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Abstract 
The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the 

greatest medical challenge in decades. We provide a comprehensive review of clinical course 

of COVID-19, its co-morbidities, and mechanistic considerations for future therapies. While 

COVID-19 primarily affects lungs causing interstitial pneumonitis and severe acute respiratory 

distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular 

system. Risk of severe infection and mortality increase with the advancing age and male sex. 

Mortality is increased by co-morbidities: cardiovascular disease, hypertension, diabetes, 

chronic pulmonary disease, and cancer. The most common complications include arrhythmia 

(atrial fibrillation, ventricular tachyarrhythmia and ventricular fibrillation), cardiac injury 

(elevated highly sensitive troponin I - hsCTnI - and CK levels), fulminant myocarditis, heart 

failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). 
Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine 

protease, binds to the trans-membrane angiotensin converting enzyme 2 (ACE2) - a homolog 

of ACE - to enter type II pneumocytes, macrophages, perivascular pericytes, and 

cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial 

dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). 

While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or 

angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not 

discontinue their use. Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors 

might be beneficial in COVID-19. Initial immune and inflammatory responses induce severe 

cytokine storm (IL-6, IL-7, IL-22, IL-17 etc.) during rapid progression phase of COVID-19. Early 

evaluation and  continued monitoring of cardiac damage (cTnI, NT-ProBNP) and coagulation 

(D-dimer) after hospitalization, may identify patients with cardiac injury and predict COVID-19 

complications. Preventive measures (social distancing, social isolation) also increase 

cardiovascular risk. Cardiovascular considerations of therapies currently used, including 

remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons and 

lopinavir/ritonavir as well as experimental therapies, such as human recombinant ACE2 

(rhACE2) are discussed. 
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Introduction 
The novel coronavirus COVID-19 outbreak, first reported on December 8, 2019 in Hubei 

province in China, was designated as a pandemic by the World Health Organization (WHO) 

on 11th March 2020. This disease, recognized as an infection with a new betacoronavirus by 

Dr. Zhang Jixian from Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 

has been spreading exponentially in almost all countries around the world. The epicenter 

shifted from China to Europe in February/March 2020 and then to the United States in 

March/April 2020. Current data presenting information on international case numbers and 

case-fatality is provided by the John Hopkins University Coronavirus Resource Center- 

https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9e

cf6 1,2. There are several other web-based resources that provide informative graphics on the 

spread of the disease and the outcomes. The pandemic of COVID-19 has multiple medical, 

psychological and socio-economic consequences. COVID-19 represents probably the 

greatest threat that societies face in the 21st century. Therefore, understanding its 

pathophysiology, clinical implications, and development of novel preventive and therapeutic 

strategies are of primary importance.  

Based on reviewing the available data in the public databases, the risk of infection and 

mortality increase with the advancing age and shows sexual dimorphism. Male elderly 

individuals are at the highest risk of infection as well as death.  

Despite the tropism for lungs where it causes interstitial pneumonitis, in the most severe 

cases, multi-organ failure develops. The cardiovascular (CV) system appears to have complex 

interactions with COVID-19. Published reports, medRxiv, bioRxiv and personal 

communications and experience of co-authors detail evidence of myocardial injury in 20-40% 

of hospitalized cases manifesting as cardiac chest pain, fulminant heart failure, cardiac 

arrhythmias, and cardiac death. Indeed, symptoms of cardiac chest pain and palpitations are 

the presenting features in some patients 3,4-6 

While COVID-19 is non-discriminatory involving both healthy and those with co-morbid 

conditions, approximately half of those admitted to hospitals in Hunan province with COVID-

19 had known comorbidities. The number of patients with co-morbid conditions increased to 

about two thirds in those requiring Intensive Care Unit (ICU) admission or those that did not 

survive. Patients with pre-existing CV conditions (hypertension in particular) had the highest 

morbidity (10.5%) following infection7,8. Non-CV comorbidities, including diabetes, lung 

diseases and obesity, the latter identified in current Italian and Dutch cohorts, are also major 

predictors of poor clinical outcomes. These aspects emphasize the importance of the need for 

multi-disciplinary assessment and treatment, including cardiovascular evaluation and therapy, 

during the course of COVID-19 to reduce mortality. In the current rapid review, we summarize 
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the state-of-the-art knowledge available currently, regarding COVID-19 focusing on key 

mechanistic and clinical aspects.  

 
Properties of SARS-CoV-2 
Coronaviruses are single stranded positive sense RNA viruses of between 26 and 32 

kilobases in length within the family Coronaviridae. There are four genera in the subfamily 

Orthocoronavirinae, including the alpha, beta, gamma and deltacoronaviruses. Of these, 

alpha and betacoronaviruses infect mammals while the gamma and deltacoronaviruses infect 

birds. There are seven coronaviruses that infect humans; the alphacoronaviruses HCoV-NL63 

and 229E, which tend to cause a mild illness in adults; the betacoronaviruses MERS, SARS, 

which cause a severe respiratory illness; and OC43 and HKU1, which are associated with a 

mild illness. An example electron microscopy of betacoronavirus is shown in Figure 1. COVID-

19 is caused by a novel betacoronavirus, probably originating from bats following gain-of-

function mutations within the receptor-binding domain (RBD) and the acquisition of a furin-

protease cleavage site. It has been named by the WHO as severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2)9.  

Coronavirus receptor binding occurs via the spike protein (encoded by the structural S gene) 

which has 2 subunits. Subunit S1 mediates binding and a trimeric S2 stalk mediates fusion to 

the infected cell. The S1 subunit is divided into two domains, the N-terminal domain (S1-NTD) 

and the C-terminal domain (S1-CTD). These regions mediate binding to a variety of cellular 

receptors containing carbohydrate or protein at their binding domains. SARS-CoV and SARS-

CoV-2 (and the alphacoronavirus HCoV-NL63) all bind via the S1-CTD to the angiotensin 

converting enzyme 2 (ACE2) receptor (Figure 2)9. SARS-CoV-2 has a higher affinity for 

binding to ACE2 than SARS-CoV and binding involves a larger number of interaction sites10, 

11. A pre-requisite for binding of SARS-CoV-2 to ACE2 is cleavage of the S protein of the virus 

by the transmembrane serine protease TMPRSS212 (Figure 2). Replication occurs via the 

RNA-dependent RNA polymerase and involves discontinuous transcription of subgenomic 

mRNAs that encode six major open reading frames common to all coronaviruses and multiple 

accessory proteins. 

 

Importantly, SARS-CoV-2 transmission occurs at a higher basic reproduction rate (R0=2-2.5) 

than SARS-CoV that caused an outbreak of severe respiratory infection in 2003 or than 

influenza13. It is associated with higher viral loads in infected people (up to a billion RNA copies 

per ml of sputum) and long-term resistance on contaminated surfaces. SARS-CoV-2 is more 

stable on plastic and stainless steel than on copper and cardboard, and viable virus may be 

detected up to 72 hours after application to these surfaces14. Patients with severe COVID-19 

tend to have a high viral load and a long virus-shedding period. This finding suggests that the 
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viral load of SARS-CoV-2 might be a useful marker for assessing disease severity and 

prognosis15. At the same time, SARS-CoV-2, pronounced nucleic acid shedding of SARS-

CoV-2 was observed for 7 days in mild cases 15. 

 

To better appreciate the links between cardiovascular disease and COVID-19, it is important 

to understand the underlying pathobiology of coronavirus infection. SARS-CoV-2 binds to the 

trans-membrane ACE2 protein (a homolog of ACE) to enter type II alveolar epithelial cells, 

macrophages and other cell types12 (Figure 2). The process requires priming of viral S protein 

by cellular serine protease TMPRSS212. Thus, infection with SARS-CoV-2 requires co-

expression of ACE2 and TMPRSS2 in the same cell type, as proteolytic cleavage of viral S 

protein is essential for binding of the virus to ACE2. Exploitation of ACE2 by coronavirus is 

important in predicting potential pathology as ACE2 is particularly highly expressed in 

pericytes, in addition to type II alveolar epithelial cells, according to the single cell human heart 

atlas16. High expression of ACE2 in pericytes could lead to development of microvascular 

dysfunction17, explaining greater propensity for acute coronary syndromes5. Moreover, ACE2 

expression is upregulated in failing human hearts, suggesting a plausible explanation for a 

higher infectivity of virus and a higher mortality in patients with heart failure. 18 Moreover, 

cellular entry of coronaviruses through ACE2 has implications for vascular instability and 

hypotension as well as increased mortality of infected patients who have pre-existing 

hypertension, albeit the latter association is confounded by the older age of patients with co-

morbidities. In addition to pathogenicity and transmissibility of the virus, these findings also 

have therapeutic implications, as inhibition of the cellular serine protease TMPRSS2 and sera 

containing blocking antibodies against ACE2, have the potential to block viral entry and hence, 

prevent or attenuate COVID-19 (Figure 2). In a murine model, TMPRSS2 inhibition blocked 

viral entry and attenuated severity of coronavirus infection with improved survival19, 20. Two 

clinical trials haves been started to test efficacy of inhibition of TMPRSS2 by Camostat 

Mesilate for the treatment of patients with COVID-2 (NCT04321096 and NCT04338906). 

 

Methodological considerations of current clinical data on COVID-19 
Our understanding of COVID-19 pathomechanisms, natural clinical history, and possible 

therapies are evolving continuously. While in this review we have collated contemporary 

literature regarding this pandemic to enable a comprehensive overview, numerous 

methodological considerations need to be taken into account regarding study design and data 

collection. The sources used to generate this review are original articles published in PubMed 

or posted on medRxiv, bioRxiv or ChinaXiv or listed in clinical trial databases (ClinicalTrial.gov 

and EudraCT). In addition, public databases such as World Health organization, Center for 

Disease Control, and Johns Hopkins Coronavirus Resource Center were utilized.  
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The early studies in a pandemic might suffer from inclusion bias. Baseline 

demographics and premorbid status of study populations are expected to reflect the 

characteristics of individuals who were exposed to the disease early in the outbreak. In 

addition, availability and access to diagnostic testing as well as a high threshold for diagnostic 

testing or hospital treatment or suitability for ICU admission, because of finite resources, are 

expected to affect characteristics of the study populations and the clinical outcomes of the 

disease. For example, a large number of health care workers and inpatients were exposed to 

COVID-19 in the hospital in the early rather than later phase in the pandemic in China21. The 

demographics of patients in the early studies from China were different from those reported 

later in the largest aggregate study of COVID-19 patients by Guan et al. in China22 (Table 1). 

Data on cardiac involvement are unfortunately not extensively presented in the study of Guan 

et al.22 

The National Health Commission of the People Republic of China (PRC) guidance23 

recommends the use of traditional Chinese medicine alongside with what is considered more 

conventional interventions. The published reports do not provide details of the traditional 

treatment regimens in patients with COVID-19. Therefore, differences in the choices of 

therapy were made and any positive/negative impacts of such interventions which may have 

influenced outcomes, might have introduced additional bias. 

