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Abstract
We use the Fourier transform and Snell’s law to demonstrate how refraction at a flat interface
induces astigmatism and transforms the spatial distribution of a stigmatic beam. Refraction
makes the beam parameters for the transverse dimensions perpendicular and parallel to the
plane of incidence grow differently and gives rise astigmatism. The decompositions of the
orbital angular momentum of the beam before and after refraction are different. A single-value
state of orbital angular momentum of the incident photon in a Laguerre–Gaussian mode is
transformed into a superposition state.
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1. Introduction

It is well established that an optical beam with a helical
phase front, characterized by an azimuthal phase depend-
ence of exp(ilϕ) of its transverse spatial profile, carries an
orbital angular momentum (OAM) of ℏl per photon [1–3].
The OAM light has attracted a lot of interest in the fields of
quantum optics and quantum information in recent years as
it is regarded as a physical realization of higher-dimensional
quantum systems [4, 5], which enable us to go beyond two-
dimensional Hilbert spaces. It has been demonstrated that
high-dimensional OAM light can be used to enhance many
quantum information protocols [4–7]. One obvious advant-
age is that it offers a considerable increase in data capacity
per photon as more information can be encoded into high-
dimensional OAM-alphabets for communication systems [5].
Additionally, high-dimensional quantum systems are known
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to improve the security in quantum cryptography, and they are
required to realize some quantum protocols and quantum com-
putation [5–9].

A Dove prism is a well-known optical element ubiquit-
ously found in optical experiments as it is used to invert
an image. Dove prisms are used extensively in many optical
setups of quantum information protocols using OAM light,
as they change the helical phase front of the input beam
in such a way that the OAM of the beam changes its sign,
from ℏl to −ℏl, and vice versa. However, it has been shown
that Dove prisms actually induce astigmatism in the output
beam [10]. The incident beam in a Laguerre-Gaussian (LG)
mode with a topological charge l is transformed into a super-
position of LG beams after it passes through a Dove prism,
instead of the expected LG beam with the inverse topological
charge−l [10, 11]. This undesired change of the orbital angu-
lar momentum increases the error rate in quantum informa-
tion algorithms and protocols that make use of Dove prisms
without being aware of this effect. In order to cope with this
problem, it has been suggested that we need to limit ourselves
to less strongly focused beams with very long Rayleigh length
compared to the size of the Dove prism in order to suppress
the astigmatic effect, or we have to make use of compensation
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schemes such as appropriate arrangement of cylindrical
lenses [10].

The next question is that if other optical elements we nor-
mally use in OAM experiment setups can also give rise astig-
matism in the beam and cause errors in OAM-based proto-
cols. In [12], Baues has demonstrated that a stigmatic Gaus-
sian beam turns out to be astigmatic after the beam is refracted
at a flat interface between two media having different refract-
ive indices with a nonzero angle of incidence. The transform-
ation of the Gaussian beam parameter is also provided. This
indicates that, in each refraction of the beam, astigmatism is
produced. This suggests that it is not just Dove prisms that
can produce this undesired effect, but any optical elements that
change the direction of optical beams by refraction can do so.

We note here that there are several situationswhere a single-
value state of orbital angular momentum is transformed into a
superposition state. For example, we can use aHeaviside phase
plate to create a superposition state of OAM [13, 14], as non-
uniform distortion of the wavefront introduces the dispersion
of orbital angular momentum spectrum. Atmospheric turbu-
lence becomes one of the main problems and challenges for
OAM-based communication in free space because it makes
the transmitted OAM mode spreading out into neighbouring
modes [15]. It has been reported that an elliptical beam can be
represented as a linear combination of multiple OAM modes
[16]. Moreover, a light beam carrying fractional orbital angu-
lar momentum can be generated via a superposition of LG
modes [17, 18]. The spin-orbit interaction within a q-plate is
studied and successfully used to produce a superposition of
helical modes controlled by the input polarization [19, 20].
Misalignment of a LG beam with respect to a reference axis
also gives rise to a spectrum of OAM states [21, 22].

In this work, we study astigmatism resulting from refrac-
tion and its effect on the OAM of the outgoing beam after it
passes through an optical element. We decompose the incident
beam as a superposition of plane waves. The refracted plane
waves are calculated from the law of refraction. The super-
position of all refracted plane waves gives the electric field
of the refracted beam. The same technique is used to calcu-
lated the electric field when the beam undergoes total internal
reflection [23]. The output beam can be expressed as a super-
position of spiral harmonics. The weights of the superposition
determine probabilities that the output photon is founded in
such harmonic modes.

The outline of this paper is given as follows. In section 2,
we demonstrate how an optical beam in a Laguerre-Gaussian
mode can be written as a superposition of plane waves whose
propagation directions and amplitudes are varied. In section 3,
we study the change of the spatial distribution of a LG beam
after it propagates through an optical element.We demonstrate
explicitly the transformation of the beam parameters. We then
determine the OAM decomposition of the output beam in sec-
tion 4.

