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37 Abstract

38

39 One of the leading causes of dam failure is internal erosion. The impact of erosion of non-

40 plastic fine particles, known as suffusion, on the soil structure and strength has been studied 

41 experimentally. However, influences including sample size have not been thoroughly 

42 investigated. Internally unstable gap-graded cohesionless soil samples with various sizes were 

43 investigated using an erosion-triaxial apparatus. Samples were subjected to downward inflows 

44 of different seepage velocities. The results indicated that the potential for clogging increased 

45 with an increase in specimen length, leading to less fine particle erosion. Internal erosion 

46 changed the mechanical soil behaviour even after the loss of fines equal to five percent of the 

47 overall sample volume. Eroded specimens with similar intergranular void ratios showed similar 

48 undrained post-erosion behaviour. However, the magnitude of the post-erosion initial 

49 undrained peak shear strength is a function of coarse particle interlocking, residual fine content 

50 and equivalent intergranular contact index. It was also found that the steady state line remained 

51 unchanged after erosion of fine particles and the mobilized friction angle at the steady state 

52 line is independent of the residual fine content. 

53
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54 Introduction

55

56 Internal erosion is one of the major causes of hydraulic structure failure (ICOLD, 2015). 

57 According to ICOLD (2015), internal erosion is divided into four main mechanisms: 

58 concentrated leaks, backward erosion, contact erosion and suffusion. The focus of this research 

59 is suffusion, the migration of non-plastic fine particles from within a matrix of coarser particles 

60 due to a seepage flow within an embankment dam or its foundation. It normally occurs in gap 

61 or broadly graded internally unstable soils where fine particles are not fully involved in stress 

62 transfer. 

63

64 Among the first experimental works studying of the impact of erosion of non-plastic fine 

65 particles on the post-erosion mechanical behaviour of soils, Chang and Zhang (2012) and Chen 

66 et al. (2016) investigated the drained shear strength of eroded specimens. They found a decline 

67 in the drained shear strength and alteration of soil behaviour from dilative to contractive 

68 following erosion of fines. It was believed that an increase in the void ratio due to the removal 

69 of fine particles shifted the soil to a looser state. Post-erosion undrained behaviour of granular 

70 mixtures subjected to suffusion was studied by Xiao and Shwiyhat (2012) and Ke and 

71 Takahashi (2014). It was found that the undrained shear strength increased after erosion of the 

72 fine particles. Xiao and Shwiyhat (2012) stated that this might have occurred due to a loss of 

73 saturation during the erosion stage. However, Ke and Takahashi (2014) believed that the higher 

74 undrained strength of the eroded specimen may have been attributed to formation of local 

75 reinforcement in the soil fabric due to particle rearrangement. Post-erosion drained behaviour 

76 of the same soil mixture was also studied by Ke and Takahashi (2015). Results indicated that 

77 depending on the initial fine content, the post-erosion drained shear strength may stay 

78 unchanged or decrease.
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79 Despite these attempts to explain the post-erosion mechanical behaviour of internally unstable 

80 soils, no specific conclusion can be drawn on the impact of erosion on soil mechanical 

81 behaviour. Moreover, it appears that the impact of specimen size on the erosion of fine particles 

82 and post-erosion mechanical behaviour has been overlooked. From the few available studies 

83 on different types of internal erosion (e.g. Sellmeijer, 1988; Li, 2008; Seghir et al., 2014; Zhong 

84 et al., 2019), it is evident that the critical hydraulic gradients or hydraulic conductivity may be 

85 affected by dimensions of soil specimens although the exact impact was unclear. For instance, 

86 while Seghir et al. (2014) believed that internal erosion was independent of specimen length, 

87 Sellmeijer (1988) and Li (2008) suggested that the required hydraulic gradient for initiation of 

88 erosion had an inverse relation with the seepage length. More recently, Zhong et al. (2019) 

89 showed the critical hydraulic gradient decreases with the size of the specimen increasing.

90

91 This paper discusses results of a series of undrained triaxial tests on eroded specimens with 

92 different dimensions subjected to downward seepage inflows while comparisons are made with 

93 undrained behaviour of non-eroded specimens. 