Finally, it is also difficult to assess the true prevalence, occurrence, mortality and 

spectrum of the clinical course of disease because, since a proportion of inoculated individuals 

might be asymptomatic and therefore, never tested. Some in silico modelling of the infection 

expansion as well as in initial reports from Iceland and Italy suggest that an asymptomatic 

group, perhaps as high as 50% of the infected individuals (DeCODE Genetics, Iceland), likely 

exists. This finding has considerable implications in estimating the prevalence and preventing 

spread of the disease. Likewise, some reports show that up to 80% of infected individuals 

have mild symptoms and in theory represent a group that might not seek medical care – they 

might not therefore, be tested nor contribute to prevalence and case fatality rate (CFR) 

estimates. Secondly, practically all countries experience shortage of the testing kits and 

therefore, limiting the testing only to selected groups of individuals. Moreover, some deaths 

caused by SARS-CoV-2 were not attributed to COVID-19, due to the lag time when severe 

complications tend to develop even up to 2-3 weeks following the initial infection8. 

 

Clinical course of COVID 19 
The incubation period between contact and the first set of symptoms is typically 1-14 days 

(but up to 24 days in individual cases)23. The median time between registered exposure and 

first symptoms is 5.1 days with a mean of 6.1 days24. Duration of viral nucleic acid shedding 

ranges between 8 and 34 days (median -20 days) after the initial symptoms (Figure 3).  
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The main clinical symptoms develop within 11.5 days (95% CI, 8.2 to 15.6 days) and include 

fever, dry cough, fatigue, ageusia, anosmia and headache24. Other non-specific symptoms 

have also been reported, which included nasal congestion, rhinorrhea, sore throat, myalgia, 

poor appetite and diarrhea21. Fever and cough typically appear concomitantly, followed by 

shortness of breath and severe fatigue, which appear around day 6-76 and that are associated 

with development of severe bilateral (and occasional unilateral) pneumonia (Figure 4).  

The most common radiologic findings include multiple patchy shadows and interstitial changes 

in moderate disease, with consolidation, a ground glass appearance in 56.4% of cases22, and 

very occasional pleural effusions in severe cases23. In such severe cases, 

pneumomediastinum and pneumothorax have been described25, 26.  

Pathological investigations of the lungs of deceased individuals indicate blockade of 

bronchi and bronchioles with large amounts of mucus plugs and bronchial epithelial cell 

damage23. Lymphocyte and mononuclear cell infiltrates are present in alveolar septal spaces. 

Fibrinous exudate and high hyaline membranes fill alveolar cavities. Polynuclear giant cells 

are prominent. There is marked proliferation of Type II alveolar epithelial cells.  Such severe 

manifestations appear only in a fraction of patients. A recent study of COVID-19 cases in 

China reported through 28th Jan 2020 indicated that severe illness may occur in 16% of 

cases22, leading to an overall mortality rate estimated at 1.4% of the total reported cases22 to 

4.61% in the World Health Organization reports (accessed on 28th March 2020).  In some 

geographical regions, due to unexplained reasons, mortality may be higher, (current estimates  

11.9% in Italy, 9.0% in Spain and 7.9% in the UK  according to JHU Coronavirus Resource 

Center, accessed on April 2nd, 2020 2). It is important to note, however, that great care must 

be taken, when calculating fatality rates based on currently available data, as these can be 

overestimated in relation to insufficient testing in the community or under-estimated, due to 

long lag-time between test positivity and death or the fact that there are large differences in 

attributing COVID-related mortality (“dying with” versus “dying from” as well as differences in 

performing post-mortem testing). Limitations of health care systems, abruptly overwhelmed 

by a surge of patients needing mechanical invasive ventilation, have also been considered a 

potential source of the differences. Finally, these differences may result from population 

structure, as Italian patients have been older than average age reported in the Chinese 

patients.  

The typical clinical course of disease is summarized in Figure 3. The heterogeneity of 

responses between individual patients is striking. This indicates, that it is unlikely that COVID-

19 can be considered, from the point of view of a single disease phenotype.  Rather, it seems 

most likely that host characteristics, which at the moment remains unknown, promotes 

progression of the disease in more or less severe presentation e.g. mild ,severe multi organ 

failure, cytokine release storm. 
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While clinical symptoms of the disease are predominantly respiratory and associated with 

severe pneumonia, both direct and indirect involvement of other organs is common, with the 

cardiovascular system being particularly affected. Moreover, pre-existing conditions, largely 

linked to cardiovascular disease increase risk of severe outcomes of the infection.  

 

Cardiovascular risk factors associated to the worse outcome of COVID-19 
A number of key co-morbidities are associated with worse clinical outcomes in patients with 

COVID-19 (Table 1). Association with age seems to dominate this relationship22 and may 

affect the actual importance of other factors reported in the univariate analyses. Older patients 

(mean age: 63 years old; [range: 53-71]) are more likely to experience the composite endpoint 

of ICU admission, mechanical ventilation, or death compared to younger patients (mean age: 

46 years old [range: 35-57])22 (Table 1). Males seem to be more susceptible to COVID-19 

related complications, representing between 50-82% of the hospitalized patients in the four 

publications that report this data (Table 1) and most recent report from Italy27. 

Table 1 summarizes key comorbidities identified by the major studies from China showing that 

presence of pre-existing morbidities increase the severity of hospital-treated COVID-19. 

Notably, there is a large heterogeneity of reporting with some studies comparing death with 

survival while others comparing ICU with non-ICU cases (Table 1). However, regardless of 

the approach, pre-existing cardiovascular conditions seem to be particularly important 

predictors of COVID-19 severity. 

The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team recently 

analyzed all COVID-19 cases reported to the China's Infectious Disease Information System 

through February 11, 20207. The investigators found that the fatality rate for patients with no 

comorbidities was approximately 0.9%, whereas the case fatality rate was much higher for 

patients with comorbidities. This included mortality of 10.5% for patients with cardiovascular 

disease, 7.3% for those with diabetes, 6% for subjects with hypertension, 6.3% for chronic 

respiratory disease, and 6.0% for cancer28-30. It was as high as 14.8% for patients ≥ 80 years 

of age7, 30. It is interesting that in Italian and Dutch cohorts there are reports of higher severity 

in younger obese individuals as well. Severe cases accounted for 13.8%, and critical cases 

accounted for 4.7% of all cases. Of significance, cardiovascular disease (CVD) occurrence 

affects mortality rate to a larger extent than presence of pre-existing chronic obstructive 

pulmonary disease (COPD), which had not been the case in SARS7.   

These observations are confirmed by a recent meta-analysis, based largely on these studies 

and an additional 44,672 patient data set reported by China CDC28. In this large cohort, 

cardiovascular disease was reported in 4.2% of the total population and in 22.7% of those 

who died28. By extension, it is expected that comorbidities are associated with higher rates of 

hospitalization in patients with COVID-19, but any effects that comorbidities may have on 



 9 

susceptibility to infection remain conjectural: accordingly, published frequencies of these 

comorbidities in China are included in Table 1. Surprisingly, a history of smoking and of chronic 

pulmonary disease appear to be far less powerful determinants of severity in hospitalized 

patients than is the history of cardiovascular diseases. Curiously, the prevalence of smoking 

in hospitalized COVID-19 patients appears far lower than might be expected from assumed 

population prevalence and primary respiratory infection 

 

COVID-19 and hypertension 
It is not clear if hypertension is a risk factor for susceptibility to SARS-CoV-2 infection – the 

available data show prevalence rates of 15%-40%, largely in line with the rates of high blood 

pressure in the general population (approximately 30%)22, 31. At a first glance, hypertension is 

more prevalent in subjects with more severe course of the disease. In a recent analysis from 

China22, it was present in 13.4 % of subjects with non-severe disease and in 23.7% of subjects 

with severe disease. This study also included a composite outcome, which was also 

associated with a higher prevalence of hypertension in those with a poor composite outcome 

(35.8 vs 13.7%). In the cohort of 44,672 patients reported by China CDC28, hypertension 

prevalence was reported as 12.8% in the whole group of patients and 39.7% in patients who 

eventually died28. Hypertension was reported to increase odds ratio for death by 3.05 (1.57–

5.92)32 in patients with COVID-19. These associations may however be largely confounded 

by the higher prevalence of hypertension in older people, as older individuals have significantly 

worse outcomes, more severe course of the disease, and a higher mortality rate than the 

younger patients22. Thus, in summary, while hypertension does appear to be associated with 

more severe disease, a higher risk of acute respiratory disease syndrome, and increased 

mortality in unadjusted analyses, there is no strong evidence to indicate increased 

susceptibility of patients with hypertension to COVID-2, when the association is adjusted for 

other risk factors33.  

The mechanisms of this possible relationship and their clinical relevance has been reviewed 

in a recent statement of the European Society of Hypertension.33  The putative relationship 

between hypertension and COVID-19 may relate to the role of ACE2. ACE2 is a key element 

in the renin angiotensin aldosterone system (RAAS), which is critically involved in the 

pathophysiology of hypertension34. Experimental studies demonstrated that inhibition of the 

RAAS with ACE inhibitors (ACE-Is) or angiotensin II receptor blockers (ARBs) may result in a 

compensatory increase in tissue levels of ACE235, leading to suggestions that these drugs 

may be detrimental in patients exposed to SARS-CoV-2.36 It is however important to 

emphasize that there is no clear evidence that ACEI or ARBs lead to up-regulation of ACE2 

in human tissues36. Thus, currently there is no justification for stopping ACE-Is or ARBs in 

patients at risk of COVID-1933. This has now been endorsed officially by many learned 
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Societies, including European Society of Hypertension, International Society of Hypertension 

and European Society of Cardiology33.  It also appears that in experimental models some 

RAAS blockers may exert a potentially protective influence37. Indeed, while Ang II promoted 

the internalization and intracellular degradation of ACE2, losartan reduced this effect, 

suggesting that ARBs may offer protection against viral entry into cells36.  The recent 

integrative antiviral drug repurposing analysis implicated another ARB – irbesartan – as a 

potential repurposable medication for COVID-1910 . In fact, the known effect of ARBs on 

potassium metabolism may be seen as clinically advantageous in patients infected by COVID-

19 given that hypokalemia was reported as a fairly common manifestation of COVID-19 

(possibly through increased kaliuresis rather than gastrointestinal loss)38.  Hypokalemia in 

COVID-19 patients is difficult to manage, correlates with the severity of the disease, and is 

has been suggested to be driven by activation of the RAAS system38. ACE-Is or ARBs might 

offer some protection in this setting. It also needs to be emphasized that hypokalemia has not 

been reported in other studies. For example in patient characterization by Guan et al.22  

median value of potassium level reported was is 3.8 mmol/L with lower margin of IQR is 3.5 

mmol/L.  Nevertheless, antihypertensive medications known to increase serum levels of 

potassium (including carvedilol and eplerenone) were implicated as potential drug repurposing 

opportunities for patients with COVID-19 infection10. Moreover, observations from intensive 

care units in Italy suggest that hypocalcemia is a common metabolic abnormality in patients 

infected by COVID-19, that could be linked due to reduced albumin levels, which are 

commonly seen and/or Ca++ consumption through excessive activation of coagulation 

cascade. 

