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Abstract—The commercialization of drones has granted the 
public with unprecedented access to unmanned aviation. As 
such, the detection, tracking, and classification of drones in 
radars have become an area in high demand to mitigate 
accidental or voluntary misuse of these platforms . This paper 
focuses on the classification of drone targets in a safety context 
where the concept of Explainable AI is of particular interest. 
Here, we propose a simple, ye t effective, means to extract a 
salient symmetry feature from the micro-Doppler signatures of 
drone targets, arising from onboard rotary components. Most 
importantly, this approach maintains the explainable nature of 
the employed recognition algorithm as the symmetry feature is 
directly related to the kinematics of the drones as the targets of 
interest. A large dataset collected from multiple locations with 
over 280 minutes of rotary and fixed wing drone flights has been 
collected and used to demonstrate the generalization capability 
of this approach. 

Keywords— staring radar, drones, supervised learning, micro-
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I. INTRODUCTION 

A. Background and Motivation 
The increasing access to drone technology over the past 

decade has resulted in new technological adaptions that are 
beneficial in many sectors. However, this has led to an 
increased risk of this technology being exploited for malicious 
purposes. This has also caused an increased presence of 
drones in civilian airspace and interference with the day to day 
operation of airports. Events such as the closure of Gatwick in 
December of 2018 [1] and a hostile drone attack in Saudi 
Arabia in September 2019 [2] have publicized the need for 
counter-drone technology. 

A key component of counter-drone technology is the non-
cooperative detection of drones. Aveillant’s Holographic 
staring radar technology has been proven to be particularly 
effective when detecting and tracking small drones [3]. 
However, the sensitivity of these radars enables them to track 
other small targets such as birds [4]. It is important to be able 
to discriminate between birds and drones to avoid too many 
false alarms. However, birds have similar flight 
characteristics, which make this discrimination a challenging 
task when exploiting only trajectory-based features [5]. 

Small airborne targets have been shown to exhibit 
distinguishing features in their frequency domain spectra that 
relate to their micro-Doppler signatures [6]. Drones that have 
rotating blades cause a modulation in addition to the main 

body Doppler, resulting in multiple micro-Doppler 
components. In contrast, birds that otherwise have a similar 
echo strength to drones tend to present with one or two 
components in their micro-Doppler responses due to the 
beating effect of their wings, especially at L-band as 
demonstrated in this paper. Birds can also fly in flocks, which 
results in Doppler signatures that may closely resemble a 
drone target. In this paper, a method is presented that 
distinguishes between these signatures by aligning micro-
Doppler components with their associated target body. The 
symmetry of these components around the main body Doppler 
is utilized to counteract misleading signatures when multiple 
targets are present, e.g., birds of an RCS and flight profile 
similar to a drone. The introduced symmetry peak detection 
method is shown to provide unique feature separation between 
drones and other small airborne non-drone targets such as 
birds.  

B. Related Work and Contributions 
 There have been several studies addressing the 
classification of drones in radar systems due to the increased 
demand for this technology [7]. A collection of these papers 
utilize a kinematic feature set that includes interpretable 
attributes such as velocity, acceleration, and curvature [5,8,9]. 
These studies have demonstrated how kinematic features can 
be employed as part of machine learning algorithms.  
However, these features alone do not offer significant enough 
distinction to be depended upon as part of explainable 
classification algorithms such as decision tree classifiers [9]. 

Another common approach has been to analyze the micro-
Doppler components using deep learning. Various 
architectures such as Convolutional and Recurrent Neural 
Networks (CNN, RNN) have been shown to offer almost 
perfect classification results, but lack an interpretable nature 
[10,11]. As an alternative, there have been some handcrafted 
micro-Doppler features proposed that extract flight 
characteristics of drones. These include using the center of 
gravity to identify those targets with payloads from others, 
Principal Component Analysis (PCA) and eigenvector and 
eigenvalue decomposition of the micro-Doppler spectra 
[12,13,14]. This handcrafted feature extraction can be adopted 
alongside kinematic features to improve classification results 
in explainable classifiers. 