94

95 Testing Program

96

97 Gap-graded soil specimens with an initial fine content ( ) of 25 per cent were prepared to 𝐹𝐶𝑖

98 investigate the impact of fine particle removal on the post-erosion behaviour of an internally 

99 unstable soil. An initial fine content of 25 per cent was chosen as it is believed that contribution 

100 of fine particles in the soil stress matrix is uncertain when the fine content is in the density-

101 dependent transitional zone (i.e. between 25 and 35 per cent), with fines being active, semi-

102 active or inactive (Shire et al., 2014). The particle size distribution and physical properties of 

103 the soil mixture are shown in Fig. 1 and Table 1. The minerology of particles is predominantly 
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104 quartz and Mehdizadeh et al. (2017a) showed that angularity of particles in coarse fraction is 

105 higher than that of fine fraction which may enhance the erosion resistance as stated by Marot 

106 et al. (2012). On the other hand, erosion of the more rounded fines will lead to an overall 

107 increase in the average angularity of particles and therefore an increase in post-erosion 

108 interlocking. The internal instability of this gradation was examined based on methods 

109 developed by Kezdi (1969), Kenney and Lau (1986), Burenkova (1993) and Indraratna et al. 

110 (2011) showing that the soil mixture is internally unstable.

111

112 <<Insert Fig 1 about here>>

113

114 <<Insert Table 1 about here>>

115

116 The soil specimens with diameters of 50, 75 and 100 mm were compacted layer by layer using 

117 the moist tamping technique (Mehdizadeh et al, 2017a), adjusting the thickness of soil layers 

118 to ensure that the soil layers in samples with different height still receive almost the same 

119 compaction energy. To achieve a high level of saturation, carbon dioxide was injected at the 

120 bottom of the specimen using a flow controller at the low rate of 1 L/min for two hours while 

121 the cell pressure was maintained constant. The cell and back-pressure were gradually increased 

122 at a rate of 1 kPa/min to 400 and 390 kPa respectively to reach the fully saturated (B-value of 

123 0.91). All specimens were consolidated to 150 kPa after full saturation to remove the footprint 

124 of sample preparation (Frost and Park, 2003) and then a downward seepage flow was applied 

125 to the top of the specimen for two hours. The eroded soil mass was collected in a collection 

126 tank, allowing the fines content to be calculated throughout the test. The collection system was 

127 designed to collect and measure the eroded particles continuously and also to record their 

128 weights, to discharge water from the triaxial chamber and to keep the bottom of the sample 
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129 saturated. The collection tank was a double wall tank with a measuring container submerged 

130 under a stable water level inside a cell (inner cell) and connected to a submersible load cell 

131 (with 10g resolution). The water level at the top of this cell was kept constant by discharging 

132 the water from the inner cell into the main chamber via drainage holes in the wall of the inner 

133 cell. The air above the water was pressurized to the back-pressure applied to the specimen 

134 during the test. Details of the modified apparatus, testing procedure and repeatability of tests 

135 result were discussed thoroughly by Mehdizadeh et al. (2017a). Testing was performed in four 

136 stages as shown in Table 2. It is currently a matter of discussion as to whether seepage velocity 

137 or hydraulic gradient should be used to predict the onset of suffusion (Vogt et al., 2015). 

138 Richards and Reddy (2008) believed that assuming Darcy’s law is applicable during the 

139 seepage, an increase in hydraulic gradient leads to a decrease in hydraulic conductivity at a 

140 constant flow. Considering this effect, they suggested considering only critical hydraulic 

141 gradient for cohesionless soils may not be correct. Ke and Takahashi, (2014) stated that there 

142 is no method to accurately control and measure the head loss in tubes, valves and fittings during 

143 a laboratory erosion testing which is necessary if constant hydraulic gradient method is 

144 employed. Sibille et al. (2015) took both seepage velocity and hydraulic gradient into account 

145 to characterize the hydraulic load by computing the power expended by the seepage flow. The 

146 great influence of hydraulic loading path on the suffusion development was reported by 

147 Rochim et al (2017). Considering these limitations, it was decided to keep the seepage velocity 

148 constant instead of maintaining the hydraulic gradient during the erosion phase. Here, a flow 

149 controller was used to maintain a constant seepage velocity in preference to a constant 

150 hydraulic gradient. The inflow increased gradually to the designated velocity and then was kept 

151 constant for two hours (Fig. 2). 