 

Another mechanism linking hypertension and COVID-19 is the immune system, which  is 

dysregulated in hypertension and SARS-CoV-2 infection 39, 40. Poor control of blood pressure 

may contribute to further dysregulation of the immune system. For example, it has been shown 

that hypertension, in humans, is associated with circulating lymphocyte counts41 and CD8+ T 

cell dysfunction is observed in patients with hypertension42. Such immunosenescent CD8+ T 

cells are unable to efficiently combat viral infections and contribute to pathological 

overproduction of cytokines – a situation providing possible link to COVID-19. One may also 

postulate that ACE-Is or ARBs by providing a better control to blood pressure may restore, at 

least partially, dysregulated immune system in hypertension.   

Overall it is essential to ensure that blood pressure control in hypertensive patients during viral 

infections is optimized, unnecessary and uncontrolled changes to therapy are discouraged, 

and hypertensive patients should be carefully monitored for cardiovascular and other 

complications during COVID-19 infection.  
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Cardiovascular Manifestations of COVID-19 
Severe COVID-19 is associated with rapidly progressing systemic inflammation, pro-

inflammatory cytokine storm, and sepsis, leading to multi organ failure, and death (Figure 5). 

Selected evidence and manifestations of cardiovascular injury in COVID-19 patients are 

summarized in Table 2. Importantly, there is a delay between initiation of symptoms and 

myocardial damaged in studies reported so far (Table 3)  

 

COVID-19 and cardiac arrhythmia 

Viral infections are associated with metabolic dysfunction, myocardial inflammation, and 

activation of the sympathetic nervous system, all of which predispose to cardiac arrhythmia. 

In a recent report on 138 hospitalized COVID-19 patients21, 16.7% of patients developed 

arrhythmias, which ranked only second among serious complications after acute respiratory 

distress syndrome (ARDS). Arrhythmia was observed in 7% of patients who did not require 

ICU treatment and in 44% of subjects who were admitted to ICU18. Further details of these 

manifestations remain elusive but included atrial fibrillation, conduction block, ventricular 

tachycardia and ventricular fibrillation. These arrhythmias are also observed in viral 

myocarditis. Interestingly the report of the National Health Commission of China estimates 

that during the initial outbreak, some patients reported primarily cardiovascular symptoms, 

such as palpitations and chest tightness, rather than respiratory symptoms 43 

 

COVID-19 and myocardial injury and heart failure 
Most reports indicate that almost all hospitalized COVID-19 patients show elevated serum 

creatine kinase (CK) and lactate dehydrogenase (LDH) levels6, 43, 44.  In addition, a number of 

studies indicate that cardiac complications, including fulminant myocarditis, are potential 

outcomes of SARS-CoV-2 infection. Heart failure has been reported as an outcome in 23% of 

COVID subjects in a recent report from in hospital Chinese subjects. Approximately 52% of 

non-survivors had heart failure as opposed to 12% of survivors.32 Evidence of myocardial 

injury,  such as an increase in high-sensitivity cardiac troponin I (cTnI) levels (>28 pg/ml) was 

detected in 5 of the first 41 patients diagnosed with COVID-19 in Wuhan 6, 43, 44. More recent 

reports indicate that 7.2% 21 to 17% 32 of hospitalized COVID-19 patients sustain acute 

myocardial injury.  This may be in the form of acute myocarditis (see below) or injury 

secondary to an oxygen supply/demand mismatch (type 2 myocardial infarction).   

In an analysis of 68 fatal cases in Wuhan, 36 patients (53%) died of respiratory failure, five 

(7%) patients with myocardial damage died from circulatory failure, and 22 patients (33%) died 

from both3.  Similarly, analysis of 120 COVID-19 patients reported elevated levels of N-

terminal pro B-type natriuretic peptide (NT-ProBNP) in 27.5% of the cases, and cTnI in 10% 

of deceased patients, respectively, indicating that the effects of cardiovascular injury on 
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systemic stability may be important and should not be ignored. In another report of 138 

inpatients with COVID-19 in Wuhan, the levels of biomarkers of myocardial injury were 

significantly higher in patients treated in the ICU as compared to those not requiring ICU care 

(median CK-MB level 18 U/l versus 14 U/l, P < 0.001; hs-cTnI level 11.0 pg/ml versus 

5.1 pg/ml, P = 0.004). 21 . In a study of 191 patients 32 cTnI levels were strongly associated 

with increased mortality in the univariate analysis, but the association was not tested in a 

multivariate model. Similar associations between cTnI elevation and disease severity  are 

shown when analyzing cohorts on the basis of the need for ICU care 6, 21. Thus patient 

monitoring should include a number of laboratory tests summarized in Table 4, based on 

current experience and studies. 

 

Mechanisms underlying myocardial injury remain unknown and it is unclear whether they 

reflect  systemic/local and/or ischaemic/inflammatory process. It is still not known whether 

acute injury is a primary infective phenomenon or secondary to lung disease.  Associations 

between cTnI elevation and pre-existing cardiovascular conditions (and other pre-COVID 

features) have not yet been examined to detect evidence of causality, and no detailed 

analyses of patients with cardiovascular complications of COVID-19 have been published to 

date.  As  elevated cTnI level is associated with poorer outcomes in other (non-COVID) 

systemic illnesses 45– the reported association could simply reflect the severity of systemic 

illness (e.g. hypoxia, hypotension) rather than indicating a specific cardiac pathology. In this 

context, a ‘cytokine storm’ triggered by immunologic dysregulation43 may be a key mediator. 

Plasma IL-6 concentrations are elevated in COVID-19 patients with cardiac injury46, and 

abnormalities in a variety of cytokines are prominent in patients with severe COVID-19 

disease.   

Cardiac-specific mechanisms may also be important. Since ACE2 is expressed  in the 

cardiovascular system47, direct cardiomyocyte infection by SARS-CoV-2 may be a possibility, 

as discussed below. Moreover, therapies used in treatment of severe multiorgan dysfunction 

in COVID-19 patient as well as antiviral drugs may exhibit cardiac toxicity. 

Attempts to treatment COVID-19 cardiac injury have included the use of steroids, i.v. 

immunoglobins, hydroxychloroquine, and other antivirals, and active mechanical life-

support46. While it remains uncertain if these or other therapies successfully limit myocardial 

injury, the detection of cardiac damage in hospitalized COVID-19 patients may help identify a 

subset of patients at greater risk of COVID-19 complications.  

 

COVID-19 and myocarditis 
Cardiac injury and acute myocarditis are well-recognised complications in of acute viral 

infections. Myocyte necrosis and mononuclear cell infiltrates are reported in cardiac muscle 
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autopsy specimens in a recent report of the National Health Commission of the People’s 

Republic of China23. This finding, along with case reports46,48 of fulminant myocarditis, 

suggests that myocarditis may be an important cause of the acute cardiac injury in COVID-19 

patients. However, the prevalence, clinical importance and mechanism(s) of myocardial 

inflammation in COVID-19 disease remain unclear 6, 49.  

Clinically, COVID-19 myocarditis may manifest only as mild chest discomfort and palpitations 

which may be impossible to distinguish from other causes in most patients. In some, however, 

myocarditis results in fulminant disease (Figure 6).  Transient ECG changes are common and 

may help detect the presence and severity of myocardial injury. Myocarditis may progress to 

conduction block, tachy-arrhythmias and left ventricular function impairment.  

  

In other clinical settings, myocarditis is often suspected when cardiac injury is detected in the 

absence of an acute coronary syndrome. The diagnosis can often be confirmed if cardiac MRI 

detects typical acute myocardial injury signals50. Endomyocardial biopsy (EMB), long 

considered the Gold-Standard diagnostic test, can directly demonstrate myocyte necrosis and 

mononuclear cell infiltrates51. EMB will detect evidence of a viral cause in some cases though 

in others an immunologically autoimmune-mediated cause of the myocarditis is suspected 51. 

Biopsy studies of patients with acute myocarditis in Europe indicate that viral etiology ranges 

between 37.8% and 77.4% 52, 53. In COVID-19 this evidence is at the moment sparse and 

based on individual case series emphasizing the need for systematic assessment. While 

several reports emphasize that fulminant myocarditis may be an important clinical 

presentation of the disease 46 48,  the real prevalence of this complication remains unclear. 

Cardiac MRI and EMBs as diagnostic tools are likely inappropriate during the current COVID-

19 pandemic and associated healthcare crisis but should be considered in the future (Table 

5). 

 

Animal models of viral myocarditis suggest discrete pathological phases that begin with viral-

mediated myocyte lysis 54. This cardiac injury leads to activation of the innate immune 

response with release of proinflammatory cytokines54. Proteins released through cell lysis 

might display epitopes similar to the viral antigens and be presented via the major 

histocompatibility complex (MHC).  Myosin heavy chain, a cardiac sarcomere protein appears 

to be a prime example of ‘molecular mimicry’ 55.  At this stage, endomyocardial biopsies may 

show inflammatory changes but no detectable viral particles because of clearance of the virus 

by the innate immune response. An acquired immune response is the predomint feature 

evidenced by activation of antibodies and T lymphocytes. CD4+ Th cells and cytotoxic CD8+ 

T cells mediate their responses through activation of the inflammatory cascade and cytolysis 

(Th1 – interferon gamma,  Th2 -  e.g. IL-4, Th17 -  – IL-17 and Th22 – IL-22).  Macrophages 
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migrate to the site of injury54.   In the final stage, there is either recovery  or low levels of 

chronic inflammation with concomitant development of left ventricular dysfunction54. 

Interestingly, myocarditis appears in COVID-19 patients after a prolonged period (up 

to 10-15 days) after the onset of symptoms (Table 3). Moreover, investigators in China point 

to a lack of viral particle identification on EMB (oral communication). Given these observations 

and the experimental context above, a question central to potential therapeutic options is the 

extent to which myocardial injury results from viral replication (cytopathic), is immune-

mediated, or is due to other mechanisms. Given that acute myocardial injury is said to begin 

2 weeks after the onset of symptomatic COVID-19 32, adaptive T-cell mediated immunity, or 

dysregulated innate effector pathways are likely to play a pivotal in the development of 

myocardial inflammation. In this context, it is notable that an increase of highly 

proinflammatory CCR6+ Th17 in CD4+ T cells, prominent inflammatory mediators of 

myocarditis56, has been reported in severe cases.  

