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Abstract

Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine
assessment in human tumours. Gene signatures are currently being derived and some were previously generated by
expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types
would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11]
cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2) by clonogenic assay.
Differential gene expression between radiosensitive and radioresistant cell lines (SF2,/. median) was investigated using
Affymetrix GeneChip Exon 1.0ST (cervix) or U133A Plus2 (head and neck) arrays. There were differences within cell line
cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as
being associated with SF2, only 2 (1.4%) were congruent between the cervix and head and neck carcinoma cell lines (MGST1
and TFPI), and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying
three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did
partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis
but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins.
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Introduction

Intrinsic radiosensitivity is an important factor underlying

radiotherapy response [1]. Radiosensitivity can be measured as

the fraction of cells surviving a single 2 Gy dose of radiation (SF2)

with high values indicating radioresistance. While other methods

are available to measure cellular radiosensitivity in cell lines, SF2 is

considered to be the gold standard and is supported by strong

clinical evidence. In vitro measurements of SF2 correlate with in vivo

radioresponse in mouse models [2]. Measurement of SF2 in

primary human tumours was an independent prognostic factor in

patients with carcinoma of the cervix [3] and head and neck [4]

following potentially curative radiotherapy. Despite the evidence

for its importance, no method is available for its routine assessment

in patients, due to the impracticalities of measuring tumour

radiosensitivity. The ability to measure a tumour’s radiosensitivity

would be a major advance and allow individualised treatment to

reduce dose and/or omit chemotherapy in patients with sensitive

tumours or conversely to intensify treatment against resistant

tumours. Treatment individualisation should increase survival and

reduce morbidity. Estimates suggest a biologically individualised

approach to treatment based on radiosensitivity testing could

increase survival rates by .10% [5].

Consequently there is interest in deriving a gene signature that

reflects radiosensitivity. Several methods have been explored:

identifying genes induced following irradiation in cell lines [6];

identifying differential expression between induced radioresistant

and parental radiosensitive cancer cell lines [7] and profiling the

in vitro response of cervix tumours to irradiation [8]. Most

published studies were small and have not been independently

validated. The most comprehensive studies used the NCI-60 panel

of cell lines [9]. One study identified 22 genes that together

discriminated between low and high SF2 values in 63 cell lines,

based on a threshold of 0.2 (i.e. cell lines with less than 20% colony

survival following 2 Gy defined as radiosensitive) [10]. Another

series of studies developed a predictive classifier of radiosensitivity

based on SF2 associated gene expression profiles in the NCI-60

lines [11,12,13,14]. The endpoint of these studies was a regression

model of 10-hub genes, which had prognostic significance when

applied to three clinical datasets (rectal, oesophageal and head &

neck cancers) [13] and was also predictive of benefit from

radiotherapy in breast cancer [15]. Additionally a meta-analysis of

published data from four microarray platforms for NCI-60 cells

identified a 31 gene radiosensitivity signature [16].
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The NCI-60 panel is the most extensively characterised set of

cancer cell lines and a public resource that is frequently used as a

screening tool for drug discovery [9]. The panel contains cell lines

from multiple tissues of origin but few radiobiologically relevant

tumour types such as cervix (n = 0) or head and neck (n = 0), i.e.,

cancers where radiotherapy is an important part of treatment. It is

well known that tumours derived from different tissues vary in

radiosensitivities; with haematological malignancies being sensi-

tive, and glioblastoma and melanomas the most radioresistant

[17]. Studies show that basal gene expression levels correlate

strongly with tissue of origin, particularly between haematological

and solid tumours [10]. As such, considerable variation and noise

is present in the NCI-60 ‘basal’ gene expression data, potentially

hampering the identification of genes associated with SF2. The

transcription factor P63 is a marker of squamous cell origin and

regulates many genes associated with epidermoid/squamous cell

fate. Loss of p63 is associated with the up-regulation of genes

associated with a more mesenchymal/migratory cell fate [18].