152
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153 The initial hydraulic conductivity of the soil samples was around 0.075 cm/s based on the 

154 equation proposed by Carrier (2003) which is in the range of coarse sand as expected. Three 

155 seepage velocities of 0.086 cm/s (52 mm/min), 0.153 cm/s (92 mm/min) and 0.347 cm/s (208 

156 mm/min) were applied to the top of the samples via a perforated top cap filled with glass beads 

157 to ensure that the flow was applied as uniformly as possible. Flow velocities and applied 

158 hydraulic gradients (Table 2) were comparable with previous studies (Marot et al., 2010; Chang 

159 and Zhang, 2012; Ke and Takahashi, 2015).

160

161 <<Insert Table 2 about here>>

162

163 <<Insert Fig 2 about here>>

164

165 Tests result and Discussion

166

167 Impact of Erosion on the Fine Content

168

169 According to Kenney et al., (1985) and Indraratna et al., (2007), the controlling constriction 

170 size of the tested mixture in this study is in the range 0.28 to 0.3 mm. This means that the 

171 largest fine particles (in range of 0.075 - 0.3 mm) should just be able to move through the 

172 sample under seepage forces. The normalized residual fine content (  where  is the 𝐹𝐶𝑐/𝐹𝐶𝑖, 𝐹𝐶𝑐

173 current residual fine content and  is the initial fine content) with time for test series one to 𝐹𝐶𝑖

174 three is shown in Fig. 3. For the first series of tests, three specimens with diameters of 50, 75 

175 and 100 mm were prepared and subjected to a seepage velocity of 52 mm/min for 120 minutes. 

176 As each erosion test progressed, it was noted that the rate of erosion for all three specimens 

177 decreased, and erosion was seen to stop by the end of the test. The rate of erosion and maximum 
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178 percentage of the eroded particles were similar for the 75 and 100 mm diameter specimens (~ 

179 45% of fines eroded). However, the 50 mm diameter specimen showed significantly larger 

180 erosion (66%) despite having similar sample preparation and test procedures, suggesting that 

181 the difference is not due to soil fabric. Two possible reasons for the difference are suggested. 

182 The first scenario is attributed to the higher possibility of clogging inside the larger specimens. 

183 Following work by Kenney et al. (1985) that in a soil containing a range of constriction sizes, 

184 the chance of a fine particle encountering a smaller constriction increases with the length of a 

185 flow path. Fig. 4 shows the effective Constriction Size Distribution (CSD) at different heights 

186 in the sample according to the method suggested by Kenney et al (1985) with the CSD 

187 calculated according to Locke et al. (2001).  An assumption of  as the layer spacing is used, 𝐷50

188 as suggested by Wu et al., 2012 and Taylor et al., 2019 (  is the particle diameter in which 𝐷50

189 50 per cent by weight of coarser particles passed). It is evident from Fig. 4 that as sample length 

190 increases the effective CSD becomes finer which increases the chance of clogging. This is in 

191 agreement with the finding in this research that a higher proportion of particles was eroded 

192 from smaller samples. Fig. 4 also shows that there is not much difference in CSD for fine 

193 particles 115.6 mm and 198.9 mm away from the base (exit point). This confirms the 

194 experimental observation that erosion of fine particles in larger samples were similar in terms 

195 of trend and magnitude. The second reason is related to inadequate seepage forces to carry the 

196 eroded particles along the larger specimens, which can lead to particle sedimentation in the 

197 downstream before washing particles out completely. However, clogging is believed to be the 

198 dominant cause. 

199

200 <<Insert Fig 3 about here>>

201

202 <<Insert Fig 4 about here>>
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203 In the second test series, a 75 mm diameter specimen (E-D75-V92-T120) was eroded under a 

204 higher seepage velocity (92 mm/min) for two hours (Mehdizadeh et al., 2017b). The residual 

205 fine content ( ) of 10.1 per cent was very close to the residual fine content of the 50 mm 𝐹𝐶𝑓

206 diameter specimen E-D50-V52-T120 in the first series of testing. The specimen with a larger 

207 diameter but  higher seepage velocity (E-D75-V92-T120) initially had a lower rate of erosion, 

208 but this increased after around 15 minutes.  Both specimens showed similar trends 30 minutes 

209 after the seepage initiation until the end of the erosion phase. This meant that initial clogging 

210 was more severe inside the larger specimen but after a delay, the higher seepage force allowed 

211 this to be overcome. This is interesting as theoretically it is expected to get more eroded 

212 particles under a higher seepage velocity when other influential factors such as fabric, initial 

213 condition and sample preparation are kept the same. 