This paper proposes a new feature that accounts for the 
shape and interaction of micro-Doppler components for 
different classes of targets while maintaining a very 
explainable nature. This feature has been designed to be 



adopted as part of interpretable classifiers, such as those 
proposed in [8] and offers a unique separation between drones 
and other targets. In order to demonstrate the robust nature of 
this feature, a substantial dataset has been collected of diverse 
experimental signatures containing data from fixed wing and 
rotary wing drones from three different locations and for 
flights up to 2.6 km radar range. The interpretable 
classification algorithms achieve comparable accuracy to 
more complex black box approaches such as RNNs or CNNs. 

The remainder of this paper is organized as follows. 
Section II gives an overview of the Aveillant Holographic 
staring radar that was used to collect data. Section III 
highlights the intuition behind the symmetry feature through 
analysis of micro-Doppler signatures. An outline of feature 
extraction is given in Section IV followed by classification 
results in Section V with conclusion drawn in Section VI.   

II. STARING RADAR SYSTEM OVERVIEW 
Data collected with the Aveillant Gamekeeper 16U drone 

detection radar [3,4] is used in signature characterization, 
feature extraction, and target classification for non-
cooperative surveillance of small targets. The Gamekeeper 
16U is a staring system specifically designed for high-
performance detection of drones. The transmitter uses a broad 
beam antenna to illuminate the entire search volume. A 16x4 
array of receiver elements are arranged in a 2-D grid pattern 
that allows the radar to continuously stare in all directions so 
that it is able to process echoes by forming simultaneous 
beams that cover the entire search volume. The staring aspect 
of this radar allows it to have long, customizable dwell times, 
which results in fine Doppler resolution. This provides 
enhanced detection and discrimination of slow-moving 
drones against stationary clutter. Previous work has reported 
the capabilities of such a radar against typical drone targets 
[15]. 

The Gamekeeper 16U radar (Figure 1), has a vertical 
stack of 8 transmit antennas to narrow the illumination beam 
in elevation, thereby providing more gain at low altitudes. 
This provide better sensitivity against low altitude, low 
observable targets. TABLE I.  lists the operating parameters 
for the Gamekeeper 16U sensor. 

 

TABLE I.  GAMEKEEPER 16U SYSTEM PARAMETERS 

 

The radar transmits a pulsed waveform, which is 
backscattered to the receiver array and is digitized at each 
receiver element. For each range gate, the samples from all the 
receiver channels are processed to form multiple receive 
beams. Pulses from a time frame of 279 milliseconds are 
coherently processed in a 2048-point FFT to obtain Doppler 
samples, thus providing a 4-D data matrix in range, azimuth, 
elevation, and Doppler for each frame. Here each frame is 
equivalent to one Coherent Processing Interval (CPI), which 
is 279 milliseconds. CFAR thresholding is applied to each 4-
D frame, and the detections are localized in position. After 
some pre-tracker filtering, detections are passed to a tracker 
that assigns track IDs. Feature values are generated for each 
track for each frame update. The track features are derived 
both from the kinematic features and also contain features 
relating to the Doppler spectrum. Earlier work has only 
considered the number of Doppler harmonics that can be 
attributed to a tracked target [6,8,15]. The Doppler feature 
extraction is performed using a dedicated module that detects 
the number of micro-Doppler components corresponding to a 
given track. These tracker features are used by a classifier to 
assign the class label, and the classification label is updated 
each frame for all tracks. The radar creates tracks with their 
track ID, positional information, and classification labels at a 
per frame update rate.  

However, a simple representation of the micro-Doppler 
components for example [11] does not capture the more 
detailed information regarding the pattern of the micro-
Doppler spectral components characteristic of multi-rotor 
drones (See Section III). In this paper, we present a peak 
extraction method able to quantify specific symmetries in the 
micro-Doppler signatures of drones that is evidently absent in 
birds and other non-drone confuser targets. This method is 
shown to provide more robust Doppler features that can 
improve discrimination of drone tracks from birds and other 
confuser tracks.  