2. Superpositions of plane waves

In this section, we demonstrate that a LG beam can be decom-
posed as a superposition of plane waves, and this method

is also known as the angular spectrum representation. For a
paraxial LG beam traveling in the z-direction in a dielectric of
real refractive index n, the Lorenz-gauge vector potential is of
the form [24]

A(r, t) = A0(αx̂+βŷ)uk,l(x,y,z)e−iωt+ikz, (1)

where A0 is a complex constant, x̂ and ŷ are unit vectors in the
transverse directions,ω is the frequency of the beam, k= nω/c,
and the complex numbers α and β determine the polarization
and satisfy the normalization condition, |α|2 + |β|2 = 1. In
general, the complex function uk,l(x, y, z) is proportional to the
associated Laguerre polynomial [1, 3], L|l|p (2(x2 + y2)/w2(z)),
where l is the topological charge of the beam, p is the radial
index and w(z) is the waist radius defined below. However, for
the sake of simplicity, we restrict ourselves to the case when
the radial index p= 0. The normalized scalar complex func-
tion uk,l(x, y, z), which describes the spatial distribution of the
beam, given in the above equation can be explicitly written as
[1, 24]

uk,l(x,y,z) =

√
2

π |l|!w2(z)

(√
2(x+ isign(l)y)

w(z)

)|l|

× exp

[
i

k
2q(z)

(x2 + y2)

]
× exp[−i(|l|+ 1) tan−1(z/zR)], (2)

where zR is the Rayleigh length which is related to the waist
radius w0 at the focal plane, the plane z= 0, as zR = kw2

0/2,
w(z) is the waist radius at the distance z from the focal
plane which is defined as w(z) = w0

√
1+(z/zR)2, and q(z) is

the beam parameter, q(z) = z− izR. The relation between the
beam parameter q(z), the waist radius w(z), and the wavefront
radius of curvature, denoted as R(z) = z(1+(zR/z)2), is given
by

1
q(z)

=
1

R(z)
+ i

2
kw2(z)

. (3)

In the paraxial regime, the two dimensional Fourier trans-
form of the vector potential in (1) is given by [23]

A(r, t) = (αx+βy)e−iωt+ikz A0

(2π)2

×
ˆ ∞

−∞

ˆ ∞

−∞
dkxdkyũl(kx,ky)

× exp

[
−iz

(k2x + k2y)

2k

]
ei(kxx+kyy), (4)

with

ũl(kx,ky)∝ (ikx− sign(l)ky)
|l| exp

[
−
(k2x + k2y)w

2
0

4

]
, (5)

where kz ≈ k− (k2x + k2y)/2k is applied. The vector potential
A(r, t) is now in the form of a linear combination of vec-
tor potentials of plane waves. Using the Lorenz gauge, the
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positive-frequency electric field of the LG beam can be written
as a superposition of plane waves as [23, 25]

E(r, t) =
´∞
−∞
´∞
−∞ dkxdkyẼ(kx,ky), (6)

with

Ẽ(kx,ky) =
iA0ω

(2π)2

{
(αx+βy)− 1

k
(αkx+βky)z

}
× ũl(kx,ky)e

−iωt+ikze−iz(k2x+k
2
y)/2kei(kxx+kyy), (7)

where the paraxial approximation has been applied, and the
terms that are in the order of k2x,y/k or higher are considered to
be negligible as their contributions are very small compared to
the leading-order terms.We call Ẽ(kx,ky) a local plane wave as
it represents a plane wave component in the superposition. The
reason to express the beam in this way is that the physics of
transmission and reflection of plane waves is well-known and
straightforward. For example, in order to determine the form of
the beam refracted at an interface between two different dielec-
tricmedia, we calculate refraction of all planewaves in (7), and
the superposition of the refracted plane waves then gives us the
form of the refracted beam as desired. For the reflected beam, it
can be determined in the same manner. We separate the terms
in (7) into two different parts: the terms in the curly bracket
and the terms outside the bracket. The first part is called the
polarization part as it determine the polarization of the local
plane wave, and we call the later part the amplitude part. The
integration of the amplitude part gives the spatial distribution
of the beam which describes the orbital angular momentum
[1, 3].

In general, the polarization and spatial properties are related
and cannot be considered separately [26]. For example, it is
fundamentally difficult to distinguish between the spin and
orbital angular momentum of nonparaxial light [27]. Spin-
orbit interactions can be observed through scattering or focus-
ing [28]. However, for a paraxial beam, its spin angular
momentum, linked to the polarization, and its orbital angu-
lar momentum, associated with the spatial distribution, can
be considered as two independent properties [28, 29]. These
two degrees of freedom are separately measurable and manip-
ulated in the paraxial limit [29, 30]. As we aim to study how
refraction produces astigmatism and transforms theOAMstate
of a LG beam, which is described by the spatial distribution,
we pay our attention to the change of the amplitude part of
local plane waves after they propagate through an optical ele-
ment.

3. The transformation of the spatial distribution

In this section, we use wave optics to demonstrate how the
spatial field distribution of an incident LG beam is transformed
after the beam propagating through a lossless dielectric optical
element whose all of its surfaces are flat. While the beam
propagating inside an optical component, it has to experience
two transmissions and may also undergo several total internal
reflections.