214

215 In the third test series, the maximum applicable seepage velocity of 208 mm/min was applied 

216 to the 50 mm diameter specimen for 120 minutes to erode the maximum possible proportion 

217 of fine particles, leading to 6.9 per cent residual fine content. Fig. 3 shows that regardless of 

218 the specimen dimensions and seepage velocity, the rate of erosion of fine particles greatly 

219 reduced despite the fact that the residual fine contents were different, and it can therefore be 

220 assumed that the majority of the inactive and semi-active particles were removed. 

221

222 It is believed that inactive fine particles (sitting loose in the voids with minor participation in 

223 the force chains) are the most vulnerable to suffusion. A percentage of these free particles are 

224 washed out of the specimen, while a number of them are clogged inside the specimen. By an 

225 increase in the seepage velocity, semi-active fine particles (providing lateral support or 

226 secondary support for the coarse grains) become susceptible to suffusion if the applied 

227 hydraulic stress is high enough to overcome the current effective stress on these particles. 
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228 Moreover, some of the particles clogged under a lower seepage velocity are also become prone 

229 to erosion under higher hydraulic forces. This is a plausible scenario that explains the behaviour 

230 of specimens with the same dimensions but subjected to different seepage velocities (E-D75-

231 V52-T120 and E-D75-V92-T120). Fig. 3 also shows that even under the maximum seepage 

232 velocity (test E-D50-V208-T120), it was not possible to erode all fine particles. This could be 

233 because of full contribution of the remaining fine particles (active particles) in the soil skeleton. 

234 Fig. 5 schematically displays erosion progress and particle rearrangement. Fig. 5 (a) shows the 

235 initial condition of the fine and coarse particles and the stress transferring mechanism. Free 

236 fine particles were washed first due to the seepage flow (Fig. 5 (b)), semi-active fines started 

237 to migrate where locally higher hydraulic gradients were raised due to clogging and released 

238 new free fine particles (Fig. 5 (c)). Metastable force chains were formed after the erosion of 

239 the semi-active fine particles (Mehdizadeh and Disfani, 2018) which led to local coarse particle 

240 rearrangements and vertical deformations (Fig. 5 (d)).

241

242 <<Insert Fig 5 about here>>

243

244 Impact of Erosion on the Global Void Ratio and Particle Size Distribution

245

246 The initial global void ratio was calculated using the soil phase relationship. The post-erosion 

247 global void ratio was estimated from the total volume of the eroded sample (calculated using 

248 deformations from the photogrammetry technique), the mass of eroded particles and the 

249 specific gravity. The erosion of fine particles increased the pre-erosion global void ratio of 0.48 

250 to post-erosion values of 0.66, 0.6 and 0.61 for specimens E-D50-V52-T120, E-D75-V52-T120 

251 and E-D100-V52-T120, respectively. The smallest soil specimen (E-D50-V52-T120) showed 

252 a higher post-erosion global void ratio although it was subjected to the same seepage 
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253 experienced by the two other specimens. This was due to removal of more fine particles for 

254 specimen E-D50-V52-T120 during erosion. 

255

256 Pre and post-erosion particle size distributions (PEPSD) of eroded specimens (E-D50-V52-

257 T120, E-D75-V52-T120 and E-D100-V52-T120) are shown in Fig. 6. Specimens with 50 mm 

258 diameter were divided into two parts and those with 75 mm and 100 mm diameters were 

259 divided into three parts for PEPSD analysis. Top, middle and bottom PEPSDs were similar for 

260 E-D75-V52-T120 and E-D100-V52-T120, which also had similar global void ratios and 

261 residual fine contents. Regardless of sample dimension, the fine content decreased along the 

262 height of the specimens and the top region of the soil specimens lost more fine particles under 

263 downward seepage which was found to be in agreement with result of Ke and Takahashi (2012) 

264 and Zhong et al. (2018). 