 

Together, the data suggest that a delay in myocardial inflammation is consistent with at least 

two pathogenic mechanisms: firstly, that the ‘cytokine storm’ unleashes a sub-clinical 

autoimmune myocarditis, and secondly that myocardial damage and/or molecular mimicry 

initiate a de-novo autoimmune reaction.  

  

Targeted therapeutic options remain elusive; as is the case for myocarditis in other settings, 

a management strategy that uses a broad range of supportive therapies remains key. A case 

report recently described effectiveness of the early application of steroids and i.v. 

immunoglobins, neuraminidase inhibitors, and active mechanical life-support46. 

 
COVID-19 and ischemic heart disease 
While little is known regarding the effects of COVID-19 on acute coronary syndrome (ACS), 

several pathways associated with viral diseases may contribute to destabilize plaques in 

COVID-19 patients 57. Heart failure patients are at increased risk of acute events or 

exacerbation; viral illness can potentially destabilize atherosclerotic plaques through systemic 

inflammatory responses 58, cytokine storm, as well as specific changes of immune cell 

polarization towards more unstable phenotypes. All of these have been observed in COVID-

19. In the case of SARS and MERS, acute MI 59, 60 myocardial infarction (MI) has been reported 

in 2 out of the 5 deaths in early reports 61. 

It is important to consider that type 2 MI is the most common subtype in viral conditions, thus 

the usefulness of invasive management with a view toward coronary revascularization 

(especially in Type 2 MI) is limited. The decision for invasive vs. non-invasive management of 

a patients with an ACS and COVID-19 illness should be carefully considered. Moreover, a 
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recent single cell atlas of human heart indicated that pericytes express particularly high levels 

of ACE-2 in the heart47. One of the implications of this finding is possible local microvascular 

inflammation during SARS-CoV-2 infection of the pericytes leading to severe microvascular 

dysfunction, contributing to Myocardial Infarction With Nonobstructive Coronary Arteries 

(MINOCA). This could explain recent reports of clinical course of cases of myocardial 

infarction during COVID-19. In addition, cytokine storm can contribute to development of 

endothelial dysfunction through well characterized mechanisms 62-65.  

 

COVID-19 and coagulation abnormalities 
Features of disseminated intravascular coagulation (DIC) and pulmonary embolism, 

characterized by increased D-dimer levels and fibrin degradation products, are highly 

prevalent in COVID-19. DIC has been observed in 71.4% of non-survivors66. Massive 

pulmonary embolism have been reported 67. This might not be surprising given the critical 

condition of these subjects, although early appearance of DIC features is often evident. 

Notably experience from China indicates that D-dimer increase is highly predictive of adverse 

outcomes in COVID-19. In a retrospective cohort study, elevated D-dimer levels (>1g/L) were 

strongly associated with in-hospital mortality and this relationship was maintained in 

multivariate analysis (OR:18.4 95% C.I. 2.6-128.6; p=0.003)32. Moreover, Chinese and Italian 

experience emphasizes that more discrete changes in D-dimer levels are observed earlier in 

the course of disease preceding rapid progression stage. 

 

COVID-19, inflammation and cytokine release storm 

After the lungs, immune organs are the second most affected system by COVID-19. 

Pathological investigations in COVID-19 victims23 have demonstrated splenic atrophy, with a 

very significant reduction in the number of lymphocytes and neutrophils as well as necrosis 

and hemorrhages. Similarly, lymphocytes are depleted in lymph nodes with decreased the 

numbers of both CD4+ and CD8+ cells are decreased 23. This corresponds to lymphopenia in 

peripheral blood observed in severe cases. Interestingly, an increase in systemic IL-2, IL-6, 

IL-7, granulocyte colony-stimulating factor, C-X-C motif chemokine 10 (CXCL10), chemokine 

(C-C motif) ligand 2 (CCL2) and tumor necrosis factor-α has been observed in subjects with 

COVID-19 6, which corresponds to the characteristics of a cytokine release syndrome (CRS) 
16, 68, 69. CRS development in COVID-19 is associated with COVID-19 severity. CRS has been 

characterized as a complication of immune targeted therapies in oncology, in particular in 

relation to severe chimeric antigen receptor (CAR) T-cell-induced CRS 70. It is also reminiscent 

of the cytokine profile noted in Haemophagocytic lymphohistiocytosis (HLH) syndromes71. 

Resemblance to the latter brought considerations that COVID-19 may be a cause of 
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secondary HLH with cytopenias, significant haemophagocytosis in bone marrow, and low 

fibrinogen concentration. Clinical classifications have been introduced to aid recognition of 

secondary HHL 71.  FACS analyses of COVID-19 active cases have also shown hyperactivated 

T lymphocytes with large fractions of HLA-DR+ and CD38+ CD8+/CD4+ T cells  and CCR6+ 

TH17 CD4+ cells. High concentrations of cytotoxic granules in cytotoxic T (CD8) cells have 

been observed. Thus, uncontrolled overactivation of T cells may account for, in part, the 

severe immune injury16, in similarity to atherosclerosis and other cardiovascular conditions72, 

73. These aspects should also be considered in the light of sexual dimorphism related to 

susceptibility to cardiovascular inflammation 74-76 

High serum IL-6 levels are a common feature in CRS patients. Indeed, in a recent 

retrospective multicenter analysis of 150 patients from Wuhan, circulating IL-6 levels were a 

clinical predictor of mortality in COVID-193. IL-6 is an important biomarker and possible target 

for cardiovascular morbidity and mortality linked to atherosclerosis 77-79. This is important as 

therapeutic targeting of the IL-6 receptor (IL-6R) with tocilizumab is used in preventing and 

treating CRS caused by cancer therapies and HLH 70. Tocilizumab is approved in more than 

100 countries for the treatment of rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) 
80, Castleman's diseases and giant cell or Takayasu arteritis 81. Other IL-6R targeting agents 

e.g. sariulumab are similarly potentially of use. Therefore its possible use in COVID-19 may 

be attractive to tackle CRS. However, when considering immunomodulation, one has to bear 

in mind that the primary problem is an infectious disease rather than the complications of 

cancer therapy. Therefore, its potentially utility must be carefully considered.  

 

During the initial outbreak in China the use of tocilizumab to stop severe CRS-associated 

organ failure and death in COVID-19 patients was attempted71. Twenty one severe COVID-

19 cases were treated with tocilizumab in an initial pilot trial. Nineteen of them were discharged 

from the hospital within two weeks, as reported by China's National Health Commission. The 

drug has now been approved in China to treat patients developing severe complications from 

COVID-19 and showing elevated plasma levels of IL-682. Chinese researchers have now 

registered several clinical trials for tocilizumab, expected to enroll patients with COVID-19 very 

soon. A partial list includes: ‘A multicenter, randomized controlled trial for the efficacy and 

safety of tocilizumab in the treatment of new coronavirus pneumonia (COVID-19)’ 

(ChiCTR2000029765); ‘Tocilizumab vs CRRT in Management of Cytokine Release Syndrome 

(CRS) in COVID-19 (TACOS)’ (ClinicalTrials.gov Identifier: NCT04306705); and ‘Favipiravir 

Combined With Tocilizumab in the Treatment of Corona Virus Disease 2019’ 

(ClinicalTrials.gov Identifier: NCT04310228). 

Similarly, case reports originating from Italy, show that in a case series of six patients treated 

with tocilizumab in Naples, three have showedn signs of improvement. This has prompted 
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several studies evaluating the role of IL-6 antagonism by monoclonal antibodies in COVID-

19. For example, Italian Medicines Agency (AIFA) approved the clinical study ‘Tocilizumab in 

COVID-19 Pneumonia (TOCIVID-19)’ (ClinicalTrials.gov Identifier: NCT04317092). This 

multicenter, single-arm, open-label, phase 2 study will assess mortality at one month in 330 

patients affected by COVID-19 pneumonia. The inclusion criteria comprises patients showing 

signs of respiratory distress syndrome or were subject to tracheal intubation in the preceding 

24 hours. The study iswill be led by the Instituto Nazionale Tumori IRCCS - Fondazione 

Pascale in Naples. Similarly, 30 participants will be enrolled in the Marche region, in the 

interventional clinical trial ‘Tocilizumab (RoActemra) as Early Treatment of Patients Affected 

by SARS-CoV2 Infection With Severe Multifocal Interstitial Pneumonia’ (ClinicalTrials.gov 

Identifier: NCT04315480). In the US, the ‘Evaluation of the Efficacy and Safety of Sarilumab 

in Hospitalized Patients With COVID-19’ (ClinicalTrials.gov Identifier: NCT04315298), has just 

started aiming to recruit 400 patients, and will be shortly followed by the ‘Tocilizumab to 

Prevent Clinical Decompensation in Hospitalized, Non-critically Ill Patients With COVID-19 

Pneumonitis (COVIDOSE)’ (NCT04331795) trial, which is expected to start very soon. Finally, 

most recently registered, trial recruiting 330 patients -  A Study to Evaluate the Safety and 

Efficacy of Tocilizumab in Patients With Severe COVID-19 Pneumonia (COVACTA) 

(ClinicalTrials.gov Identifier: NCT04320615) is being initiated. Similar trials have been 

registered in France, Belgium and Denmark. It should be noted, however, that there are 

currently no published clinical trial data on IL-6 targeting safety or efficacy against the virus. 

Moreover, tocilizumab has not received approval from China's National Medical Product 

Administration to be sold for COVID-19 treatment. 

The cytokine storm and increase in IL-6 signaling observed in some COVID-19 patients 

could have profound cardiovascular consequences causing tachycardia, hypotension and 

left ventricular dysfunction. CRS-related cardiotoxicity has also been reported, mainly in the 

form of conduction abnormalities, atrial fibrillation, and elevation in B-type natriuretic peptide 

and cardiac cTnIs 83. 

In COVID-19 patients, medium-to-long term cardiovascular consequences may be caused by 

increased IL-6 signaling. Experimental evidence supports an atherogenic role for IL-6 and 

CRS related cytokines 59, 60, 84-86, as well as its effects on cardiac fibrosis and failure 87. The 

cytokine increases adhesion molecule expression in human endothelial cells in vitro 88; at the 

same time, stimulation of human macrophages with oxidized low-density lipoproteins (oxLDL) 

lead to increased release of IL-6 89. In experimental atherosclerosis, IL-6 mRNA is detectable 

in the aorta of hyperlipidaemic mice 90, and administration of recombinant IL-6 increased 

plaque formation 91. Similarly, reduced pathology has been observed in LDLr-/- mice treated 

with a fusion protein of the IL-6 trans-signaling inhibitor soluble glycoprotein 130 (sgp130) 92. 

Plasma IL-6 levels also have been associated with development and progression of abdominal 
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aortic aneurysm 93, IL-6 has been shown to influence lipid homeostasis in mice 94. IL-6 trans-

signaling contributes to experimental cardiac fibrosis87; while the upregulation of membrane-

bound IL-6R causes vascular remodeling in pulmonary arterial hypertension 95. 