Figure 1. The figure shows the refraction of the input beam after it
reaches the interface of the optical component. The propagation
path of the beam is illustrated with the solid red arrow, while the
dashed arrow depicting the propagation of the local plane wave
Ẽi(kx,ky) before and after the refraction. The direction of
propagation of the local plane wave is slightly different from that of
the beam. Geometrical alignment of incidence coordinates (xi,yi,zi)
and refraction coordinates (xt,yt,zt) are shown. In the figure, the yi-
and yt- axes point outward from the paper. The focal point of the
beam is at point P, where d is the length from P to O.

3.1. First refraction

An incident LG beam, with a topological charge l, propagates
from free space to an interface of an optical element with the
angle of incidence θi as shown in figure 1. The refracted beam
travels inside the dielectric with the angle of refraction θt.
Snell’s law constrains the relation between θi and θt such that
sinθi = nsinθt, where n is the refractive index of the medium.
In the figure, the propagation path of the incident and refracted
beams are depicted by the red solid line.

In the figure, we define two local coordinate systems:
incidence coordinates (xi,yi,zi) and refraction coordinates
(xt,yt,zt). These two coordinate systems share the same origin,
at point O, at which the center of the beam hits the interface.
For the incidence coordinates, we assign the xi-axis and the yi-
axis to be parallel and perpendicular to the plane of incidence
respectively. The zi-axis, on the other hand, is defined to coin-
cide with the direction of propagation of the incident beam.
The angle between the normal vector n̂ and the zi-axis then
gives the angle of incidence. For the refraction coordinates,
we define it in such a way that the yt-axis points in the same
direction as the yi-axis, while the directions of the other two
axes, xt- and zt-axes, are given by a clockwise rotation of the
xi- and zi-axes about the yi-axis through an angle of (θi − θt).
The coordinate transformation is given by

xt = xi cos(θi − θt)+ zi sin(θi − θt), (8a)

zt =−xi sin(θi − θt)+ zi cos(θi − θt). (8b)
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The incident beam in a LG mode can be expressed as the
superposition given in (6). We assume that the beam waist of
the incident beam is located at point P on the zi-axis with
the distance d from the origin. Next, we consider a local
plane wave component of the superposition whose wave vec-
tor expressed in the incidence coordinates (xi,yi,zi) as klocali =
(kx,ky,k− (k2x + k2y)/2k). Notice that the propagation direction
of the local plane wave is slightly different from that of the
incident beam. The form of this local plane wave in the incid-
ence coordinates can be written as

Ẽi(kx,ky) =
iA0ω

(2π)2
p̂(kx,ky)ũl(kx,ky)e−iωt+ik(zi+d)

× e−i(zi+d)(k
2
x+k

2
y)/2kei(kxxi+kyyi), (9)

where p̂(kx,ky) is the terms in the curly bracket of (7) which
is the unit polarization vector of the local plane wave. The
refraction of this local planewave is described by the boundary
conditions and Snell’s law. We note here that each local plane
wave in the superposition in (6) has its own plane of incidence,
which may be slightly different from the plane of incidence of
the beam itself. The local plane of incidence of the local plane
wave Ẽi(kx,ky) is defined to be the plane that the local wave
vector klocali and the normal vector n̂ lie in. The refraction of the
local plane wave Ẽi(kx,ky) at the interface gives rise a refrac-
ted plane wave inside the dielectric. The wave vector of the
refracted plane wave is determined by using Snell’s law and
the fact that the frequency of an electromagnetic wave is not
changed by refraction as [12]

klocalt = klocali − (n̂ · klocali )n̂+ n̂
√

(n2 − 1)k2 +(n̂ · klocali )2. (10)

Applying the Taylor expansion around kx = ky = 0 up to the
second order, the wave vector of the refracted plane wave in
the refraction coordinates (xt,yt,zt) can be expressed as

klocalt =

(
kx
cosθi
cosθt

+O

(
k2x,y
k2

))
x̂t + kyŷt

+

(
nk− k2x cos

2 θi
2nkcos2 θt

−
k2y
2nk

)
ẑt. (11)

The second order of the wave vector component in the xt-
direction can be neglected, as in the paraxial limit its contri-
bution to the final result is very small compared to the other
mentioned terms. We then can write the refracted plane wave
in terms of the refraction coordinates (xt,yt,zt) as

Ẽt(kx,ky) =
iA0ω

(2π)2
pt(kx,ky)ũl(kx,ky)ei(knzt−ωt)ei(kxγxt+kyyt)

e−izt(k
2
xγ

2+k2y)/2nk × eid(k−(k2x+k
2
y)/2k), (12)

with

pt(kx,ky) = ts(kx,ky)(p̂(kx,ky) · ês(klocali ))ês(klocali )

+ tp(kx,ky)(p̂(kx,ky) · êp(klocali ))êp(klocali ), (13)

where ês(klocali ) and êp(klocali ) are defined to be unit vec-
tors perpendicular and parallel to the local plane of incid-
ence respectively, satisfying ês(klocali ) ·klocali = 0= êp(klocali ) ·
klocali , and ts(kx,ky) and tp(kx,ky) are the transmission coef-
ficients for s-polarized and p-polarized light. In (12), we
have defined γ = cosθi/cosθt. We note here that ts(kx,ky) and
tp(kx,ky) are functions of kx and ky as they depend on the angle
of incidence of the local plane wave Ẽi(kx,ky). The unnormal-
ized vector pt(kx,ky) is proportional to the polarization of the
refracted plane wave. The superposition of all refracted plane
waves gives us the form of the refracted beam