265

266 <<Insert Fig 6 about here>>

267

268 Impact of Erosion on Vertical Deformation

269

270 Vertical strains during the erosion phase were measured at five-minute intervals using the 

271 photogrammetry technique (Mehdizadeh et al., 2017a) and are shown in Fig. 7. All specimens 

272 experienced vertical strain during erosion phase; a sign of erosion of semi-active fines and local 

273 breakage of force chains. Interestingly, all specimens experienced a rapid increase in vertical 

274 strain at the beginning of seepage when the inflow velocity was very low. Almost all specimens 

275 showed step-wise changes in the vertical strain. Although the erosion rate and residual fine 

276 content were similar for the 75 and 100 mm specimens (E-D75-V52-T120 and E-D100-V52-

277 T120), the vertical strain was larger in the 100 mm sample. The experiments here and the 
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278 analyses based on the method suggested by Kenney et al. (1985) both suggest that the larger 

279 the sample is, the higher is the chance of clogging, leading to fewer eroded particles (i.e. those 

280 transported by seepage) being washed out of the sample. As fines are more likely to meet a 

281 small constriction as the flow paths are longer. However, the pattern of vertical deformation 

282 mainly depends on the erosion of semi-active fine particles and the consequent buckling of the 

283 force chains. As force chain buckling is caused by local transport of semi-active fines, rather 

284 than them being washed out of the sample, there is not necessarily a relationship between fines 

285 eroded and vertical strain.

286

287 <<Insert Fig 7 about here>>

288

289 Impact of Erosion on Post-erosion Undrained Behaviour

290

291 The undrained stress-strain relationship up to 15 percent strain, induced excess pore pressure 

292 and stress path of all tested specimens are presented and compared in Fig. 8. To draw a better 

293 conclusion, additional erosion tests results for the same initial PSD presented by Mehdizadeh 

294 et al. (2017b) (E-D75-V52-T30 and E-D75-V92-T30) on 75 mm diameter samples are also 

295 included. Comparing tests result indicates that the post-erosion undrained behaviour of soil 

296 specimens regardless of seepage velocity and duration can be divided into three main groups. 

297 Specimens E-D75-V52-T30, E-D75-V52-T120 and E-D75-V92-T30 (Fig. 8 (a)) showed 

298 similar stress-strain relationship (similar initial peak and ultimate shear strength) and induced 

299 excess pore pressures during undrained shearing with different residual fine contents and global 

300 void ratios but with the same post-erosion intergranular void ratios ( ,  is the global 𝑒𝑔 =
𝑒 + 𝐹𝐶
1 ― 𝐹𝐶 𝑒

301 void ratio and  is the fine content (Mitchell (1993)). The intergranular void ratio was found 𝐹𝐶

302 to be approximately 0.9 for these specimens after erosion. Specimens E-D75-V92-T120, E-
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303 D50-V52-T120 and E-D50-V208-T120 (Fig. 8 (b)) had similar post-erosion intergranular void 

304 ratios of 0.84-0.86 and showed similar behaviour (similar initial peak and ultimate shear 

305 strength). The residual fine content was recorded as 10.1, 10.2 and 6.9 per cent, respectively. 

306 The erosion of just an additional 3.3 per cent fine content was observed for specimen E-D50-

307 V208-T120 although it was subjected to a more powerful seepage. This suggests that erosion 

308 of the additional fine particles in specimen E-D50-V208-T120 had negligible impact on the 

309 post-erosion mechanical behaviour. The undrained behaviour of non-eroded specimens (NE-

310 D75 and NE-D100) was shown in Fig. 8 (d). It is evident that while the hardening behaviour is 

311 more dominant in non-eroded specimens compared to all of the eroded specimens especially 

312 in higher stains, their initial undrained peak shear strength is lower than eroded specimens 

313 regardless of the erosion progress. The excess pore pressure is induced much quicker in the 

314 non-eroded specimens and also dropped much faster. The only exception was specimen E-

315 D100-V52-T120 which showed a similar behaviour to specimens E-D75-V52-T30, E-D75-

316 V52-T120 and E-D75-V92-T30 (Fig. 8 (a)) at small strains up to 5% then showed a hardening 

317 behaviour like specimens NE-D75 and NE-D100 at large strains. The residual fine content was 

318 similar for specimens E-D75-V52-T120 and E-D100-V52-T120, which showed similar trends 

319 in small strains (less than five per cent). However, the shear strength increased more rapidly in 

320 specimen E-D100-V52-T120 at medium and large strains. This shows that similar post-erosion 

321 particle size distribution does not necessarily lead to the same mechanical behaviour, due to 

322 sample inhomogeneity and differences in fabric. It is worth noting that the intergranular void 

323 ratio suggested by Mitchell (1993) does not consider the level of contribution of fine particles 