Genetic variants leading to the increased circulating level of IL-6R, and therefore reduced IL-

6 cell signaling, have been shown to protect against coronary heart disease (CHD)96, 97. 

Similarly, IL-6 trans-signaling is associated with increased CV risk77, 98. IL-6 is routinely used 

as an inflammatory biomarker in CVD. The Canakinumab Anti-Inflammatory Thrombosis 

Outcomes Study (CANTOS) trial, demonstrated a stronger effect of IL-1β inhibition, in the 

reducing secondary cardiovascular events in patients with higher circulating levels of IL-6 and 

C-Reactive Protein (CRP), indicative of residual inflammatory risk98. Whether the observed 

cytokine storm and IL-6 increase in COVID-19 patients are transient or sustained remains 

unknown. Accordingly, monitoring inflammatory biomarkers in these patients in the medium-

to-long term is of major importance. Similarly, CV risk should be closely evaluated during the 

acute phase response and in the following years.  

There are however likely to be a range of additional cytokine moieties that will emerge to have 

pathways specific contributions in the severe spectrum of COVID-19 syndrome.   These 

include pathways driven by GM-CSF, TNFalpha, IL-17, IL-18 and IFN-gamma. Moreover, the 

imminent prospect of single cell and other immunologic analyses will offer a more systematic 

insight into the immune dysregulation syndrome(s) that are emerging and especially the 

disease trajectory – in essence which pathways are directing COVID related CRS and which 

are simply adding to the inflammatory tissue damage burden upon which the other co-

morbidities are operating.  Thus, we propose a useful way of thinking about this would be that 

inflammatory burden might be considered as direct effector (.e. CRS-type), or secondary 

amplificatory in terms of the contribution that pathways make to pathogenesis and clinical 

outcome.  

 

Lessons from SARS-CoV infection 
In 2002 a novel coronavirus, SARS-CoV emerged from China, crossing from bats to humans, 

eventually leading to over 8,000 cases and the death of more than 700 people. SARS utilized 

ACE2 for cell attachment and infection through the viral envelope spike (S) protein 99 and a 

subsequent interaction with a cellular protease, TMPRSS2, which primes S protein for cell 

entry 100. The closely related SARS-CoV-2, also thought to have originated in bats 9, encodes 

a S protein with approximately 76% amino acid similarity to SARS-CoV and importantly SARS-

CoV-2, as already discussed, has also recently been demonstrated to uses the same cellular 

entry pathway via ACE2 and TMPRSS2 12, as discussed above. Both these novel 

coronaviruses are in contrast to another recently emergent coronavirus, middle east 
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respiratory syndrome (MERS) virus, which crossed from the dromedary camel to humans and 

also caused acute respiratory failure, although utilizing a different cell entry mechanism via 

the receptor dipeptidyl peptidase 4 (DPP4) 101. Overall, this highlights the potential divergence 

of respiratory coronavirus infections in humans, but emphasizes the close relationship 

between SARS-CoV and SARS-CoV-2. So, what can we learn from knowledge of SARS-CoV 

and associated cardiovascular risk to help in the current battle against COVID-19? 

During human SARS-CoV infection of the murine lung, ACE2 is utilized and subsequently 

almost completely lost at the protein level 102. Importantly, delivery of the viral S protein alone, 

also led to downregulation of ACE2 and decreased lung function in normal mice, and 

worsened lung pathology in an acid challenge model of acute lung failure. Furthermore, 

disease pathology was reduced in the presence of the angiotensin receptor blocker losartan. 

Intriguingly, in acute lung disease triggered by acid respiration or sepsis, ACE2 has also been 

shown to be directly protective, acting in partnership with the angiotensin type 2 receptor 

(AT2R) and administration of recombinant ACE2 in this model is protective 103. Takening 

together the evidence from multiple experimental studies beneficial effects of ACE-Is or ARBs 

and also ACE2 supplementation in various animal models of lung injury or SARS have been 

shown and supported the concept that loss of ACE2 expression promotes the disease in lung 

injury models (reviewed in Kreutz et al. 202025). ACE2 is also directly regulated by cytokines 
104. Decreased ACE2 levels could be a direct consequence of viral infection and/or the 

subsequent to inflammatory and immune responses that occur in the infected lung. 

Interestingly, ACE2 is also reported to be detectable in macrophages 105 and its knockout in 

leukocytes promotes adipose inflammation 106, highlighting a role for ACE2 in the inflammatory 

response. Patients suffering from SARS have overwhelming immune and inflammatory 

responses and high mortality rates from acute respiratory failure, and furthermore there are 

also associated cardiac sequelae. For example, SARS patients also suffer from systolic and 

diastolic dysfunction and arrythmias, leading to sudden death 107 108. In murine models, 

intranasal administration of human SARS-CoV results in ACE2-mediated infection of the 

myocardium 109. These observations support a role for SARS-CoV in direct myocardial 

infection and a possible causative role in cardiac disease subsequent to respiratory infection. 

In the murine heart, ACE2 was also almost completely downregulated at the protein level 

following infection. Moreover, in autopsied cardiac tissue from SARS patients with SARS-CoV 

positive lung infection, viral RNA was detected in the heart, combined with decreased cardiac 

ACE2 protein levels and elevated cardiac macrophage infiltration. Downregulation of ACE2 

without compensatory effects on ACE may lead to the RAS being tipped towards the 

detrimental ACE-AngII-AT1R axis and away from the protective ACE2-Ang-(1-7)-Mas axis. 

ACE2 is also upregulated after myocardial infarctionMI in rodents and humans in 

macrophages, endothelial cells, smooth muscle cells110, 111 and cardiomyocytes112 and may 
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play a role in restoring RAS homeostasis in the heart post-MI. In fact, viral vector-mediated 

overexpression of ACE2 in rodents also protects the heart from adverse cardiac remodeling 

and dysfunction post-MI113. Overall, these findings highlight that ACE2 has a key protective 

function in both the lung and the heart. Therefore, SARS-CoV infection-mediated 

downregulation of ACE2, either as a direct mechanistic consequence of viral infection, and/or 

as a result of the subsequent inflammatory responses may lead to an imbalance in RAS 

signaling and consequent cardiovascular sequelae. The knowledge that systemic spread of 

SARS from primary lung infection to other cardiovascular tissues, including the heart, is also 

important. Given that ACE2 functions as a receptor for virus entry into the cell, downregulation 

of ACE2 upon infectioin with SARS-CoV is expected to prevent further viral entry, serving as 

a negative regulatory mechanism. Clearly additional investigations are needed to increase our 

understanding of the pathological mechanisms of acute disease and potential increased 

cardiovascular risk in COVID-19 patients.  

 

Therapeutic options for COVID-19 
Managing COVID-19 is challenging as there are no specific treatments for the SARS-CoV-2 

virus. Obtaining high-quality randomized clinical trial data during an outbreak is difficult. 

Research and clinical efforts focus in parallel on development of new drugs against 

coronavirus as well as repurposing already approved drugs for the treatment of the disease. 

ClinicalTrials.gov site lists over 300 studies that are testing various interventions in COVID-19 

patients. This emphasis on trials as opposed to compassionate use and case reports is a 

major lesson from prior pandemics and it is good to see the community moving so robustly in 

this direction. 

In the meanwhile, public health measures rely mostly on social measures intended to prevent 

viral/disease spread, in order to avoid massive surge of patients with healthcare facilities 

overload, and on supportive treatment for the patients, which can be considered the mainstay 

of management. Available treatments once clinically evident can be classified as supportive, 

immune-suppressive, antiretroviral, and potential novel therapies. Supportive treatment 

should be the mainstay of management coordinated by the relevant specialist - 

multidisciplinary team. The approaches have been provided by numerous scientific and 

clinical societies during the early stages of the European outbreak and are continuously being 

updated. This includes a concise but comprehensive guidelines of the Società Italiana di 

Anestesia Analgesia Rianimazione e Terapia Intensiva114 

When disease progresses to severe phenotype, supportive treatment includes use of oxygen 

therapy if SpO2 is less than 92% on room air23 as well as hemodynamic support. Ealry 

intubation and invasive mechanical ventilation are essential in those with progressive 

symptoms and increasing oxygen requirement. High flow nasal cannulae and non-invasive 
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positive pressure ventilation (NIPPV) may play a role in some patients especially where 

resources for mechanical ventilation are likely to be stretched. A lung protective ventilation 

strategy is recommended by the WHO. Conservative use of intravenous fluids aiming to 

maintain tissue perfusion but a negative fluid balance in order to aids lung recovery23. 

Extracorporeal membrane oxygenation (ECMO) may be required in severe cases as per 

standard indications but should be considered early (veno-venous mode and could be initiated 

prior to intubation).  

As cardiac damage is highly prevalent, heart failure therapies should be initiated where 

appropriate. Similarly, broad spectrum antibiotics/antifungal treatments and treatment of 

arrhythmias are needed. Finally, due to the growing evidence of DIC as a cause of organ injury 

anticoagulation should be considered 23.   

Approximately, 75% of patients in the early Chinese cohort received antiviral therapy6, 32, 43, 

115. The Italian recommendation is to commence treatment with antiviral therapy when COVID-

19 is confirmed in patients with mild symptoms but not in a high mortality risk category or 

moderate/severe signs of infection. Numerous anti-viral therapies have been used to try and 

limit viral replication. These include protease inhibitors such as Liponovir/ritonavir (used for 

the treatment of HIV). However, a recent rapid randomized non-placebo controlled trial 

including 100 patients in each arm, showed no difference in the outcome116. Remdesivir is a 

nucleotide analogue and polymerase inhibitor that was previously used for the experimental 

treatment of Ebola in a large phase III study117. While it had an acceptable safety profile, the 

remdesivir (GS-5734) arm was halted due to a higher antiviral efficacy of monoclonal 

antibodies in the trial. Finally chloroquine or hydroxychloroquine have been suggested as 

having antiviral activity against many RNA viruses including SARS and SARS-CoV-2, through 

increase of the endosomal pH and interference in the glycosylation process118. However, it 

has never been shown conclusively to have antiviral effect in vivo. In alphavirus infection, 

while demonstrating antiviral effect in vitro, it is not associated with clinical effects in a 

randomized clinical trial and may even be  associated with prolonged viremia in vivo119. While 

these observations cannot be directly translated to COVID-19, Large phase III trials are 

underway with hydroxychloroquine, that will inform about possible therapeutic value of this 

approach. This includes recently initiated “Hydroxychloroquine Chemoprophylaxis in 

Healthcare Personnel in Contact With COVID-19 Patients (PHYDRA Trial)“ (NCT04318015).  