It was hypothesised that deriving a radiosensitivity signature

using a more homogeneous group of cell lines would be a better

approach. We obtained 16 cervical carcinoma cell lines, a tumour

type where radiotherapy is important but that is not represented in

the NCI-60 panel. The cells were characterised in tightly

controlled basal conditions; parameters measured included SF2,

protein expression by reverse-phase protein array (ZeptoMARK)

and gene expression by Affymetrix Exon 1.0ST array. We

attempted to identify genes that were differentially expressed

between high and low SF2 cell lines in a single homogeneous

tumour type. We had access to a second independent radiobio-

logically-relevant head and neck squamous cell carcinoma

(HNSCC) cell line cohort (n = 11) to validate our findings and

those derived from the publically available NCI-60 data.

Materials and Methods

Cell Lines
Fourteen commercially available cervical carcinoma cell lines

were obtained from the American Type Culture Collection

(ATCC) or the Japanese Collection of Research Bioresources

(JCRB). Two other cell lines (778 and 808) were derived in house

[19]. All cervix cell lines were cultured in identical conditions:

4.5 g/l glucose DMEM plus Glutamax (Life Technologies,

Paisley, UK), supplemented with 10% foetal calf serum (FCS)

(Lot: A04305-0160, PAA Laboratories (Yeovil, UK)) and kept in a

humidified incubator. Eleven head and neck cell lines were

cultured as described in Table S1. All cell lines underwent STR

authentication and were mycoplasma free.

Clonogenic Assays
The method is described elsewhere [20]. Briefly, exponentially

growing cells were trypsinised and irradiated with 0–10 Gy at

room temperature using an X-ray unit at a dose-rate of 1.37 Gy/

min. Following plating and 2–3 weeks growth, the colonies formed

were stained with crystal violet and those with .50 cells scored.

Each experiment involved a minimum of three but usually six

technical replicates and experiments were repeated two (n = 4) or

Figure 1. Radiobiological characterisation of cervix carcinoma cell lines. A) Radiation survival curves showing surviving fraction (log10) (y-
axis) following irradiation with 2, 4, 6, 8 and 10 Gy for 14 cervix cancer cell lines. Data points are the mean and standard error of 2–3 independent
experiments (3–6 replicates per experiment). Data-points are fitted with the linear quadratic equation and coloured by below (blue) or above (red)
the median SF2.
doi:10.1371/journal.pone.0086329.g001
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three (n = 21) times. Data shown are the mean of the biological

replicates.

HPV Genotyping
The HPV genotyping of these cervical carcinoma cell lines was

described previously [21]. For head and neck carcinoma cell lines

qRT-PCR for E2, E6 and E7 for HPV16 and HPV18 was

performed as described previously [22].

MTT Assay
Doubling time was estimated for each cell line using the

CellTiter 96 Aqueous Non-radioactive cell proliferation assay

(Promega, Madison, WI, USA) as per manufacturer’s ‘overnight’

protocol. A standard 7-day growth curve was performed in 96-well

plates. Colorimetric readings were taken at 570 nm and

compared, by exponential regression to a standard curve of

known cell density. An average of three independent replicates at

different densities was used to calculate the mean doubling time.

RNA Extraction
Cells were washed in PBS and snap-frozen in liquid nitrogen.

RNA was extracted and DNase treated using the Qiagen RNeasy

Kit (Qiagen, UK), as per manufacturer’s instructions. RNA

integrity (RIN) and quantification were measured using a

Bioanalyser (Agilent Technologies Ltd, Santa Clara, CA, USA).

260/230 and 260/280 ratios were assessed using a Nanodrop

1000 Spectrophotometer (Thermo Scientific, Wilmington, DE,

USA).

Western Blotting
The p63 protein status of the cervix carcinoma cell lines was

described previously [21]. Using the same methods Western

blotting was performed on the head and neck cell lines, using the

following antibodies: p63 mouse monoclonal (BC4A4) (Abcam,

Cambridge, UK) and anti-b-Actin mouse monoclonal (Clone AC-

15) (Sigma-Aldrich, Dorset, UK).

ZeptoMARK Reverse-phase Protein Arrays
Exponentially growing cells were washed with PBS, lysed in

75 ml of CLB1 lysis buffer (Zeptosens: a Division of Bayer

(Schweiz) AG, Switzerland), scraped into microfuge tubes,

vortexed and incubated at room temperature for 30 minutes.

Samples were centrifuged at 15,000 rpm at room temperature,

supernatants collected and concentrations determined by Bradford

assay. The spotting procedure has been described before [23].