324 in the soil structure (their erodability potential). Therefore, it is difficult to explain how erosion 

325 of fine particles contributes to observed reductions in the intergranular void ratio. However, it 

326 seems rearrangement of coarse particles due to loss of semi-active fine particles led to vertical 

327 settlement and decrease in intergranular void ratio.
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328

329 It can be understood from Fig. 8 that with a decrease in the fine content, the softening behaviour 

330 became more dominant and the hardening behaviour in large strains decreased. However, all 

331 non-eroded and eroded specimens (regardless of sample dimension and rate of erosion) showed 

332 an “elbow” in the stress path, which signifies a transition from limited strain softening to a 

333 quasi-steady state (initial contraction followed by dilation) (Pitman et al., 1994). In other 

334 words, all specimens (eroded and non-eroded) were initially located between the Steady State 

335 Line (SSL) and Isotropic Compression Line (ICL) in space as shown by 𝑒 ― 𝑙𝑜𝑔𝑝′ 

336 Thevanayagam and Mohan (2000). The mobilized friction angle at initial peak shear stress (𝜑′𝑃𝑆

337 ), at the start of dilation (phase transformation, ) and at steady state ( ) have been 𝜑′𝑃𝑇 𝜑′𝑆𝑆

338 determined for all tested specimens using the axisymmetric principal stress ratio (M) (M is the 

339 ratio between q and p´ (Table 3). It was found that the mobilized friction angle at the steady 

340 state was higher than the mobilized friction angle at initial peak shear stress and at phase 

341 transformation state thanks to an increase of dilatancy in large strains regardless of the 

342 specimen status in terms of erosion progress and size. It is also evident from Fig. 8 (d, e and 

343 f) and Table 3 that all specimens eventually ended up on the same Steady State Line (SSL) as 

344 suggested by Yang et al. (2006a) for sand-silt mixtures with various non-plastic fine contents.

345

346 <<Insert Fig 8 about here>>

347

348 <<Insert Table 3 about here>>

349

350 To consider the contribution of active (which can also be considered as non-erodible) fine 

351 particles in the soil structure in terms of active grain contacts, Thevanayagam et al. (2002) 

352 proposed a density variable called equivalent intergranular contact index  ((𝑒𝑐)𝑒𝑞 =
𝑒 + (1 ― 𝑏)𝐹𝐶
1 ― (1 ― 𝑏)𝐹𝐶)
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353 when FC<FCth, where the critical fine content (FCth) is a fine content above which the coarse 

354 particles are no longer in full contact with each other and b is the fraction of active fines. b=0 

355 means all fines act exactly like voids and when b=1, they are not distinguishable from host 

356 sand particles and they actively participate in supporting the soil skeleton. However, the 

357 concept of parameter b is controversial. Some researchers (e.g. Thevanayagam et al., 2002; Ni 

358 et al., 2004; Yang et al., 2006a, 2006b) believe b is constant for all mixtures with fine contents 

359 less than the critical fine content (FCth) and it only depends on grain size disparity ratio (𝑅𝑑 =

360  or particle size ratio , where  particle size of pure sand at 10% finer, 𝐷50 𝑑50) (χ = 𝐷10 𝑑50) 𝐷10

361 mean particle size of coarse fraction and mean particle size of fine fraction. This means 𝐷50 𝑑50 

362 for a specific mixture and regardless of the fine content always percentage of active fine 

363 particles is constant. On the contrary, some other researchers (e.g. Rahman et al., 2008; Nguyen 

364 et al., 2017) take into account the impact of fine content. However, Chang and Deng (2019) 

365 showed that b only depends on  and effective stress and is independent of fines content 𝐷50 𝑑50

366 for mixtures with small grain size disparity ratio. 

367

368 The parameter b for the mixture tested in this research can be estimated from the test result on 

369 specimen E-D50-V208-T120. Here, it is assumed that all erodible particles were washed out in 

370 the sample with 50 mm diameter under the seepage velocity of 208 mm/min (the maximum 

371 applicable in the lab) under a two-hour seepage, when it can be seen that erosion rate 

372 approached zero (Fig. 3). The applied seepage was unable to erode all fine particles and 6.9 

373 percent was left unwashed at the end of the erosion. By this assumption, 6.9% residual fine 

374 content were all non-erodible fine particles and were fully active in the force chains. Therefore, 

375 the b parameter is the ratio of active fine particles (6.9%) to total fine particles (25%), i.e. 𝑏

376 . This is in relatively good agreement with calculated b in the range of 0.25-0.4 for the = 0.28

377 mixtures with the same  using semi-empirical expressions proposed by Rahman et al. 𝐷50 𝑑50
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378 (2011) and Chang and Deng (2019). b can be estimated for all eroded specimens using their 

379 residual fine contents and an assumption that 6.9% of fines are initially active (Fig. 9 (a)). 