As the cytokine storm appears to be a key pathogenetic process in patients exhibiting rapid 

deterioration of patients, immune suppression and immune modulation approaches have been 

tried. This includes glucocorticoids, which are recommended by guidelines in Chinese, but not 

in Italian guidelines. Patients with evidence of lung fibrosis or severe cardiac involvement in 

ICU may benefit from this approach. Methylprednisolone was used in combination with i.v. 

immunoglobulins in the treatment of subjects with fulminant myocarditis118. 
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Immunomodulatory therapies used include monoclonal antibodies against IL-6R, discussed 

above. Interferon beta, registered for treatment of multiple sclerosis, enhances suppressor T 

cell activity, reducing proinflammatory cytokine production. It may be also helpful in patients 

with myocarditis who develop left ventricular systolic dysfunction, but current experience is 

limited to  enteroviruses120. It is also being tried as an inhaled preparation. Finally, 27% of 

patients in the early Chinese cohort received intravenous immunoglobulins. This approach 

was based on the evidence of their beneficial effects in cases of myocarditis-induced dilated 

cardiomyopathy and are recommended in cases of viral myocarditis that are refractory to 

standard heart failure therapies121.  

A list of planned, ongoing, and completed clinical trials could be found at: 

https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntry=&state=&city=&dist=    

In addition to the many ongoing clinical trials, a new trial in Europe will investigate effects of 

APN01, the recombinant form of human ACE2 (hrACE2) (clinicaltrialsarena.com). HrACE2 

has a dual mode of function. Firstly, it has the potential to block infection of host cells by SARS-

CoV-2, and secondly it may reduce lung injury through the protective actions of endogenous 

ACE2. The phase II clinical trial will be conducted in Germany, Austria and Denmark. 

  

Cardiovascular effects of potential therapies for COVID-19 

The potential therapies for COVID-19 discussed above have important cardiovascular side 

effects and toxicities as well as co-morbid conditions that require caution or avoidance of these 

drugs as listed in Table 6. It should be noted that data for these side effects and toxicities 

come from patients that use these drugs chronically for the treatment of autoimmune diseases 

(chloroquine/hydroxychloroquine, Tocilizumab), hepatitis (Ribavarin, Interferon Alpha), or HIV 

infection (Lopinivir/Ritonivir). Thus, the effect of short-term use of these medications for 

patients without these underlying conditions is not clear. Remdesivir is an experimental drug 

used in the treatment of Ebola117. Thus, its cardiovascular effects and toxicities are unknown. 

The antimalarial drugs, chloroquine and hydroxychloroquine, have recently received 

considerable attention and interest for the treatment and possibly prophylaxis of COVID-19. 

However, the data to date in support of these drugs is weak and cardiac toxicities are 

considerable. A systematic review of the literature performed on patients treated with these 

drugs, albeit for an extended period of time (median 7 years) and with a high cumulative dose, 

demonstrated conduction disorders as the main side effect (85%).122 Other adverse cardiac 

events included ventricular hypertrophy (22%), hypokinesia (9.4%), heart failure (26.8%), 

pulmonary arterial hypertension (3.9%), and valvular dysfunction (7.1%). Cardiac function 
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normalizes in a significant number of patients (44.9%) upon withdrawal of chloroquine and 

hydroxychloroquine, while others continue to show irreversible damage (12.9%) or death 

(30.8%).122 Thus, careful consideration should be given to the use of these drugs, particularly 

without stronger data for their efficacy. Of note, tocilizumab treatment has been shown to 

influence lipid metabolism in RA patients. Following tocilizumab, total-, LDL- and HDL-

cholesterol were increased, while cardiovascular risk biomarkers such as HDL-SAA, secretory 

phospholipase A2 IIA, and lipoprotein(a) were significantly reduced123. Very recently, the 

ENTRACE clinical trial supported the cardiovascular safety of tocilizumab in RA patients 
124however, to date, IL-6 targeting has not been tested for secondary prevention in CVD. 

 

Follow Up of patients with cardiovascular involvement in COVID-19 
While there are currently no evidence-based recommendations, considering clinical 

presentation, it is reasonable to propose that patients who have had cardiac involvement 

initially should be seen every 1 to 3 months. Periodic evaluation, in addition to detailed history 

taking and physical examination, should include a 12-lead electrocardiogram and 2D/Doppler 

echocardiography125 or, preferably, cardiac magnetic resonance imaging with late gadolinium 

enhancement. Appropriate heart failure therapy should be initiated and maintained when 

required, and plans put in place to optimize doses. Patients should be given standard advice 

regarding physical activity. Considering unknown long-term consequences of COVID-19, 

regular cardiovascular risk assessment should be considered in all patients who survived 

COVID-19. 

 

Ethical dilemmas brought by COVID-19 
COVID-19 brings unprecedented ethical problems and situations facing medical profession 

around the world. In the light of huge imbalance between therapeutic needs and resource 

availability of the unprecedented scale in our generation, Italian Society of Anesthesiology and 

Intensive Care (SIAARTI)126, along with other National Societies provided an ethical statement 

aimed to guarantee the correct psychological framework to physicians massively exposed to 

the need to apply hard triage rules while facing a huge ethical dilemmas126. These are derived 

from the fact that the need for intensive care must be integrated with other elements of “clinical 

suitability”, thus including: the type and severity of the disease, the presence of comorbidities, 

the impairment of other organs and systems, and their reversibility126. Clinicians, neither 

deontologically nor by training, are not accustomed to reasoning with criteria of maxi-

emergency triage, as the current exceptional situation126.   

 

Impact of COVID-19 on routine and emergency cardiovascular care 
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In preparation of the COVID-19 pandemic many healthcare providers have had to scale down 

outpatient services and also defer elective cardiac procedures and surgeries. This in some 

instances has led to the positive integration of technology and development of virtual clinics127. 

However, uptake of virtual clinics has not been universal and has also been compromised by 

re-deployment of the workforce to help manage the pandemic. The long-term clinical impact 

of scaling down outpatient activity, reduced access to diagnostics and deferral of routine 

procedures is likely to be significant and extend beyond the pandemic. Similarly, the perceived 

risk of being exposed to COVID-19 has led to a decline or a delay in presentation of acute 

cardiac emergencies which is likely to contribute to cardiac mortality and morbidity.  

 

Cardiovascular implications of social distancing 
COVID-19 implications are wider than the effects of the disease on individual patients. 

Practically all countries affected by the disease developed mitigation and containment 

strategies based on social distancing. Cardiovascular consequences of social distancing may 

be profound. Both experimental and clinical research has shown the effects of social isolation 

and loneliness on cognition and memory 128-132, metabolic disorders 133-136, cancer 137-139 and 

immune disorders 139-141. In the context of cardiovascular diseases, the absence of positive 

relationships and the reduced chance of interaction with other people (social distancing) have 

been identified as major risk factors for cardiovascular mortality 142-151. Recent meta-analysis 

including a total of 181,006 participants152 demonstrated that the risk for ischemic heart 

disease and stroke increased by 29% and 32%, respectively, in lonely and socially isolated 

people. Similar results were reported from UK Biobank analysis 153.  

The mechanisms of detrimental effects of social isolation are multiple and are related to the 

activation of the hypothalamic-pituitary-adrenocortical (HPA) axis 154-157, changes in the 

sympathetic vascular tone 148, 158, 159, elevated levels of cortisol 156, 160, 161 and a reduced 

responsivity of the glucocorticoid receptor 162-165. The social distancing strategies used in 

COVID-19 should consider these effects and aim to mitigate them using available 

technological advances.  

 

Key unanswered questions 
In this comprehensive review, we aimed to highlight the current state of the art information 

regarding COVID-19 and cardiovascular disease (Table 7). Our understanding of 

cardiovascular risk and consequences of COVID-19 is developing continuously. However, 

there are many knowledge gaps and there many unanswered questions. Below we point out 

a few burning unknowns at the moment. 

What are the factors, genetic or otherwise that influence inter-individual variability in 

susceptibility to COVID-19, its severity, or clinical outcomes?  The mechanisms through which 
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CVD worsen the prognosis in COVID-19 are unknown. It remains to be addressed to which 

extend individual CVD are exacerbated by COVID-19? Does pre-existing hypertension and 

CVD increase infection risk and/or worsen the course of disease progression? Is the severity 

of CVD related to high expression levels of ACE2, the SARS-CoV-2 receptor, in heart and 

blood vessels? What influence, if any, do inhibitors of the RAAS have on susceptibility to 

COVID-19 and its clinical outcomes? What are the factors or therapies for CVD that may 

confer protective effects against COVID-19 and its clinical outcomes? How does preexisting 

CVD worsen cardiac involvement specifically? What transferable knowledge can be learned 

about this pathogen that would advance our understanding of cardiovascular risk for SARS-

CoV-2, influenza and other virus infections in the future? Finally, probably the most important 

question remains, what are the determinants of heterogeneous host responses to SARS-CoV-

2 infection. The answers will be found in integrated approaches by cardiovascular 

immunologic ID and other expertise coming together. The use of systems based on 

hypothesis-free in silico methodologies will be essential. This pandemic is unlike any other in 

arriving at the same time as humankind being in possession of remarkable molecular data 

science and informatic tools.   This is a major test of our ability to harness such capacity in the 

greater good. 

These questions need to be answered with highest quality science and clinical research since 

the current pandemic of coronavirus might not be the last.   
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Table 1: Baseline demographic data and co-morbidities in selected early studies3, 6, 18, 21, 22, 32 
(n/a- not available; ICU-intensive care unit; end-point-composite end point of admission to 
an intensive care unit (ICU), the use of mechanical ventilation, or death22. These should be 
analysed in the context of recent European data which appeared after submission of this 
paper27.  
Study Region All 

patients 
Severity 

qualification 
Lower 

severity 
High 

severity 
p-value 

Gender (M =51.3%, F=48.7% in China); n-number (% Men) 
Huang 
et al. 

Jin Yin-Tan 41  
(73%) 

nonICU/ICU 28 
(68%) 

13 
(85%) 

0.24 
 

Wang 
et al. 

Zongnan 
 

138  
(54%) 

nonICU/ICU 102 
(52%) 

36  
(61%) 

0.34 

Zhou 
et al. 

JY-T & Wuhan 191 
(62%) 

survive/dead 137 
(59%) 

54 
(70%) 

0.15 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

0.43 

Liu et 
al. 

Tongi + 3 others 78 
(50%) 

stable/deterior
ate 

6 
(48%) 

11 
(64%) 

0.52 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(58%) 

non-severe/ 
severe 

926 
(58%) 

173 
(58%) 

n/a 
 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(58%) 

stable/end-
point 

1032 
(58%) 

67 
(67%) 

n/a 

Age; n-number (yrs/ IQR) 
Huang 
et al. 

Jin Yin-Tan 41 
49(41-

58) 

nonICU/ICU 28 
49(41-58) 

13 
49(41-61) 

0.6 
 

Wang 
et al. 