Et(r, t) =
ˆ ∞

−∞

ˆ ∞

−∞
dkxdkyẼt(kx,ky)

= iA0ωe
i(kd+nkzt−ωt)pt(−iγ−1∂xt ,−i∂yt)u

t
k,l(xt,yt,zt),

(14)

where utk,l(xt,yt,zt) is the spatial distribution of the refracted
beam. In the above equation we have used Leibniz integral
rule, so the polynomials of kx and ky are replaced by the deriv-
ative operators −iγ−1∂/∂xt and −i∂/∂yt respectively, which
makes the vector pt become a differential operator. The spatial
function of the refracted beam can be written as

utk,l(xt,yt,zt) =
1

(2π)2

ˆ ∞

∞

ˆ ∞

∞
dkxdkyũl(kx,ky)

× ei(kxγxt+kyyt)e−izt(k
2
xγ

2+k2y)/2nke−id(k2x+k
2
y)/2k

=

(
1
γ

∂

∂xt
+ sign(l)i

∂

∂yt

)|l|

I(xt,yt,zt), (15)

with the function I(xt,yt,zt) defined as

I(xt,yt,zt) =
inzR√

πγ|l|!qx(zt)qy(zt)

(
− w0√

2

)|l|−1

× exp

(
i
knx2t
2qx(zt)

+ i
kny2t
2qy(zt)

)
, (16)

where qx(zt) and qy(zt) are the beam parameters for the trans-
verse dimensions of the refracted beam, and they can be
expressed as

qx(zt) = zt + n
cos2 θt
cos2 θi

q(d),

= zt + n
cos2 θt
cos2 θi

(d− izR), (17a)

qy(zt) = zt + nq(d)

= zt + n(d− izR), (17b)

with q(d) is the beam parameter of the incident beam, given
in (3), at the refraction point, point O. As the beam paramet-
ers for the transverse dimensions parallel and perpendicular
to the plane of incidence, qx and qy, develop differently after
the refraction, it means the stigmatic beam becomes astigmatic
right after it is refracted with a nonzero angle of incidence.
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Figure 2. The optical beam experiences the total internal reflection
after entering the medium from point O in figure 1. The alignment of
the coordinates (xt,yt,zt) and (xr,yr,zr) is shown. The yt- and yr-axes
point outward from the paper. We note here that the coordinates
(xt,yt,zt) is the refraction coordinates defined in figure 1.

As mentioned, we are only interested in the orbital angu-
lar momentum of the refracted beam. In paraxial limit, it is
solely described by the spatial distribution utk,l(xt,yt,zt), not
the polarization vector of the beam. Therefore, in this work, it
is no need to determine the explicit expression of the polariz-
ation.

3.2. Total internal reflection

For some optical elements, such as Dove prisms, they force
the light beam to undergo total internal reflection in order to
traversing through them. We assume that after the first refrac-
tion the optical beam then continuously propagates inside the
medium and experiences total internal reflection, as shown
in figure 2. The previously-discussed refracted beam now
becomes the incident beam for the reflection with θ1 being the
angle of incidence. The coordinates (xt,yt,zt) shown in the fig-
ure are the same coordinates defined previously in figure 1. For
simplicity’s sake, we also assume that the plane of incidence
of the total internal reflection is identical to that of the first
refraction. We then define another coordinates (xr,yr,zr) such
that the zr-axis coincides with the propagation direction of the
beam after it is reflected from the interface. The xr- and yr-axes
are assigned to be parallel and perpendicular to the plane of
incidence. The axes of the coordinates (xr,yr,zr) are obtained
by rotating the refraction coordinates (xt,yt,zt) about the yt-
axis counterclockwise through an angle of π− 2θ1. The ori-
gin of the reflection coordinates (xr,yr,zr) is at the location
where the center of the beam hits the interface. We note here
that the origin of the refraction coordinates (xt,yt,zt) is at point
O, displayed in figure 1. The transformation between the two
coordinate systems read

xr = xt cos(π− 2θ1)− (zt − b0)sin(π− 2θ1), (18a)

zr = xt sin(π− 2θ1)+ (zt − b0)cos(π− 2θ1), (18b)

where b0 is the distance between the origin of the two coordin-
ate systems or the distance the beam travels before reaching the

reflection interface. The refracted plane wave Ẽt(kx,ky) given
in (12) now becomes the incident plane wave for this case. We
can use the law of reflection to calculate the relation between
the wave vector klocalt of the refracted plane wave Ẽt(kx,ky) and
that of the corresponding plane wave reflected from the inter-
face as [23]

klocalr = klocalt − 2(n̂ ′ ·klocalt )n̂ ′, (19)

where klocalr is the wave vector of the reflected plane wave and
n̂ ′ is a unit vector normal to the surface of reflection as dis-
played in the figure. With the expression of klocalt in the refrac-
tion coordinates (xt,yt,zt) given in (11), the wave vector of
the reflected plane wave written in the reflection coordinates
(xr,yr,zr) becomes

klocalr =−kx
cosθi
cosθt

x̂r + kyŷr +

(
nk− k2x cos

2 θi
2nkcos2 θt

−
k2y
2nk

)
ẑr. (20)

