that a virus excretion level of “1/10” with a diagnostic cut-
off CT value of 40 generated results closest to those of the
observed rRT-PCR results (Se = 38.1% [95% CI: 23.2–55.6%],
Sp = 95.1% [95% CI: 92.7–96.7%], Aobs = 0.95, K = 0.31)
(Supplementary Data File 5). A reduction in sensitivity and
increase in specificity was observed when these values were
compared with estimates of sensitivity and specificity using
records of new clinical cases as the “gold standard.”

DISCUSSION

This study aimed to expand on previous work to determine
the utility of testing pooled milk by rRT-PCR as an alternative
approach for FMD surveillance in vaccinated dairy herds. During
the 6month study period, 732 pooledmilk samples were collected
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FIGURE 3 | (A) Epidemic curves of FMD outbreaks on the farm. Stars represent dates where clinical samples (vesicular epithelium/fluid) were collected and submitted

to the World Reference Laboratory for Foot-and-Mouth Disease (WRLFMD) and reported as : A/ASIA/G-VII, : O/ME-SA/Ind-2001d. (B) CT values from the

pan-serotypic rRT-PCR assay ( ) for pooled milk samples collected from 19 lactating houses in the large scale dairy farm in Saudi Arabia throughout the study period

(n = 732). (C) CT values for each lineage specific rRT-PCR assay for samples that tested positive (CT ≤ 50), or where very low amplification was observed (below the

threshold), in the pan-serotypic rRT-PCR assay. : A/ASIA/G-VII. : O/ME-SA/Ind-2001d. 2: Sample could not be typed.
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TABLE 2 | Summary of milk sample results for all rRT-PCR assays for the

large-scale dairy farm in Saudi Arabia.

Variable Farm

Duration of milk sampling (weeks) 25

Number of houses that milk samples were collected from 19

Number of pooled milk samples tested 732

Number positivea by pan-serotypic rRT-PCR assay (%) 42 (5.7%)

Number positivea by A/ASIA/G-VII rRT-PCR assay (%) 21/64b (32.8%)

Number positivea by O/ME-SA/Ind-2001d rRT-PCR assay (%) 6/64b (9.4%)

aPositive results are those with at least one well giving a CT of ≤50.
b22 samples were considered “inconclusive” (amplification was observed below the

fluorescence threshold of 0.2) and were therefore also tested by the lineage-specific

rRT-PCR assays.

from a large-scale dairy farm housing ∼4,000 cattle during an
FMD outbreak.

The first objective of this study was to determine whether
detection and characterization of FMDV by rRT-PCR was
possible from pooled milk samples and compare these results
with epidemiological data recorded during the outbreaks. This
is the first study we are aware of showing that FMDV genome
can be detected in milk samples from regularly vaccinated cattle
using a proportional in-line milk sampler on a large-scale dairy
farm. The mean CT values obtained in the pan-serotypic rRT-
PCR assay were high (>31), most likely due to the dilution of
milk from a relatively small number of infected animals in groups
of lactating cattle numbering up to 240 and collectively producing
in excess of 10,000 liters per day. These results confirm the
hypotheses from previous laboratory and modeling studies that
suggested FMDV genome could be detected at these dilutions
during outbreaks in field settings (13, 16, 36).

Lineage-specific rRT-PCR assays (22, 25) confirmed the
presence of the A/ASIA/G-VII and O/ME-SA/Ind-2001d
lineages in the pooled milk samples, and this was supported
by reports from samples collected from clinical cases that were
sent separately for laboratory testing. Reports for these samples
demonstrated that the two outbreaks were caused by different
FMD viral lineages, the first due to the A/ASIA/G-VII lineage,
and the second the O/ME-SA/Ind-2001d lineage, both of which
are thought to have emerged recently from South Asia (21, 22).
The rRT-PCR results from the pooled milk samples suggest that
there was a period of co-circulation or possible even co-infection
with FMD viruses from these lineages. Co-infection in clinical
samples from individual cattle in Saudi Arabia has been reported
previously (37), though it is unknown if this occurred during
the study period given that samples were taken and tested
from only three clinical cases. Indeed, during this study, the
collection of a variety of sample types from numerous individual
animals throughout the period of infection and beyond (e.g.,
vesicular lesion material, blood, nasal/oral swabs and milk) may
have allowed for the detection of co-infection, and may have
also enabled a more thorough validation of the pooled milk
surveillance approach.