380 Although the amount of active fine particles can be assumed to be constant in all eroded and 

381 non-eroded specimens, the parameter b, which is a proportion of the total fine content 

382 contributing to load transfer, cannot be constant. Using the calculated b and residual fine 

383 content, the equivalent intergranular contact index  can be calculated for each specimen (𝑒𝑐)𝑒𝑞

384 at the beginning of the undrained shearing. Variation of peak shear stress ratio (𝜂𝑃𝑆 = 𝑞
𝑝′, 

385  with  for all where 𝑞 and 𝑝′are deviator and mean effective stresses, respectively) (𝑒𝑐)𝑒𝑞

386 tested specimens is shown in Fig. 9 (b). The  increased initially with a decrease in  (a 𝜂𝑃𝑆 (𝑒𝑐)𝑒𝑞

387 decrease of the residual fine content down to 15.1 per cent) and then decreased with further 

388 reduction in equivalent intergranular contact index (decrease in the residual fine content down 

389 to 6.9 per cent). Mehdizadeh et al. (2017a) showed that for the soil mixture used in this research 

390 coarse particles were more angular than fine particles. Therefore, the initial improvement in 

391 the undrained shear strength (initial peak shear stress,  in Table 3) could be due to a better 𝜑′𝑃𝑆

392 interlock between the coarse particles but without the loss of semi-active fine particles which 

393 helps to prevent collapse at small strains. However, further erosion resulted in rearrangement 

394 of the coarse particles and loss of semi-active fine particles leading to formation of a metastable 

395 structure and a higher tendency to contractive behaviour. It is worth noting that the initial peak 

396 shear strength and in particular equivalent intergranular contact index vary over a small range. 

397 More experiments are required to validate this finding and establish a relationship between 

398  and fine particles with different levels of contribution in the soil structure, fabric changes (𝑒𝑐)𝑒𝑞

399 and re-deposition of fine particles due to clogging. 

400

401 <<Insert Fig 9 about here>>
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402

403 Conclusion 

404

405 The influence of internal erosion on soil structure and post-erosion mechanical behaviour of an 

406 internally unstable gap-graded soil of different specimen size and flow velocity was examined 

407 through laboratory investigation. The following points were the most important findings of this 

408 research:  

409

410 - A step-wise trend was observed in the vertical strains during the erosion phase, which 

411 is believed to be due to erosion of semi-active fines that provided lateral support for the 

412 force chains. 

413 - Under the same seepage velocity and duration, the erosion of fine particles decreased 

414 with an increase in length of specimen, due to higher potential of clogging for eroded 

415 particles that travel a longer distance.

416 - Strain softening behaviour becomes more dominant with a decrease in the residual fine 

417 content due to internal erosion.

418 - The experiments suggested that regardless of dimension of the soil specimens, inflow 

419 velocity and seepage duration, specimens with the same post-erosion intergranular void 

420 ratios showed similar undrained behaviour. However, more erosion-triaxial tests on 

421 samples with different fabrics need to be conducted to draw a clearer conclusion.

422 - It was found from the experiments in this study that erosion of fine particles up to 15% 

423 of the overall sample mass improved the initial undrained peak shear strength. This 

424 positive impact later degenerated when a greater percentage of fine particles were lost. 

425 However, more validation is required. 
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426 - It seems the initial undrained shear strength is affected by equivalent intergranular 

427 contact index. However, more experiments are required to validate this finding.

428 - Suffusion was found to have minimal impact on the steady state line of the mixture 

429 studied in this experiment and it seems to be independent of the residual fine content.

430 - The mixture in this study had coarse and fine particles with different angularities. 

431 Erosion of fine particles may change the global interlocking of particles and post-

432 erosion behaviour. Impact of particle shape on erosion and post-erosion behaviour 

433 needs further investigation. 