Zongnan 
 

138 
56(42-

68) 

nonICU/ICU 102 
51(37-62) 

36 
66(57-78) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
56(46-

67) 

survive/dead 137 
52(45-58) 

54 
(63-67) 

<0.001 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

<0.001 

Liu et 
al. 

Tongi + 3 others 78 
38(33-

57) 

stable/deterior
ate 

66 
37(32-41) 

11 
66(51-79) 

0.001 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
47(35-

58) 

non-severe/ 
severe 

926 
45(34-57) 

137 
52(40-65) 

<0.001 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
47(35-

58) 

stable/end-
point 

1032 
46(35-57) 

67 
63(53-71) 

<0.001 

Any Comorbidity; n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(32%) 

nonICU/ICU 28 
(29%) 

13 
(38%) 

0.53 

Wang 
et al. 

Zongnan 
 

138 
(46%) 

nonICU/ICU 102 
(37%) 

36 
(72%) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
(48%) 

survive/dead 137 
(40%) 

54 
(67%) 

0.001 
 

Ruan 
et al. 

Tongji 
 

150 
(51%) 

survive/dead 82 
(41%) 

68 
(63%) 

0.0069 
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Liu et 
al. 

Tongi + 3 others 78 
- 

stable/deterior
ate 

66 
- 

11 
- 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(24%) 

non-severe/ 
severe 

926 
(21%) 

173 
(39%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(24%) 

stable/CEP 1032 
(21%) 

57 
(58%) 

- 

Hypertension (Prevalence 15-33% WHO data/Bundy); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(15%) 

nonICU/ICU 28 
(14%) 

13 
(15%) 

0.93 

Wang 
et al. 

Zongnan 
 

138 
(31%) 

nonICU/ICU 102 
(22%) 

36 
(58%) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
(30%) 

survive/dead 137 
(23%) 

54 
(48%) 

0.0008 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

Liu et 
al. 

Tongi + 3 others 78 
(40%) 

stable/deterior
ate 

66 
(9%) 

11 
(18%) 

0.3 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(15%) 

non-severe/ 
severe 

926 
(13%) 

173 
(24%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

109 
(15%) 

stable/end-
point 

1032 
(14%) 

67 
(36%) 

- 

Diabetes Mellitus (General rate in China is 8.4-10% [Diabetes UK, WHO]); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(20%) 

nonICU/ICU 28 
(25%) 

13 
(8%) 

0.16 

Wang 
et al. 

Zongnan 
 

138 
(10%) 

nonICU/ICU 102 
(6%) 

36 
(22%) 

0.009 

Zhou 
et al. 

JY-T & Wuhan 191 
(19%) 

survive/dead 137 
(14%) 

45 
(31%) 

0.005 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

Liu et 
al. 

Tongi + 3 others 78 
(25%) 

stable/deterior
ate 

66 
(5%) 

11 
(18%) 

0.143 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(7%) 

non-severe/ 
severe 

926 
(5%) 

173 
(16%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(7%) 

stable/EP 1032 
(6%) 

67 
(27%) 

- 

Renal Disease (CKD - 10.8% in China - Wang, Jinwei et al); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
- 

nonICU/ICU 28 
- 

13 
- 

- 

Wang 
et al. 

Zongnan 
 

138 
(3%) 

nonICU/ICU 102 
(2%) 

36 
(6%) 

0.28 

Zhou 
et al. 

JY-T & Wuhan 191 
(1%) 

survive/dead 137 
(0%) 

54 
(4%) 

0.02 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

Liu et 
al. 

Tongi + 3 others 78 
- 

stable/deterior
ate 

66 
- 

11 
- 

- 
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Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(8%) 

non-severe/ 
severe 

926 
(0.5%) 

173 
(2%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(8%) 

stable/end-
point 

1032 
(0.6%) 

67 
(3%) 

- 

COPD (5.7% in 2018 - Zhu B); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(2%) 

nonICU/ICU 28 
(0%) 

13 
(8%) 

0.14 

Wang 
et al. 

Zongnan 
 

138 
(3%) 

nonICU/ICU 102 
(1%) 

36 
(8%) 

0.54 

Zhou 
et al. 

JY-T & Wuhan 191 
(3%) 

survive/dead 137 
(1%) 

54 
(7%) 

0.047 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

Liu et 
al. 

Tongi + 3 others 78 
(10%) 

stable/deterior
ate 

66 
(1.5%) 

11 
(9%) 

0.264 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(1%) 

non-severe/ 
severe 

926 
(1%) 

173 
(4%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(1%) 

stable/end-
point 

1032 
(0.5%) 

67 
(10%) 

- 

Cardiovascular Disease / Coronary Heart Disease (estimated 20% WHO); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(15%) 

nonICU/ICU 28 
(11%) 

13 
(23%) 

0.32 

Wang 
et al. 

Zongnan 
 

138 
(15%) 

nonICU/ICU 102 
(11%) 

36 
(25%) 

0.04 

Zhou 
et al. 

JY-T & Wuhan 191 
(8%) 

survive/dead 137 
(1%) 

54 
(24%) 

<0.000
1 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

Liu et 
al. 

Tongi + 3 others 78 
- 

stable/deterior
ate 

66 
- 

11 
- 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(3%) 

non-severe/ 
severe 

926 
(2%) 

173 
(6%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(3%) 

stable/end-
point 

1032 
(2%) 

67 
(9%) 

- 

Smoking (Chinese Prevalence 26.3% - WHO); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(7%) 

nonICU/ICU 28 
(11%) 

13 
(0%) 

0.16 

Wang 
et al. 

Zongnan 
 

138 
- 

nonICU/ICU 102 
- 

36 
- 

- 

Zhou 
et al. 

JY-T & Wuhan 191 
(6%) 

survive/dead 137 
(4%) 

54 
(9%) 

0.21 

Ruan 
et al. 

Tongji 
 

- survive/dead - - - 

Liu et 
al. 

Tongi + 3 others 78 
(6%) 

stable/deterior
ate 

66 
(3%) 

11 
(27%) 

0.018 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(13%) 

non-severe/ 
severe 

926 
(12%) 

173 
(17%) 

- 
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Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(13%) 

stable/end-
point 

1032 
(12%) 

67 
(26%) 

- 

Malignancy (Chinese Prevalence 0.6% - WHO); n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41 
(2%) 

nonICU/ICU 28 
(4%) 

13 
(0%) 

0.49 

Wang 
et al. 

Zongnan 
 

138 
(7%) 

nonICU/ICU 102 
(6%) 

36 
(11%) 

0.29 

Zhou 
et al. 

JY-T & Wuhan 191 
(1%) 

survive/dead 137 
(1%) 

54 
(0%) 

0.037 

Ruan 
et al. 

Tongji 
 

- survive/dead - - - 

Liu et 
al. 

Tongi + 3 others 78 
(5%) 

stable/deterior
ate 

66 
(10%) 

11 
(18%) 

0.09 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(1%) 

non-severe/ 
severe 

926 
(1%) 

173 
(2%) 

- 

Guan 
et al. 

31 
provinces/provinc
ial municipalities 

1099 
(1%) 

stable/end-
point 

1032 
(1%) 

67 
(1%) 

- 

Guan et al present data based on disease severity at the time of assessment (using 
American Thoracic soc guidelines for community-acquired pneumonia) and according to 
composite end-point status (EP: ICU admission, ventilation or death). 
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Table 2: Cardiac and associated outcomes in hospitalized COVID-19 disease in selected 
early studies3, 6, 18, 21, 22, 32. (ICU-intensive care unit; ARDS – acute respiratory distress 
syndrome; AKI – acute kidney injury; p values provided if provided in publication) 
Study Region All 

patients 
Severity 

qualification 
Lower 

severity 
High 

severity 
p-value 

Cardiac injury;  n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41  
(12%) 

nonICU/ICU 28 
(4%) 

13 
(31%) 

0.017 
 

Wang 
et al. 

Zongnan 
 

138  
(7%) 

nonICU/ICU 102 
(2%) 

36  
(22%) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
(17%) 

survive/dead 137 
(1%) 

54 
(59%) 

<0.001 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

 

Heart Failure;n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41  
- 

nonICU/ICU 28 
- 

13 
- 

- 
 

Wang 
et al. 

Zongnan 
 

138  
- 

nonICU/ICU 102 
- 

36  
- 

- 

Zhou 
et al. 

JY-T & Wuhan 191 
(23%) 

survive/dead 137 
(12%) 

54 
(52%) 

<0.001 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

 

Arrhytmia;  n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41  
- 

nonICU/ICU 28 
- 

13 
- 

- 
 

Wang 
et al. 

Zongnan 
 

138  
(17%) 

nonICU/ICU 102 
(7%) 

36  
(44%) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
- 

survive/dead 137 
- 

54 
- 

- 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

Shock; n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41  
(7%) 

nonICU/ICU 28 
(0%) 

13 
(23%) 

0.027 
 

Wang 
et al. 

Zongnan 
 

138  
(9%) 

nonICU/ICU 102 
(1%) 

36  
(31%) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
(20%) 

survive/dead 137 
(0%) 

54 
(70%) 

<0.000
1 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

ARDS; n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41  
(29%) 

nonICU/ICU 28 
(4%) 

13 
(85%) 

<0.001 
 

Wang 
et al. 

Zongnan 
 

138  
(20%) 

nonICU/ICU 102 
(5%) 

36  
(61%) 

<0.001 

Zhou 
et al. 

JY-T & Wuhan 191 
(31%) 

survive/dead 137 
(7%) 

54 
(93%) 

<0.000
1 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 

AKI; n-number (%) 
Huang 
et al. 

Jin Yin-Tan 41  
(7%) 

nonICU/ICU 28 
(0%) 

13 
(23%) 

0.027 
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Wang 
et al. 

Zongnan 
 

138  
(4%) 

nonICU/ICU 102 
(2%) 

36  
(8%) 

0.11 

Zhou 
et al. 

JY-T & Wuhan 191 
(15%) 

survive/dead 137 
(1%) 

54 
(50%) 

<0.000
1 

Ruan 
et al. 

Tongji 
 

150 
- 

survive/dead 82 
- 

68 
- 

- 
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Table 3. Delays from Illness onset to complication (adapted from Zhou et al. n=191. 
Survive=137, Die=54) : 

 All (191) Non-survivors (54) 

Sepsis  In 59%: 9 days(7-13) In 100%: 10 days (7-14) 

ARDS In 31%: 12 days (8-15) In 93%: 12 days (8-15) 

Acute Cardiac Injury In 17%: 15 days (10-17) In 59%: 14.5 days (9.5-17) 

Secondary Infection In 15%: 15 days (13-19) In 50%: 15 days (13-19) 

Acute Kidney Injury In 15%: 15 days (13-19) In 50%: ? days (?) 
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Table 4. Diagnostic tests in patients with COVID-19 and cardiovascular involvement. *-The 
current ACC position advises against routine measurement of troponin or BNP (ACC 18.03) 
Test Diagnostic considerations in COVID-19 patients 

NT-Pro 
BNP/BNP* 
 

Conflicting data on NT-ProBNP. In a MERS-CoV cohort NT-ProBNP 
was increased but it may be normal in COVID-19 affected patients 
Higher NT-ProBNP levels in the Chinese cohort are associated with a 
greater need for ICU care 

Troponin* 
 

High sensitivity troponin assay may be helpful for risk assessment in 
patients requiring ICU care and to identify individuals with silent 
myocardial injury. 
 