Although the farm routinely vaccinated with a high potency,
polyvalent FMD vaccine, it has been recently demonstrated that
the serotype A components of this vaccine are not antigenically

matched, and generate poor cross-protection in a potency
test against A/ASIA/G-VII viruses (38). Furthermore, although
individual serotype O components (such as O-3039) appear to
be antigenically matched, or (O-Manisa) provide experimental
protection (39) against O/ME-SA/Ind-2001d viruses, studies
under field conditions (20) showed that the polyvalent vaccine
used on this farm did not provide adequate heterologous cross-
protection to provide full herd immunity against field viruses
from the A/ASIA/G-VII and O/ME-SA/Ind-2001d lineages.
This may explain why cattle still became clinically affected
during the study period, albeit with a low overall incidence
risk. Indeed, the A/ASIA/G-VII lineage was detected in more
pooled milk samples compared to O/ME-SA/Ind-2001d during
the entire study period, consistent with expected vaccine
performance from respective in vitro vaccine-matching data and
experimental studies (38, 39), A. Ludi, personal communication).
The detection of a greater number of positive milk samples
for the A/ASIA/G-VII lineage could also be due to the relative
performance of the typing rRT-PCR assays, as in previous
validation studies, lower CT values for the A/ASIA/G-VII lineage
typing assay have been demonstrated compared to the pan-
serotypic rRT-PCR assay (indicating an increased sensitivity)
(25), whilst CT values for the O/ME-SA/Ind-2001d typing assay
have been demonstrated to be comparable to the pan-serotypic
rRT-PCR (22).

To validate the use of pooled milk for the surveillance of
FMDV on this large-scale farm, pan-serotypic rRT-PCR results
from the pooled milk samples were compared with the clinical
incidence of FMD during the study period. At the farm level
there were four temporal clusters of clinical cases with gaps of
at least 15 days between these clusters. Visual appraisal of the
data indicated FMDV rRT-PCR results to be generally correlated
with these clusters although they showed a wider distribution
around and in between the clusters of clinical cases. Comparison
of the onset of individual clinical cases and the assay results on
milk sampling days at the house level, revealed only 6 occasions
when milk samples were positive and a new clinical case was
recorded on the same day. There were also occasions when either
(i) positive milk samples were obtained when there were no new
clinical cases on that day, or (ii) there were new clinical cases
occurring but a positive result was not observed in the milk.
This resulted in a low sensitivity and moderate specificity for
the pooled milk rRT-PCR assay (49.3 and 92.5%, respectively).
However, this approach is limited by only comparing the assay
results with the onset of new clinical cases on the sampling
day which does not account for FMDV genome shedding in
pre-clinical, convalescent, or subclinically infected animals.

To attempt to account for these limitations, “observed” CT

values obtained by the pan-serotypic rRT-PCR assays were
compared with “predicted” CT values for each house based on
detailed epidemiological and cattle movement data from the
farm, and data from recent literature. Although these results
were similar, compared with the onset of clinical cases there
was a reduction in sensitivity and an increase in specificity.
It is likely that this may be due to the reduced number of
sampling points available for the predictive analysis, due to a lack
of epidemiological data available from two of the houses. It is
possible that this reduced sensitivity (i.e., instances where there
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FIGURE 4 | “Observed” CT values for the rRT-PCR of pooled milk samples ( ) vs. “Predicted” CT values at “1” viral excretion ( ), “1/10” (2) and “1/100” (△), for

selected management houses 1, 4, 5, and 10. Results for the remaining houses are included in Supplementary Data Files 3, 4.