Comparing this equation with (11), we notice that, when the
beam experiences total internal reflection, the transverse com-
ponent of the wave vector in the xr-direction, which is par-
allel to the plane of incidence, changes its sign. This means
the forms of the beam’s spatial distributions uk,l before and
after the total internal reflection are almost the same except the
sign of the transverse coordinate parallel to the plane of incid-
ence, the xr-coordinate in this case. Thus, the spatial distribu-
tion urk,l of the reflected beam can be expressed in the reflection
coordinates (xr,yr,zr) as

urk,l(xr,yr,zr) = utk,l(−xr,yr,zr + b0), (21)

where the function utk,l is given in (15). This indicates that
the total internal reflection changes the sign of the topolo-
gical charge of the beam into the opposite. More detailed
information of this is given in [23]. In general, a light beam
may experience more than one total internal reflection while
traveling within an optical element. For example, a Fresnel
rhomb makes use of two total internal reflections to introduce
π/2 phase difference between the two orthogonal compon-
ents of polarization [31]. In this work, we consider only the
case when all planes of incidence of all total internal reflec-
tions are parallel to each other and also to that of the first
refraction.

3.3. Second refraction

Our aim now is to determine the form of the beam after it
departs the medium. In figure 3, we assign point O′ to be
the point where the center of the beam strikes the interface
surface and gives rise the second refraction. We assume that
the planes of incidence at the entrance point, point O, and
the exit point, point O′, are parallel to each other. In other
words, we simply limit our study to the case that all planes
of incidence are parallel to each other while the beam travers-
ing through the optical element. We define two coordinate sys-
tems (x′,y′,z′) and (xo,yo,zo) such that they share the same ori-
gin, located at O′, the x′- and xo-axes are parallel to the plane
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Figure 3. The second refraction of the beam occurs when the beam
leaves the optical element. The alignment of the two coordinate
systems (x′,y′,z′) and (xo,yo,zo) is displayed. The angles of
incidence and refraction in this case denoted by θ′ and θo.

of incidence, and the z′- and zo-axes are the propagation dir-
ections of the beam before and after it leaves the dielectric.
While the beam propagating along the way to the exit point,
O′, we assume that the beam has experienced N total internal
reflections.

Before we going further, let us summarize the previous
discussion. We have considered the plane wave component
Ẽi(kx,ky) of the superposition in (6). After the first refraction,
the plane wave Ẽi(kx,ky) gives rise to the refracted plane wave
Ẽt(kx,ky) as shown in (12). At this point, we now assume that,
as the beam propagating inside the medium, it undergoes N
total internal reflections, which makes the transverse x com-
ponent of the wave vector change the sign for N times. The
phase of the plane wave, on the other hand, also increases
while propagating inside the medium.We then obtain the form
of the plane wave before reaching the exit point, pointO′, writ-
ten in the coordinates (x′,y′,z′) as

Ẽ′(kx,ky) =
iA0ω

(2π)2
p′(kx,ky)ũl(kx,ky)ei(knz

′−ωt)

× ei((−1)Nkxγx
′+kyy

′)e−i(γ2k2x+k
2
y)z

′/2nk

× eik(nL+d)e−i(k2x+k
2
y)d/2ke−i(γ2k2x+k

2
y)L/2nk, (22)

where p′(kx,ky) is an unnormalised vector pointing in the same
direction as the polarization unit vector of the plane wave and
L is the distance that the beam uses to travel inside the medium
before the second refraction, the distance for propagating from
O toO′. The last three exponentials represent the phase that the
plane wave acquires before reaching the exit point, O′. When
the plane wave is refracted and leaves the medium, the wave
vector of the transmitted plane wave can be calculated by using
Snell’s law in the same manner mentioned previously in (10).
The wave vector of the outgoing plane wave in the coordinates
(xo,yo,zo) can be expressed as

klocalout = (−1)Nkx
cosθi
cosθt

cosθ′

cosθo
x̂o + kyŷo

+

(
k− k2x

2k
cos2 θi
cos2 θt

cos2 θ′

cos2 θo
−
k2y
2k

)
ẑo, (23)

where θ′ and θo are the angle of incidence and the angle of
refraction for the second refraction, as depicted in the figure.
The expression of the outgoing plane wave in the coordinates
(xo,yo,zo) is given by

Ẽout(kx,ky) =
iA0ω

(2π)2
pout(kx,ky)ũl(kx,ky)