434
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553 Figure Captions:

554 Fig 1. Particle size distribution of the tested soil sample (After Mehdizadeh et al., 2017a)

555 Fig 2. Variation of inflow velocity with time

556 Fig 3. Variation of normalized residual fine content with time

557 Fig 4. Effective Constriction Size Distribution (CSD) at different heights in the sample 

558 according to the method suggested by Kenney et al (1985)

559 Fig 5. Progress of internal erosion (a) Initial condition, (b) Erosion of the free fines, (c) Erosion 

560 of the semi-active fines and providing new free fines and (d) Particles rearrangement and 

561 vertical deformation with residual active fines

562 Fig 6. Particle size distribution plots for post-erosion specimens at different regions for (a) E-

563 D50-V52-T120, (b) E-D75-V52-T120 and (c) E-D100-V52-T120

564 Fig 7. Vertical strains during erosion phase

565 Fig 8. Impact of internal erosion on undrained stress-strain relationship, induced excess pore 

566 pressure and stress path of eroded and non-eroded specimens during undrained shearing

567 Fig 9. (a) Variation of the parameter b with residual fine content and (b) Variation of peak 

568 shear stress ratio with equivalent intergranular contact index 
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569 Table Captions:

570 Table 1. Physical properties of tested soil sample (After Mehdizadeh et al., 2017a)

571 Table 2. Erosion-triaxial testing program

572 Table 3. Mobilized friction Angle
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Table 1. Physical properties of tested soil sample (After Mehdizadeh et al., 2017a)

a: Controlling constriction size (Kenney et al., 1985 and Indraratna et al., 2007)
b: D'15 is the particle diameter in which 15 per cent by weight of coarser particles passed and d'85 is the particle diameter in which 
85 per cent by weight of fine particles passed. Soils with (D'15/d'85) > 4 are considered internally unstable (Kezdi, 1969).
c: F is the passed fraction by weight finer than d, and H is the weight fraction between d and 4d (Kenney and Lau 1985, 1986).

Physical property Value Physical property Value

Maximum void ratio, emax 0.67 D*, (mm)a 0.28 - 0.3

Minimum void ratio, emin 0.36 Initial Void Ratio, ei 0.48

Initial Moisture Content, MC (%) 6 Relative Density, Dr (%) 60

Uniformity coefficient, Cu 12.14 (D'15/d'85)b 5.2

Gap ratio, Gr 3.93 (H/F)min
c 0.08
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Table 2. Erosion-triaxial testing program

Test 
Series Sample Label

Sample 
Diameter 

(mm)

Sample 
Height 
(mm)

Seepage 
Velocity 

(mm/min)

Hydraulic 
Gradienta

Erosion 
Duration 

(min)

CIUb 

Test

E-D50-V52-T120c 50 115d 52 1.15 120 Yes

E-D75-V52-T120e 75 150 52 1.15 120 Yes1

E-D100-V52-T120 100 200 52 1.15 120 Yes

2 E-D75-V92-T120e 75 150 92 2.04 120 Yes

3 E-D50-V208-T120 50 115 208 4.6 120 Yes

NE-75f 75 150 - - - Yes
4

NE-100 100 200 - - - Yes
a: assuming Darcy’s Law and having initial hydraulic conductivity of 0.075 cm/s
b: Isotropically Consolidated Undrained Triaxial Test
c: E-D50-V52-T120 means E (Eroded)-D (Diameter (mm))-V (Seepage velocity (mm/min))-T (Seepage duration (min))
d: This sample had a height to diameter ratio of 2.3 which was higher than other specimens. It was attributed to the height of the 
mould.
e: Reported by Mehdizadeh et al. (2017b)
f: NE-50 means NE (Non-Eroded)-D (Diameter) and reported by Mehdizadeh et al. (2017a)
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Table 3. Mobilized friction Angle 

Specimen
𝐹𝐶𝑓 
(%)

 (°)𝜑′𝑃𝑆  (°)𝜑′𝑃𝑇  (°)𝜑′𝑆𝑆

E-D75-V52-T30 19.8 27 30 32

E-D75-V52-T120 15.9 27 29 32

E-D75-V92-T30 18.6 27 30 32

E-D100-V52-T120 15.1 30 30 32

E-D50-V52-T120 10.2 25 29 32

E-D50-V208-T120 6.9 24 29 32

E-D75-V92-T120 10.1 27 30 32

NE-75 25 26 30 32

NE-100 25 25 27 32
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