were positive “predicted” results but negative “observed” rRT-
PCR results of the pooled milk), was due to a lower quantity
and shorter duration of viral excretion in the milk of these
vaccinated infected cattle, than was assumed in the model. This
theory supports findings by Leeuw et al. (40) and Orsel et al.
(26) who were unable to detect FMD virus in the milk of
well-vaccinated cattle after challenge. However, these previous
studies used a homologous or efficacious vaccine to the challenge
strain and Leeuw et al. (40) only focussed on the detection of
infectious live virus instead of FMDV RNA. As there are no other
studies known to have considered viral excretion into the milk
of vaccinated cattle, data used to inform the model was based on
those studies that measured viral excretion from vaccinated and
non-vaccinated animals in alternative samples such as nasal fluid,
saliva, and esophageal–pharyngeal fluid (26–28). The authors
acknowledge the limitation of this approach, particularly since

the quantity and duration of viral excretion seemed to have a
substantial impact on the likelihood of predicting a positive result
in the milk. Consequently, further investigation into the effect
of vaccination on viral excretion in milk is required and would
enhance the predictive ability of the model.

Management practices on the farm may also have contributed
to the low sensitivity of the pooled milk rRT-PCR assay. These
include the inconsistent removal of clinical cases and milking
practices during the study period in response to the outbreak,
with the potential for increased sensitization of farmers to disease
as the outbreak progressed, resulting in a decreased chance
of milk from an infected cow contributing to the milk pool.
Additionally, the proportional in-line sampling method may not
be truly representative of all cattle in the group, as reported
previously (41). Although the in-line sampler is designed to
represent the whole milking, it has been demonstrated that
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this method may terminate sampling early (41) and milk from
infected cattle may be excluded from the sample tested leading
to false negative results. This may explain the low sensitivity
obtained for this FMDV detection system compared with what
was predicted in the model. Other methods, for example,
collecting a sample from the bulk tank after thorough agitation,
may be more representative (42), and could be considered for
future studies.

During the study period there were also instances when there
were positive rRT-PCR results in the milk samples but no new
clinical cases observed, or indeed “infected” (D-1 to D24) cows
present in the house that would excrete virus into the milk pool.
The possibility that these “false positives” are due to laboratory
contamination cannot be excluded. However, the laboratory
methodology used in this study has been shown to be highly
specific (data not shown), and as there were a high number of
“negative” samples it is unlikely that these results are due to
either laboratory contamination or non-specific amplification.
Alternative explanations for this observation include spill-over
of virus between houses as they were being milked (i.e., virus
from an infected animal in one house may have been carried over
to the milk from the subsequent house, generating false-positive
results for an otherwise negative house) as there was no milk
line disinfection between houses. There is also the possibility of
delays in clinical case detection, sub-clinical infections or mild
clinical cases that may not have been noticed by farm workers.
Subclinical infections in vaccinated animals have been reported
previously (43–45) and this is a possible explanation for the
prolonged period between cases (up to 27 days) although it is
unknown whether the outbreaks on this farm were prolonged
circulation or due to new virus introductions.

This is the first study to evaluate the use of pooled
milk as a surveillance sample for the detection of FMDV
on large-scale dairy farms in endemic regions. This study
demonstrates that rRT-PCR testing of pooled milk may be
utilized for FMD surveillance and may reveal underlying sub-
clinical FMD infection. More representative sampling methods
should be investigated that may increase the sensitivity of this
approach including investigations into the required frequency
of sample collection and an exploration on how the dairy value
chain may be exploited for FMD surveillance. Subsequently,
this methodology could be integrated into FMD surveillance
programs providing significant benefits over conventional
surveillance strategies. The similarities in the farming system
evaluated in this study and dairy farms in FMD-free countries
highlights the potential of this surveillance approach for use in
disease-free regions in the event of an incursion of FMDV, to
allow rapidly identification of infected herds, tracing the source
and spread of infection and to screen infected premises to ensure
disease freedom.
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