× ei(kzo−ωt)ei((−1)Nkxγ̃xo+kyyo)e−i(γ̃2k2x+k
2
y)zo/2k

× eik(d+nL)e−i(k2x+k
2
y)d/2ke−i(γ2k2x+k

2
y)L/2nk, (24)

where γ̃ = (cosθi cosθ′)/(cosθt cosθo) and pout(kx,ky) is a
vector proportional to the polarization unit vector of the out-
going local plane wave. As previously mentioned, pout(kx,ky)
is not related to the orbital angular momentum of the beam
in the paraxial limit, so its explicit form is not required in this
work.We then calculate the superposition of all outgoing local
plane wave to determine the form of the outgoing beam in the
coordinates (xo,yo,zo), which is

Eout(r, t) =
ˆ ∞

−∞

ˆ ∞

−∞
dkxdkyẼt(kx,ky)

= iA0ωe
i(k(zo+d+nL)−ωt)pout(−iγ̃−1∂xo ,−i∂yo)

× uoutk,l (xo,yo,zo), (25)

with

uoutk,l (xo,yo,zo) =
1

(2π)2

ˆ ∞

∞

ˆ ∞

∞
dkxdkyũl(kx,ky)

× ei((−1)Nkxγ̃xo+kyyo)e−i(γ̃2k2x+k
2
y)zo/2k

× e−i(k2x+k
2
y)d/2ke−i(γ2k2x+k

2
y)L/2nk

=

(
(−1)N

γ̃

∂

∂xo
+ sign(l)i

∂

∂yo

)|l|

Iout(xo,yo,zo),

(26)

where the function Iout(xo,yo,zo) is defined as

Iout(xo,yo,zo) =
izR√

πγ̃|l|!q′x(zo)q′y(zo)

(
− w0√

2

)|l|−1

× exp

(
i
kx2o

2q′x(zo)
+ i

ky2o
2q′y(zo)

)
, (27)

with the beam parameters given by

q′x(zo) = zo +
1
n
cos2 θo
cos2 θ ′ qx(L),

= zo +
1
n
cos2 θo
cos2 θ ′

(
L+ n

cos2 θt
cos2 θi

(d− izR)

)
, (28a)
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q′y(zo) = zo +
1
n
qy(L),

= zo +
L+ nd− inzR

n
, (28b)

where the definitions of qx and qy are given in (17a) and (17b).
The analogy of the forms of the beam parameters shown in

the above equations and in (17a) and (17b) can be used to form
the law of transformation for the beam parameters of an optical
beam refracting at a flat surface as follows. For the transverse
dimension parallel to the plane of incidence, the transforma-
tion of the beam parameter, denoted by qx and q′x, is given by
the summation of the two distinct terms: 1.) the distance along
the propagation direction from the refraction point, which is zt
for the first refraction and zo for the second refraction, 2.) the
previous beam parameter before the refractionwith the relative
refractive index and the square of the ratio of the cosines of the
angle of refraction and the angle of incidence being the multi-
pliers. For the other transverse dimension, the transformation
is less complicated as it is just the summation of the distance
from the refraction point and the product between the relative
refractive index and the previous beam parameter.

At this point, we can see that unless the ratios of cosines,
cosθt/cosθi and cosθo/cosθ′, are unity, the beam parameters
for different transverse dimensions are not equal to each other,
q′x ̸= q′y, after the light beam leaves the medium. This indicates
that the stigmatic beam is transformed into astigmatic light.

4. OAM decomposition of the outgoing beam

In the previous section, we have shown how the refraction and
reflection change the form of the spatial distribution uk,l of the
input LG beam. In order to understand the effect of astigmat-
ism induced by refractions on the orbital angular momentum
of the beam, in this section, we aim to analyze the change of
the beam’s OAM after the beam has left the medium.

Let us consider the spatial distribution given in (2), when
the beam is in a pure spiral harmonic mode with the topo-
logical charge l, and compare it with the spatial distribution
of the output beam uoutk,l (xo,yo,zo) given in (26). We can see
clearly that, with a nonzero angle of incidence, the spatial
distribution function uoutk,l (xo,yo,zo) of the output beam is no
longer in a form of a pure LG mode. Indeed, it is a superposi-
tion of spiral harmonic modes instead as given by [11]

uoutk,l (ρ,ϕ,zo) =
1√
2π

∞∑
m=−∞

am(ρ,zo)exp(imϕ), (29)

with

am(ρ,zo) = 1/
√
2π
ˆ 2π

0
uoutk,l (ρ,ϕ,zo)exp(−imϕ)dϕ, (30)

is the coefficient of a harmonic mode with an integer topolo-
gical charge m, while the relation between the cylindrical and
Cartesian coordinates is described by xo = ρcosϕ and yo =
ρsinϕ, where ρ and ϕ are the radial and azimuthal coordinates.
The weight of the m-harmonic mode in the superposition

can be obtained by Cm =
´
ρ |am(ρ)|2 dρ. The weight Cm can

also be interpreted as the probability of detecting the output
photons having an orbital angular momentum of ℏm.

Recall that, in the previous section, we assume the total
internal reflections occur forN times while the beam propagat-
ing inside the medium. In the case that N is an even number,
the weight Cm can be written as [10, 11]

Cm =

(
w2|l|−2
0 z2R

2|l|−2γ̃ |l|! |q ′
x|
∣∣q ′
y

∣∣
)ˆ ∞

0
dρρ

× exp

[
−kρ2zR

2

(
1

γ̃2 |q ′
x|
2 +

1∣∣q ′
y

∣∣2
)]

×

∣∣∣∣∣∣
|l|∑

µ=0

(
−2
w2
0

)µ ∑
j1,j2∈π(|l|,µ)

µ!

j1!j2!