D-dimer Reports from initial outbreak in Wuhan show a key relationship with a 
requirement for ICU care and mortality. 

Procalcitonin A marker of bacterial infection, is more likely to be raised in patients 
who will require ICU care 

Full blood count Often shows leucopenia/lymphocytopenia 
Low platelets associated with adverse outcome 
 

IL6 Where available - high concentrations associated with adverse 
outcome 

Ferritin A marker of poor outcome, very significant changes reported in 
COVID-19 patients 

Cardiac CT  To be considered in uncertain cases of patients with elevated 
troponins with and without signs of obstructive coronary artery 
disease (EACVI  position166) 

ECG 
 

In MERS-CoV the 12-lead electrocardiogram generally shows diffuse 
T wave inversion where there is myocardial involvement - this can be 
dynamic. Changes in COVID-19 were also described 

Echocardiography May show global or regional myocardial systolic dysfunction with or 
without a pericardial effusion and vice versa. 
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Table 5. Proposed investigations in case of suspicion of myocarditis in COVID-19 patients 
 

 
1. Detailed history and physical examination. 
2. 12-lead ECG on initial visit and perdically, as needed. 
3. Serum high-sensitivity troponin, NT-ProBNP (according to index of clinical 

suspicion) 
4. Echocardiography to assess for global and regional wall motion 

abnormalities and function. 
5. Cardiac rhythm monitoring 
6. Cardiac MRI, as clinically indicated 
7. Cardiac autoantibody titers may be helpful but not in the acute phase 
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Table 6. Potential COVID-19 Therapies and their CV Effects 
References: www.medscape.com; CAD=coronary artery disease; MI=myocardial infarction 
 

 

  

 CV Side Effects: CV 
Warnings/Toxicities: 

Use with Caution or Avoid in 
Presence of: 

Antimalarials:     
Chloroquine/ 
Hydroxychloroqui
ne 

-QT interval 
prolongation 
-Thrombocytopenia 
-Anemia 

-Cardiomyopathy/heart 
failure 
-Conduction disorders 
(bundle branch 
block/AV block) 
-Torsades de Pointes 
-Ventricular 
arrhythmias 

-Cardiomyopathy 
-Ventricular arrhythmias 
-Uncorrected hypokalemia 
or hypomagnesemia 
-Bradycardia (<50 bpm) 
-Concomitant administration 
of QT prolonging agents 
-Hepatic disease and co-
administration with other 
hepatotoxic drugs 

Antivirals:    
Ribavarin -Thrombocytopenia 

-Hemolytic anemia 
-Anemia may result in 
worsening of CAD 
leading to MI 

-Ischemic heart disease 

Lopinivir/Ritonivir -Hyperlipidemia 
-Hypertriglyceridemia 
 

-Hepatotoxicity 
-QT and PR interval 
prolongation 
-Torsades de Pointes 
-Second and third 
degree AV block 

-Conduction system disease 
-Ischemic heart disease 
-Cardiomyopathy or 
structural heart disease 
-Uncorrected hypokalemia 
or hypomagnesemia 
-Concomitant administration 
of QT or PR prolonging 
agents 

Remdesivir -unknown -unknown -unknown 
Biologics:    
Tocilizumab -Hypertension 

-Thrombocytopenia 
-Elevated liver 
transaminases 
-Hyperlipidemia 

-Hepatotoxicity 
 

-Elevated liver 
transaminases 
 

Interferon alpha 
2B 

-Hypertension 
-Thrombocytopenia 
-Anemia 
-Elevated liver 
transaminases 
-Hypertriglyceridemia 

-Hepatotoxicity 
-Thyroid dysfunction 
-Pericarditis 
-Ischemic and 
hemorrhagic 
cerebrovascular events 
-Arrhythmias 
-Myocardial 
ischemia/infarction 
-Cardiomyopathy 

-Decompensated liver 
disease 
-Cardiac abnormalities 
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Table 7. Summary of current key considerations in COVID-19 diagnosis and treatment. 

 

Key Take home messages: 
 

• Cardiovascular patients are at increased risk of severe COVID-19 and its 
complications. Intensive preventive measures should be followed in this group in 
accordance with WHO and CDC guidelines. This should include wider use of 
telemedicine tools in day to day monitoring of the patients during the outbreak to 
limit their exposure.  

• The heterogeneity of responses between individual patients indicates, that it unlikely 
can be considered as a single disease phenotype.  Host characteristics promotes 
more or less severe progression of the disease. 

• The most common cardiac complications include arrhythmia (AF, ventricular 
tachyarrhythmia and ventricular fibrillation), cardiac injury (elevated hsCTnI and 
CK), fulminant myocarditis, and heart failure. 

• Cardiac complications appear often >15 days after initiation of the fever (symptoms) 
• Evaluation of cardiac damage (particularly cTnI levels) immediately after 

hospitalization for COVID-19, as well as monitoring during the hospital stay, may 
help identifying a subset of patients with possible cardiac injury and thereby predict 
the progression of COVID-19 complications. 

• Some of the medications used in COVID-19 treatment may contribute to cardiac 
toxicity, while their effectiveness in treating COVID-19 is unconfirmed  
 

Cardiovascular Co-Morbidities:  
 

• Hypertension is one of the common risk-associated co-morbidities, but this 
association is cofounded by age. It is not clear if hypertension is an age-independent 
risk factors of COVID-19-associated outcomes. As a precaution, it is essential that 
hypertension remains well controlled  

• There is no evidence that ACE-Is or ARBs are associated with worse prognosis, and 
patients should not discontinue use of these medications.  

• Based on experimental evidence in other conditions particularly ARB and possibly 
also ACE-Is might exert potentially protective influence in the setting of COVID-19.  

• COVID-19 may lead to plaque instability and MI, which has a common cause of 
death in SARS/COVID-19 patients. However, the evidence of effectiveness of 
primary PCI for type-2-MI during acute viral disease is limited 

• ACE2 can be considered as a Cinderella of cardiovascular medicine. A molecule 
which has been underappreciated in cardiovascular pathology is taking central 
stage in understanding and potentially combating COVID-19 
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Figure 1. Characteristic structure of betacoronavirus. Negative stain electron microscopy 
showing a betacoronavirus particles with club-shaped surface projections surrounding the 
periphery of the particle, a characteristic feature of coronaviruses. The photograph depicts a 
murine coronavirus. Kindly provided by Prof. David Bhella, Scottish Centre for Macromolecular 
Imaging; MRC Centre for Virus Research; University of Glasgow. 
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Figure 2. Basic pathobiology of SARS-CoV2 infection and possible treatment strategies 
– Upon the viral spike protein priming by the transmembrane protease serine 2 (TMPRSS2) 
SARS-CoV-2 uses the host angiotensin-converting enzyme 2 (ACE2) to enter and infect the 
cell. Inhibiting TMPRSS2 activity (by camostat mesylate) could be used to prevent proteolytic 
cleavage of the SARS-CoV-2 spike protein and protect the cell against virus-cell fusion (1). 
Another approach could be neutralizing the virus from entering cells and keeping it in the 
solution by activation of a disintegrin and metalloprotease 17 (ADMA17) which shedding the 
membrane-bound ACE2 and leads to releasing of the soluble extracellular domain of ACE2 
(2), treatment with anti-ACE2 antibodies leading to blockage the interaction between virus and 
receptors (3) or administration of soluble recombinant human ACE2 protein acting as a 
competitive interceptor for SARS-CoV-2 (4). Alternatively, purified polyclonal antibodies 
targeting/neutralizing the viral spike protein may offer some protection against SARS-CoV-2 
(5). Interestingly, angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme 
inhibitors (ACEIs), frequently used to treat hypertension, could alter ACE2 expression and 
intensify the SARS-CoV-2 infection.  
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Figure 3. Key symptoms, biochemical and radiological features of the clinical course 
of COVID-19 
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Figure 4: Multi-focal pneumonia in a patient with COVID-19. Panel A illustrates a cross 
sectional CT image of the lungs showing two distinct pulmonary infiltrates in left upper lobe 
(arrows). Panel B illustrates a large posteriorly located right lower lobe infiltrate on CT scan 
of the chest (arrows). Data were collected as part of retrospective study retrospective study, 
consent was waived and collection of these data was approved by local ethics committee of 
Wuchan, China. Kindly provided by Prof. Dao Wen Wang. 
  

A B
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Figure 5. Cardiovascular involvement in COVID-19 – key manifestations and 
hypothetical mechanisms. SARS-CoV-2 anchors on trans-membrane ACE2 to enter the 
host cells including type-2 pneumocytes, macrophages, endothelial cells, pericytes and 
cardiac myocytes leading to inflammation and multi-organ failure. Especially, the infection of 
endothelial cells or pericytes could lead to severe microvascular and macrovascular 
dysfunction. Furthermore, in conjunction with the immune over-reactivity can potentially 
destabilize atherosclerotic plaques and explain the development of the acute coronary 
syndromes. Infection of the respiratory tract, particularly type-2 pneumocytes, by SARS-CoV-
2 is manifested by the progression of systemic inflammation and immune cells over-activation 
leading to “cytokine storm”, which results in an elevated level of cytokines such as IL-6, IL-7, 
IL-22 and CXCL10. Subsequently, it is possible that activated T cell and macrophages may 
infiltrate infected myocardium resulting in the development of fulminant myocarditis and 
severe cardiac damage. This process could be further intensified by cytokine storm. Similarly, 
the viral invasion could cause cardiac myocyte damage directly leading to myocardial 
dysfunction and contribute to the arrhythmia development.  
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Figure 6. Representative real-life transthoracic echocardiography frames (selected 
from cine loop images) from a patient with COVID-19. A. Apical four chamber view showing 
globally reduced left ventricle contraction, especially in the apical segment. The right ventricle 
is dilated and an echo free space, indicating pericardial effusion is present. B. Parasternal 
short axis view showing markedly reduced left ventricle contraction, enlarged right ventricle, 
and a mural thrombosis in the right ventricle outflow tract. C. Two-dimensional speckle 
tracking echocardiography based on speckle tracking imaging technology (2D STE). Left 
panel showing a normal 2D STE, right showing a 2D STE from a patient with COVID-19 and 
myocarditis, depicting reduced regional peak systolic strain rates. Data were collected as part 
of retrospective study retrospective study, Wuchan, China, consent was waived and collection 
of these data was approved by local ethics committee. Kindly provided by Prof. Dao Wen 
Wang. 