III. MICRO-DOPPLER SIGNATURES OF DRONES AND NON-
DRONES 

In radars using short dwell, the spectrograms of drone 
echoes can create flashes caused by the rotating motion of the 
blades. Approaching and receding ends of the blade and other 
effects are modulated into continuous harmonics that are 
commonly referred to as Helicopter Rotor Modulation 
(HRM) lines. The Doppler harmonics are quite typical where 

 
Figure 1: Aveillant Gamekeeper 16U multi-beam staring 

radar. 

Parameter Value 
Frequency L band 
Bandwidth ~2 MHz 
Transmit power ~1 kW 
Receiver channels 4 x 16 
Azimuth coverage 90° 
Elevation coverage 30° 
Pulse Repetition Frequency (PRF) ~7.5 kHz 
Update rate ~0.25 s 
Polarisation Vertical 
Drone detection range 5 km 

 



the dwell time is relatively long [17]. An example 
spectrogram of a rotary DJI Inspire I drone is shown Figure 
2. Each Doppler profile is a time frame corresponding to 279 
milliseconds. The vertical axis is time plotted as frame 
number.  

 
Figure 2: Spectrogram of DJI Inspire 1 rotary wing drone. 

The red cross in Figure 2 indicates the Doppler 
component associated with the main body of the drone while 
the orange crosses indicate the micro-Doppler components 
caused by the rotors. There are two distinct trends in this 
spectrogram. The first is the sideband-carrier effect of the 
body and its rotor components. This is caused by the relative 
speed of the target’s rotors relative to its main body mean 
speed, therefore, displaying modulation around the mean 
Doppler of the drone. The second is a consistent symmetrical 
scattering of the rotor harmonics around the main body’s 
Doppler shift. The approaching and receding blades create a 
positive and negative Doppler shift that are equal, but 
opposite to one another. 

Contrast the drone spectrum with that from a bird, as 
shown in Figure 3. This target was tracked for over 600 
frames, and the red cross indicates the Doppler component 
associated with the main body. There are no distinct Doppler 
sidebands visible. Although there are some additional 
Doppler echoes present, these are random and are most likely 
the result of the Doppler return from other nearby birds.  

 
Figure 3: Spectrogram of a bird. 

A common approach for incorporating micro-Doppler 
components in an explainable drone classifier is to count the 
number of these components [6,8,15]. Drones typically 
exhibit four or more, whereas birds usually have only two 
components at most. A potential problem with this approach 
is that birds often fly in flocks, which can result in a wide 
variety of Doppler activity. It is therefore important to be able 

to associate micro-Doppler motions with the correct target 
body and distinguish whether these are being caused by a 
single target or multiple targets. The micro-Doppler 
components caused by drone blades have been observed in 
symmetrical pairs around the main body and are a useful 
distinguishing feature [21]. This means that misconceptions 
caused by multiple targets flying close together can be 
mitigated by identifying whether each component has an 
associated symmetric partner. 

IV. PEAK EXTRACTION METHOD 
To capture the degree of symmetry in the Doppler 

components, a peak extraction approach was developed to 
highlight large rotor returns. Peaks are identified in a single 
timestep of the target spectrogram using minimum 
prominence and width. This is implemented using SciPy’s 
peak finding tool [16] which identifies local maxima by a 
simple comparison with neighbouring values. The 
prominence of a peak indicates how much the peak stands out 
and is defined as its height over adjacent minima. This is 
depicted graphically in Figure 4 by the vertical orange lines. 
The algorithm identifies prominence by comparing the tallest 
adjacent minima to the selected peak. The width of a peak is 
measured at half the prominence of each peak and is indicated 
by the horizontal orange lines. These values were optimized 
to ignore unwanted peaks from background sources. Each 
peak that is recorded is checked to identify whether it has the 
largest magnitude within its vicinity. If not, then it is 
discarded. This avoids components with large widths being 
counted as multiple peaks.  

 
Figure 4: Diagram illustrating peak prominence and width. 

Orange vertical and horizontal lines indicate prominence and 
width[20]. 