(ρ
2

)j1(∆x,y

2

)j2

Ωj1,m

∣∣∣∣∣∣
2

,

(31)

with

∆x,y =−izR

(
1

γ̃2q ′
x
− 1
q ′
y

)
, (32)

Ωj1,m =

j1∑
ν=0

(
j1
ν

)(
1
γ̃q ′

x
− sign(l)

q ′
y

)ν( 1
γ̃q ′

x
+

sign(l)
q ′
y

)j1−ν

× zj1Ri
−(3j1/2−ν)J(m−j1)/2+ν(s), (33)

when (m− j1)/2+ ν is an integer and Ωj1,m = 0 otherwise.
The second summation of (31) run over the set π(|l| ,µ), which
is denoted to be a set of all possible pairs of non-nagative
integers j1 and j2 that satisfy j1 + j2 = µ and j1 + 2j2 = |l|. In
(33), we use Jn to represent the Bessel function of the first kind
and order n with its argument s defined as

s=
kρ2

4

(
1
q ′
x
− 1
q ′
y

)
. (34)

Even though the integrand in (31) depends on zo, the weights
of the harmonic modes themselves do not change while the
beam propagating in free space [11, 32], due to the conserva-
tion of angular momentum. The summation over all weights
Cm satisfies

∑∞
m=−∞Cm = 1. On the other hand, if the num-

ber of the total internal reflections, N, is an odd number,
we replace the term i−(3j1/2−ν)J(m−j1)/2+ν(s) in (33) with
i(3j1/2−ν)J(m+j1)/2−ν(s) to obtain theweightsCm.We note here
that, with the currently available technology, the coefficients
am and the weights Cm can be measured experimentally [32].
In order to see how these equations describe the OAM decom-
position of the output beam, we consider the following given
examples.

From above equations, we can see that, if we let a LG beam
with an orbital angular momentum of ℏl per photon passes
through a dielectric slab at normal incidence, γ̃ = 1, the output
beam is still stigmatic as the beam parameters for both trans-
verse dimensions are equal to each other q ′

x = q ′
y. This makes

7
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Figure 4. The optical paths of the beams propagating in (a) the dielectric slab and (b) the Dove prism are illustrated with solid red lines.
The geometries of the optical paths indicate that γ̃ = 1.

Cm = δm,l, where δi,j is the Kronecker delta.We note here that a
stigmatic beam is always in a pure spiral harmonic mode. This
means the OAM decomposition of the light beam is preserved.
The probability of finding the orbital angular momentum per
photon ends up in any values other than ℏl is zero.

In figure 4, we display the geometries of the dielectric slab
and the Dove prism together with the optical paths of the
light beams governed by Snell’s law. The ratios of the cosines
of the angles of incidence and refraction at the entrance and
exit points are the multiplicative inverses of each other, i.e.
cosθo/cosθ′ = (cosθt/cosθi)−1, which gives γ̃ = 1. Apply-
ing this to (28a) and (28b), it indicates that the beam waist
positions of the output beam for both transverse directions dif-
fer from each other by L(1− cos2 θo/cos2 θ′)/n. We then con-
sider the casewhen the Rayleigh length zR of the incident beam
is much larger than the dimensions of the dielectric slab and
the Dove prism, so that zR ≫ L/n. Otherwise speaking, this is
the case when the difference between the beamwaist positions
for the different transverse directions is small compared to the
Rayleigh length. The beam is almost stigmatic. We find that, if
the incident beam is in an l-harmonic mode at the beginning,
after it passes through the dielectric slab (Dove prism), the
weight of the l-harmonicmode (−l-harmonicmode) is approx-
imately unity, Cl≈ 1 (C−l≈ 1). In other words, the probabil-
ity of finding the output beam having ℏl (−ℏl) orbital angular
momentum per photon is close to 1.

It becomes a different story when the sizes of these two
optical elements are comparable to the Rayleigh length. We
note that the paraxial approximation is still valid for this case.
For example, a beam with wave length λ= 600 nm and the
waist radius w0 = 40 µm is still in the paraxial regime [33].
The Rayleigh length of this beam is 8.4 mm which is compar-
able to or even smaller than the usual sizes of dielectric slabs
and Dove prisms. In this case, the astigmatism significantly
changes the OAMdecomposition of the beam as demonstrated
in figure 6. In the figure, it shows the OAM decompositions of
the out beam before and after the second refraction, given that
the incident beam is in a LGmode with l= 1. The light beam is
assumed to pass through the dielectric slab (the Dove prism)

Figure 5. The picture shows the optical path of the light beam in a
dispersive prism. In contrast to the cases of dielectric slabs and
Dove prisms, the ratios of cosines at the entrance and exit points do
not have to be the inverses of each other, which means it is not
necessary that γ̃ = 1 in this case.