Briefly, cervix carcinoma protein lysates were standardised to

2 mg/ml, from which four concentrations (0.20, 0.15, 0.10 and

0.05 mg/ml) were spotted, in duplicate onto a ZeptoMARK

hydrophobic chip (Zeptosens). Each cell line was independently

grown and harvested on two occasions; consequently two

biological replicates were spotted onto the array. Chips were

blocked with CeLyA buffer (Zeptosens), before incubation with

primary antibodies for 22 hours at 20uC. Twenty-four antibodies

(Zeptosens) were selected based on their role in cancer or therapy

resistance [24]. After incubation excess primary antibody was

removed and a fluorescently-labelled species-specific antibody

hybridised for 2.5 hours at 20uC. After washing, arrays were read

on a ZeptoREADER (lex/lem = 635/670 nm). The resulting

relative fluorescent intensity (RFI) was calculated from a standard

curve constructed from the four concentrations (in duplicate). This

is a quantitative protein measurement. Values displayed are the

mean of two biological replicates (i.e. 4 standard curves).

Exon Array Hybridisation
100 ng RNA was amplified using NuGen WT-Ovation FFPE

v2 kit (NuGen Technologies, San Carlos, CA, USA). The WT-

Ovation Exon Module V1.0 was used to generate ST-cDNA and

4 mg was hybridised to Human Exon 1.0 ST arrays (Affymetrix,

Santa Clara, CA). Further details and raw data (CEL files) are

Table 1. Summary characteristics of the cervix cell lines.

Cell line* Tumour histotype* SF2 HPV Genotype
$

p63{ (Western) TP63{ (array)

Boku SCC 0.4160.01 16 – 4.24

C33a Unknown 0.2560.01 – – 4.81

CaSki SCC 0.4760.02 16 + 8.67

HCS2 SCC N/A 18 + 8.86

HCSC1 Small cell carcinoma 0.3260.00 18 – 3.93

HeLa Adenocarcinoma 0.4160.04 18 – 4.54

HT3 Unknown 0.3560.12 – + 8.02

Me180 SCC 0.3560.01 68 + 10.33

MS751 SCC 0.4760.01 – + 8.51

SiHa SCC 0.7560.06 16 – 4.93

SKGI SCC 0.2760.09 18 + 7.2

SKGII SCC 0.3160.02 18 – 5.65

SKGIIIa Unknown 0.3760.03 16 + 8.6

SW756 SCC 0.4260.01 18 – 4.56

778 Unknown N/A 18 – 5.19

808 SCC 0.3360.02 18 + 8.28

*Provenance information from ATCC, JCRB or [17].
$
HPV genotype from [20].

{p63 expression from Western analysis and Exon derived array expression values from [19].
doi:10.1371/journal.pone.0086329.t001
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Figure 2. Transcriptional characterisation of the cervix cancer cell lines. A) Unsupervised hierarchical clustering of the top 1000 genes
ranked by coefficient of variation (from Exon array data). Heatmap colouring is by log2 expression value. Rows represent genes and columns are cell
lines. x-axis dendrogram (clusters) indicates the similarity of the cell lines and y-axis dendrogram the similarity of genes. Cluster 1 represents two
samples with the lowest TP63 values (p63 negative). Cluster 2 shows the grouping of the other p632 cell lines including the adenocarcinoma HeLa.
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available at http://bioinformatics.picr.man.ac.uk/vice (or GEO:

GSE39066 (part of super series GSE39067). Raw data for

HNSCC cell lines are available at GEO: GSE51370.

Exon Array Data Analysis
Microarray data were normalised using RMA [25]. The R/

BioConductor package annmap and the annmap database [26]

were used to remove non-exonic and multi-targeting probesets.

Array performance was measured as the percentage of probesets

flagged as ‘‘present’’ with a conservative cut-off (%Detection

Above BackGround [%DABG] P,0.01) and only those probesets

flagged ‘‘present’’ in at least three samples were retained. This

filtering reduced the number of probesets considered from

1,411,399 to 353,981 exonic probesets, of which 243,301 passed

DABG filtering. Gene level summaries were calculated by taking

the median signal of filtered probesets that mapped to unique gene

symbols. When summarised this resulted in 31,345 genes

considered. Unsupervised hierarchical clustering was performed

on the 1000 most variant genes (ranked on coefficient of variation)

to show the separation of samples based on the most variable genes

in the data, while minimising computational requirements.