In order to extract the symmetry of these components, the 
main body Doppler component must be identified such that it 
can be used as a central reference. Its Doppler shift is 
calculated using the range rate provided by the tracker and is 
established as the central mirror point. Dominant peaks at 
zero Hz caused by background clutter are ignored unless the 
main body’s Doppler shift crosses this point. Symmetric 
peaks are then identified in an iterative fashion by 
sequentially checking each peak for a partner that mirrors the 
target’s body. A window is used when checking these peaks 
so that small discrepancies in the position of these 
components are still recorded as a symmetric pair. Figure 5 

x 



shows an example of the peaks extracted using this approach 
when tested on a single time frame from the drone 
spectrogram in Figure 2. 

 
Figure 5: Example of symmetry feature extraction applied to a 
single frame from the drone spectrum. The orange cross shows 
extracted main body and colored dots show extracted symmetric 

micro-Doppler pairs. 

The colored dots in Figure 5 indicate the peaks that have 
been chosen as symmetric pairs, and the orange cross shows 
the main body component. Each pair of colored dots is 
counted as a single symmetric pair, and the total number of 
symmetrical components for each timestep are outputted to 
be used as a feature. This process is summarized in the 
pseudo-code written in Figure 6.  

 
Figure 6: Pseudocode for symmetry feature extraction. 

 
Figure 7: Example of symmetry feature extraction applied to a 
single frame from a bird spectrum. The orange cross marks the 

peak corresponding to the Doppler of the main body. 

As a comparison, Figure 7 shows the result of the peak 
extraction applied to one frame of the bird spectrum from 
Figure 3. The algorithm detected the target main body return 
as marked by the orange cross. However, in this case, whilst 
there were some minor peaks in the Doppler spectrum, there 
were no reported symmetrical peaks, and hence the algorithm 
reports zero symmetrical peaks.  

V. RESULTS ON EXPERIMENTAL DATA 

A. Evaluation Dataset 
In order to evaluate this approach, a large dataset 

containing over 280 minutes of drone flights was collected. 
The flights in these recordings span many days of trials in two 
different locations out to a maximum range of 2.6 km. Flights 
were conducted using a DJI Inspires 1 and 2 as part of the 
SESAR CLASS [9] and SESAR SAFIR [8] consortiums 
trials program and as such, were recorded in a live setting 
without any optimization or conditioning of the surrounding 
environment. The 55 flights that are included in this dataset 
make up for 34% of the data, with other background targets 
such as birds filling the rest. The details of this dataset are 
shown in TABLE II.  

TABLE II.  DATASET CONTENT DESCRIPTION 

 
B. Results 

The number of symmetrical pairs is recorded for each 
time frame. A single symmetrical pair refers to micro-
Doppler components that mirror each other. Figure 8 shows 
the histogram of the number of symmetrical components 
between drone and non-drone targets for all considered 
flights. Non-drone targets mostly display zero symmetrical 
pairs, but a significant portion has a single pair. This is likely 
due to the beating of bird wings, causing a mirrored pair. 
There is a very clear separation of drone vs. non-drone targets 
using this feature at two components. Owing to the good 
separation between the target classes means that a simple 
hard threshold put on this feature at two components is able 
to achieve a True Positive Rate (TPR) of 91.4% for drones 
and True Negative Rate (TNR) of 96.4% for non-drones. This 
is excellent separation considering that this is based upon a 
single feature. The histogram for the number of micro-
Doppler components, i.e., without counting pairs of 
symmetric peaks, is shown in Figure 9 for comparison. This 
shows that the distinction between the two classes of interest 
is far clearer when using the symmetry feature.  

 



 
Figure 8: Symmetrical components (normalized) histogram for 

drone and other targets. 

 
Figure 9: Number of micro-Doppler components (normalized) 

histogram for drones and other targets. 

A decision tree was trained with this feature along with 
four other interpretable features: height, velocity, the total 
number of micro-Doppler components, and the Radar Cross 
Section (RCS). No limit was used on the number of nodes or 
the depth of the tree, 80% of the dataset was used for training 
with the rest being used for testing. The importance of each 
feature in this decision tree was calculated using SciKit-
Learn’s Importance tool [18]. This tool determines how much 
a given feature contributes to the final classification and 
outputs this as a single importance value. This calculation is 
based on using Gini impurity [19], which evaluates each node 
based on the frequency of their evaluation on a given feature. 
By analyzing how heavily the decision tree weights its 
classification on each feature, a fair comparison can be made 
between each of the explainable features. Figure 10 shows the 
importance values for each of the features used to train the 
decision tree. No limit was set on the number of layers in this 
tree, and so the final tree contained 15 layers. 

