Spontaneous formation of autocatalytic sets with self-replicating inorganic metal oxide clusters

Miras, H. N. , Mathis, C., Xuan, W., Long, D. , Pow, R. and Cronin, L. (2020) Spontaneous formation of autocatalytic sets with self-replicating inorganic metal oxide clusters. Proceedings of the National Academy of Sciences of the United States of America, 117(20), pp. 10699-10705. (doi: 10.1073/pnas.1921536117) (PMID:32371490) (PMCID:PMC7245103)

[img]
Preview
Text
215782.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Here we show how a simple inorganic salt can spontaneously form autocatalytic sets of replicating inorganic molecules that work via molecular recognition based on the {PMo12} ≡ [PMo12O40]3– Keggin ion, and {Mo36} ≡ [H3Mo57M6(NO)6O183(H2O)18]22– cluster. These small clusters are able to catalyze their own formation via an autocatalytic network, which subsequently template the assembly of gigantic molybdenum-blue wheel {Mo154} ≡ [Mo154O462H14(H2O)70]14–, {Mo132} ≡ [MoVI72MoV60O372(CH3COO)30(H2O)72]42– ball-shaped species containing 154 and 132 molybdenum atoms, and a {PMo12}⊂{Mo124Ce4} ≡ [H16MoVI100MoV24Ce4O376(H2O)56 (PMoVI10MoV2O40)(C6H12N2O4S2)4]5– nanostructure. Kinetic investigations revealed key traits of autocatalytic systems including molecular recognition and kinetic saturation. A stochastic model confirms the presence of an autocatalytic network involving molecular recognition and assembly processes, where the larger clusters are the only products stabilized by the cycle, isolated due to a critical transition in the network.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Xuan, Mr Weimin and Pow, Robert and Mathis, Dr Cole and Moiras, Professor Haralampos and Long, Dr Deliang and Cronin, Professor Lee
Authors: Miras, H. N., Mathis, C., Xuan, W., Long, D., Pow, R., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
College of Science and Engineering > School of Engineering
Journal Name:Proceedings of the National Academy of Sciences of the United States of America
Publisher:National Academy of Sciences
ISSN:0027-8424
ISSN (Online):1091-6490
Published Online:05 May 2020
Copyright Holders:Copyright © 2020 The Authors
First Published:First published in Proceedings of the National Academy of Sciences of the United States of America 117(20):10699-10705
Publisher Policy:Reproduced under a Creative Commons license

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
190217Molecular-Metal-Oxide-nanoelectronicS (M-MOS): Achieving the Molecular LimitLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/H024107/1Chemistry
166779Innovative Manufacturing Research Centre for Continuous Manufacturing and Crystallisation (CMAC)Leroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/I033459/1Chemistry
165511International Collaboration in Chemistry - Modular microtubular architectures for photo-driven water splittingLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J00135X/1Chemistry
166449Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J015156/1Chemistry
190623The Multi-Corder: Poly-Sensor TechnologyDavid CummingEngineering and Physical Sciences Research Council (EPSRC)EP/K021966/1ENG - Electronics & Nanoscale Engineering
167864Energy and the Physical Sciences: Hydrogen Production using a Proton Electron BufferLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/K023004/1Chemistry
190641Synthetic Biology applications to Water Supply and RemediationSteven BeaumontEngineering and Physical Sciences Research Council (EPSRC)EP/K038885/1Research and Innovation Services
168917A Digital DNA Nano Writer (DNA NanoFab)Leroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L015668/1Chemistry
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
172151SMARTPOM: Artificial-Intelligence Driven Discovery and Synthesis of Polyoxometalate ClustersLeroy CroninEuropean Research Council (ERC)Cronin, Professor LeroyChemistry
173546A molecular complexity approach to identifying bio-signatures, shadow-life, and new life formsLeroy CroninJohn Templeton Foundation (TEMPLFOU)60625Chemistry