Signature Generation: A gene signature was determined to be

the set of genes or probesets that were significantly differentially

expressed between two groups of cell lines according to either

LIMMA or Rank Product Analysis. The cut-off for significance

was a false discovery corrected p value of 0.01. Packages: R: 3.0.2,

Annmap: v1.2.1 using human database build 66, LIMMA:

3.17.26, RankProd: 2.32.0, Pheatmap: 0.7.7.

Validation Cohorts, Array Mapping and Data Analysis
Head and neck cell line Affymetrix U133A Plus2 array data

were RMA normalised using the affy package in R. Affymetrix

control probesets (‘AFFX’ annotated) were removed. For variance

analysis, _x_, _a_ and _s_ annotated probesets were also removed.

NCI-60 - Affymetrix Plus2 cel files were downloaded from

CellMiner (http://discover.nci.nih.gov/cellminer/) and RMA

normalised as before. After normalisation, replicate arrays for

each cell line were averaged. For comparison to the gene-level

summarised exon array data, Plus2 probesets were mapped to

gene symbols using annmap.

Radiosensitivity Signature Mapping
All signatures were applied to the gene-level summaries of the

cervix data using gene symbol mapping. For application of

signatures to the HNSCC and NCI-60 Affymetrix Plus 2 datasets,

the following protocols were used:

1. Probeset IDs for the Eschrich et al [13] ten hub genes were

taken from Table 3 from the group’s first paper [13]. NCI-60

test set cell lines were taken from Table 4 from the group’s

second paper [12]. Twelve cell lines were listed but there was

no corresponding Plus2 array for the breast cell line MDN.

2. The top four ranking genes from Torres-Roca et al [14] (RPIA,

RBBP4, RGS19, ZNF208) were mapped to Affymetrix Plus2

probesets using annmap. The corresponding expression data for

the probesets were extracted and plotted on a linear scale (anti-

log).

3. Gene symbols for the Amundson et al gene signature were

taken from the second table of the original article [10]. One

gene could not be mapped (Unigene ID Hs.494347) as there

was no corresponding gene symbol in the table. The remaining

21 gene symbols were mapped to Plus2 probesets using annmap.

Multi-mapping probesets were removed.

4. The Tewari et al signature was taken from the second table of

the original article [8]. Forty-nine of the 60 probesets with a

unique gene symbol were extracted and mapped to Plus2

probesets using annmap. Multi-mapping probesets were

removed.

Unsupervised analyses (clustering, PCA) of gene expression

data, signature analysis and differential expression analysis

(LIMMA [27], RankProd) were carried out using R. The threshold

for differential expression using Rank Product Analysis (RankProd)

was a Percent False Positive (PFP) rate of ,0.01.

Graphing and Statistics
Results show the mean of biological replicates and precision

measurements are the standard error of mean unless otherwise

stated. R values indicate Pearson’s product moment coefficient.

Boxplots were generated in GraphPad Prism (v6.0): box-whisker

parameters: horizontal bar indicates median expression, the box

indicates interquartile range; whiskers represent the range. For

visualisation of radiation survival curves a linear quadratic

equation was fitted in R, with radiobiological parameters derived

from DRFIT [28]. The R package LIMMA, was used to calculate

differential expression values for protein profiling data. Where

appropriate, p-values are Benjamini and Hochberg false-discovery

rate (FDR) corrected [29]. Principal component analysis (PCA)

reduces multi-dimensional data (i.e. thousands of genes) into data-

points in 2-D space. The closer two data-points (samples) the more

similar the samples. PC1 (x-axis) accounts for the majority of

variance in an experiment, PC2 (y-axis) accounts for the

component representing the second highest variance.

Results

Cervical Carcinoma Cell Lines have a Range of
Radiosensitivities

Table 1 summarises the cervical carcinoma cell lines. Two cell

lines did not form colonies and SF2 values for the remaining 14

lines ranged from 0.25 to 0.75 (Figure 1). SF2 values for six of the

cell lines were published by another group [30], and the ranking

was identical in both studies. In the 14 cell lines, there was no

correlation of SF2 with plating efficiency (R2 = 0.005, p= 0.82),

doubling time (R2,0.0001, p= 0.99) or the RNA expression of

TP63, a marker of squamous cell differentiation (p= 0.90).