The decision tree weighted a very heavy dependence on 
the proposed symmetry feature. One particularly interesting 
aspect of these important values is that the tree weighted the 
symmetry with more than six times the importance than it did 
for the number of micro-Doppler components. This indicates 
that the relative shape and interaction of these components is 
substantially more important than just the number of micro-

Doppler components. The confusion matrix for this decision 
tree that was trained with the proposed symmetry feature is 
shown in TABLE III. The inclusion of the proposed feature 
in the decision tree increased the TPR by 5% and reduced the 
FPR from 0.38% to 0.19% when compared to the result 
obtained using a decision tree trained without the symmetry 
feature (TABLE IV).  

 
Figure 10: Importance values assigned to each feature in the 

decision tree. 

TABLE III.  CONFUSION MATRIX FOR DECISION TREE CLASSIFIER WITH 
SYMMETRY FEATURE 

  Predicted Class 
  Drone Other 

Tr
ue

 C
la

ss
 Drone 95.71 4.29 

Other 0.19 99.81 

 

TABLE IV.  CONFUSION MATRIX FOR DECISION TREE CLASSIFIER 
WITHOUT SYMMETRY FEATURE 

  Predicted Class 
  Drone Other 

Tr
ue

 C
la

ss
 Drone 90.40 9.60 

Other 0.34 99.66 

 
Having established an encouraging classification 

capability based on signatures of rotary wing drones, data 
from a fixed-wing model aircraft was recorded to test whether 
this feature can generalize well to such platforms. Figure 11 
shows the histogram of symmetrical components with the 
fixed-wing drone included. The distinction between drone 
and non-drone targets is still very clear at two components. 
In general, the fixed-wing exhibits considerably more 
symmetrical components than the rotary drones. The increase 
in Doppler activity can be possibly attributed to the higher 
rotation rate of the fixed-wing drones compared to rotary 
wing drones. A TPR of 92.81% was observed with a hard 

     Symmetry  Feature1  Feature2  No µDoppler  Feature3  



decision threshold at two components showing that this 
feature can generalize between rotary and fixed-wing drones.  

 

 
Figure 11: Histogram of symmetrical components that includes 

fixed-wing drone. 

VI. CONCLUSION 
This paper has proposed a symmetry feature that exploits 

the mirrored effect of approaching and receding drone 
propellor blades. The intuition behind this feature is to offer 
a simple way to encapsulate the shape and interaction of 
micro-Doppler components in order to determine whether 
targets are man-made or not. In contrast to deep learning 
approaches, the explainable nature of this feature means that 
it can be adopted as part of systems in industries that must 
conform with Explainable AI. It is common for flocks of 
birds to cause large amounts of micro-Doppler activity, 
which can make only counting the number of these 
components an unreliable feature. It has been shown that the 
proposed feature can distinguish between these targets by 
extracting the relationship between micro-Doppler 
components and the target’s main body. 

The feature has been shown to offer a distinct separation 
between drones and other targets. Over 92% of the drone in 
the data set were observed to have two or more symmetric 
pairs.  This level of separation in a single feature is 
uncommon and has been shown to generalize across a large 
dataset with both rotary and fixed-wing models. The 
inclusion of this feature in a decision tree was shown to 
improve the classification performance when using the 
number of micro-Doppler components by 5% TPR. The 
histograms of this feature also indicate that the symmetry 
would also enhance the performance of Bayesian classifiers.  

Despite the promising separation provided by this feature, 
there are further developments that will be explored in future 
work. The optimization of this feature for low Signal-to-
Noise Ratio (SNR) conditions is a primary objective going 
forward, and a dynamic version of this feature could be 
developed to adapt the algorithm based on characteristics that 
impact the SNR, such as the target range. In order to 
thoroughly test this, more data at a longer range could be used 
to demonstrate whether this feature can robustly classify 
targets with low Doppler returns. 
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