in such a way that cosθi/cosθt = cosθo/cosθ ′ = 1/
√
2 and

L/n= 4zR. The OAM decompositions before and after the
beam leaves the dielectric slab (the Dove prism) is displayed
in the first (second) row of the figure. By comparing the first
and second columns in the first two rows, we can notice that
before and after the second refraction the weights Cm of the
orbital angular momentum distribute around m= l or m=−l
differently, and the reason is as follows. The first refraction
modifies the Rayleigh lengths for both transverse dimensions
unequally: zxR = (cosθt/cosθi)2z

y
R, where z

i
R is the Rayleigh

length for the ith dimension. We find that the ratio of the mag-
nitude of the Minkowski-type orbital angular momentum (see
the definition in [34, 35]), denoted by Lz, to the energy density
E of the refracted beam is larger than that of the initial beam:
|Lz|/E > |l|/ω. This leads to the asymmetric distribution of

8
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Figure 6. The distributions of the weights Cm are displayed. The
incident beam is in a LG mode with l= 1. The first column shows
the distributions of Cm before the second refraction, while the
second column illustrates the weight distributions after the second
refraction. In the figure, each row is dedicated to each optical
element. We assume that the optical paths of the beams inside the
dielectric slab and the Dove prism satisfy L/n= 4zR and
cosθi/cosθt = cosθo/cosθ ′ = 1/

√
2. On the other hand, the light

beam is supposed to pass through the dispersive prism in such a way
that γ̃ = 1/2, while the optical path inside the dispersive prism is
very small compared to the Rayleigh length: L/n≪ zR.

Cm. As γ̃ = 1, the second refraction, on the other hand, equal-
izes the Rayleigh lengths, i.e. zxR = zyR, which makes the distri-
butions ofCm after the second refraction are symmetric around
m= l or m=−l. However, the second refraction also modifies
the beam waist positions for different transverse dimensions
differently as mentioned. Because of the total internal reflec-
tion at the base of the Dove prism, the signs of the orbital angu-
lar momentum after traversing through the Dove prism and the
dielectric slab are different. From the figure, the probability
that the Dove prism changes the orbital angular momentum
per photon from ℏl to−ℏ(l+ 2) or−ℏ(l− 2) instead of−ℏl is
no longer negligible. The phase profiles of the output beams
after transversing through the dielectric slab and the Dove
prism are shown in figure 7. They are mirror images of each
other. As shown in the figure, the rates at which the azimuthal
phases ϕ of the output beams grow from 0 to 2π differ from
that of the initial beam. They grow from 3π/4 to 5π/4 slightly
slower, while changing from π/4 to 3π/4 and from 5π/4 to 7π/4
quicker.

Equilateral dispersive prisms, on the other hand, are gen-
erally used in various purposes in experimental setups such
as changing the beam direction or controlling the dispersion

Figure 7. The figure shows the phase profiles of the initial beam and
those of the beams after traversing through the dielectric slab, the
Dove prism and the dispersive prism. The dashed lines mark the
positions at which the azimuthal phase ϕ equal to π/4, 3π/4, 5π/4
and 7π/4.

[36]. From the optical path shown in figure 5, we find that,
in general, unlike the previous case, the ratios of cosines
may not cancel out each other, which gives γ̃ ̸= 1. The OAM
decomposition of the beam after traversing through a prism is
changed remarkably, even though the optical path L inside the
medium is very small compared to the Rayleigh length zR of
the input beam. In figure 6, we provide the OAM decomposi-
tion for the output beam after it traveling through the dispers-
ive prism, given again that the input beam is in a LG mode
with l= 1. We consider the case when γ̃ = 1/2 and L/n≪ zR.
The weightsCm of the OAM superposition are asymmetrically
distributed around m= l. As mention, the asymmetric distri-
bution of Cm arises because the Rayleigh lengths in different
transverse dimensions are unequal, zxR ̸= zyR. In figure 7, the
phase profile of the beam after traveling through the dispers-
ive prism is displayed. It is considerably different from those
in the previous cases. The azimuthal phase of the output beam
grows from 3π/4 to 5π/4 quicker than that of the initial beam,
while it changes from π/4 to 3π/4 and from 5π/4 to 7π/4 dis-
tinctively slower.We note that, in the minimum-deviation con-
figuration of the light beam, i.e. γ̃ = 1, the distribution of the
OAM decomposition of the output beam is symmetric around
m= l in the same way as the case of the dielectric slab.

At this point, we can summarize that astigmatism caused
by refraction changes the OAM decomposition of the beam.
Without awareness of its effect, the undesired transformation
of the OAM state can introduce errors to the realization of
the quantum algorithms and protocols that make use of Dove
prisms and dispersive prisms, to manipulate the OAM state of
photons or to change the propagation direction. The compens-
ation scheme or error correction is required.

5. Conclusion

We have demonstrated theoretically, with wave optics, that
refraction with non-zero angles of incidence can induce astig-
matism to a stigmatic OAM beam. Each refraction makes the
beam parameters for the two orthogonal transverse dimensions
develop differently along the propagation path of the beam.
This effect transforms a well-defined OAM state of photons
into a superposition of OAM states after refraction.
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