COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options

Guzik, T. J. et al. (2020) COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research, 116(10), pp. 1666-1687. (doi: 10.1093/cvr/cvaa106) (PMID:32352535) (PMCID:PMC7197627)

[img] Text
215363.pdf - Accepted Version

6MB

Abstract

The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades. We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies. While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system. Risk of severe infection and mortality increase with advancing age and male sex. Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer. The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) —a homologue of ACE—to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not discontinue their use. Moreover, renin–angiotensin–aldosterone system (RAAS) inhibitors might be beneficial in COVID-19. Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19. Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications. Preventive measures (social distancing and social isolation) also increase cardiovascular risk. Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.

Item Type:Articles
Keywords:COVID-19, cardiac, vascular, microvascular, endothelium, ACE2, myocarditis, virus, acute coronary syndrome, myocardial infarction.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:McInnes, Professor Iain and Berry, Professor Colin and Nosalski, Dr Ryszard and Maffia, Professor Pasquale and Bhella, Professor David and Nicklin, Professor Stuart and Murray, Dr Eleanor and Guzik, Professor Tomasz and Thomson, Professor Emma and Guzik, Dr Bartlomiej and Touyz, Professor Rhian
Authors: Guzik, T. J., Mohiddin, S. A., Dimarco, A., Patel, V., Savvatis, K., Marelli-Berg, F. M., Madhur, M. S., Tomaszewksi, M., Maffia, P., D'Acquisto, F., Nicklin, S. A., Marian, A. J., Nosalski, R., Murray, E. C., Guzik, B., Berry, C., Touyz, R. M., Kreutz, R., Wang, D. W., Bhella, D., Sagliocco, O., Crea, F., Thomson, E. C., and McInnes, I. B.
College/School:College of Medical Veterinary and Life Sciences > School of Cardiovascular & Metabolic Health
College of Medical Veterinary and Life Sciences > School of Infection & Immunity
College of Medical Veterinary and Life Sciences > School of Infection & Immunity > Centre for Virus Research
Research Centre:College of Medical Veterinary and Life Sciences > School of Infection & Immunity > Centre for Immunobiology
Journal Name:Cardiovascular Research
Publisher:Oxford University Press
ISSN:0008-6363
ISSN (Online):1755-3245
Published Online:30 April 2020
Copyright Holders:Copyright © 2020 The Authors
First Published:First published in Cardiovascular Research 116(10):1666-1687
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
300798A study of the roles of the immune and inflammatory systems in hypertensionTomasz GuzikEuropean Research Council (ERC)726318CAMS - Cardiovascular Science
170444Assessing the contribution of microRNA to in-stent restenosisTomasz GuzikBritish Heart Foundation (BHF)FS/14/49/30838Institute of Cardiovascular & Medical Sciences
303944BHF Centre of ExcellenceRhian TouyzBritish Heart Foundation (BHF)RE/18/6/34217CAMS - Cardiovascular Science
308639Defining the individual and integrated roles of inflammatory chemokine receptors (iCCRs) in atherosclerosisPasquale MaffiaBritish Heart Foundation (BHF)PG/19/84/34771CAMS - Cardiovascular Science
656341Virus-host interactions in hepatitis C virus infectionJohn McLauchlanMedical Research Council (MRC)MC_UU_12014/1MVLS III - CENTRE FOR VIRUS RESEARCH
656541Structural studies of human viruses and host interactionsDavid BhellaMedical Research Council (MRC)MC_UU_12014/7MVLS III - CENTRE FOR VIRUS RESEARCH