Molecular Characterisation of Seemingly Homogeneous
Cervical Carcinoma Cell Lines Shows Significant Disparity

p63 expression (protein and mRNA) was measured because it

discriminates between squamous (p63+) and non-squamous

Cluster 3 groups p63+ cell lines, with the exception of SKG1, which is classified with p63 negative cells. B) Principal component analysis of the 16
cervix cancer cell lines based on SCC (n = 1062), AC (n = 155) and small cell carcinoma (n = 77) gene expression. The x-axis shows principal component
1 (PC1) accounting for 15.5% of the variance. PC2 displayed on the y-axis accounts for 13.7% of the variance in the histology signature gene
expression. Colouring represents p63 protein expression. C) Graph showing the average expression (log2) of the SCC, AC and small cell carcinoma
signature. y-axis is the Exon array derived median gene level expression, for each of three signatures. X-axis shows the cell line. Cell lines are ranked
based on TP63 expression.
doi:10.1371/journal.pone.0086329.g002
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(p632) histological types of cervix cancer [21]. Following

transcriptional profiling, unsupervised clustering of the most

variant 1,000 genes (ranked by coefficient of variation) separated

the lines into three clusters (Figure 2A) with cluster 1 (C33a and

HCSC1) being outliers. The other 14 cell lines partitioned as

p632 and p63+ clusters with the exception of SKG1 which had

the lowest TP63 transcript level of the p63 positive lines. HCS2

and 778, which did not form colonies in our conditions, did not

cluster together suggesting no common transcriptional expression

associated with ability to form colonies. These results suggest that

the major basal transcriptional differences between the cell lines

relate to p63 expression. Interestingly, while HeLa cells were the

only adenocarcinoma (AC) according to provenance information,

several cervix cell lines had similar global transcriptional profiles.

HCSC1 is ‘small cell carcinoma’ derived, consequently we

explored whether the clustering of C33a and HCSC1 was due

to a shared histological origin. Principal component analysis (PCA)

using the combined gene expression from two gene signatures,

trained on (i) AC and SCC [21] and (ii) small cell carcinoma [31],

showed that HCSC1 and C33a had very similar histological gene

expression (Figure 2B). Figure 2C shows that C33a and HCSC1

had low levels of SCC genes and higher than average levels of

small cell carcinoma genes. It is interesting to note that the AC

gene expression was low in all cell lines, including HeLa,

suggesting that this signature, derived in primary tumour material

may have limited applicability in cell lines. These data suggest that

C33a is histologically a small cell carcinoma derived cell line and

highlights the transcriptional differences associated with histolog-

ical type found in a relatively homogeneous single tissue of origin

cohort.

Protein Profiling of ‘Cancer Associated Genes’ shows Key
Pathway Differences between Cell Lines, but not
between High and Low SF2 Groups

A panel of 24 proteins were selected from a catalogue of pre-

validated antibodies of proteins implicated in cancer, or resistance

to therapy [24]. Few DNA damage response antibodies were

available and so selection was limited to well-validated proteins

associated with cancer, such as p53, Rb, EGFR etc. As p63 is

essential for the proliferative potential of stem cells in stratified

epithelia [32], we postulated that p63+ cells would express higher

levels of the epithelial marker protein E-cadherin, compared with

p632 cells and this was confirmed by the protein array

(p=,0.0001) (Figure 3A). We also compared the mRNA

expression level of E-cadherin (Exon-array derived) with the

protein abundance measured by the array (relative fluorescence

intensity [RFI]; Figure 3B). There was a strong correlation

(R = 0.95, p,0.001) demonstrating that protein levels reflect

transcript levels for E-cadherin. We also detected high levels of

p53 protein in C33a cells compared with all other cell lines

(Figure 3C), due to a known mutation in the TP53 gene [33]

resulting in protein stabilisation. These data gave us high

confidence in the protein profiling data. Unsupervised clustering

of the protein data showed no relationships with known

characteristics (Figure S1). Ranking the cell lines by SF2 showed

no clear visual structure to the data (Figure 3C). The 14 cell lines

were split into high and low radiosensitivity groups using the

median SF2 value, as previously used with clinical specimens [3,4].

Four proteins were differentially expressed (p,0.05) between the

two groups: mTOR, PTEN, IkB alpha, and NFkB, but none were

significant after false discovery rate (FDR) correction (Figure 3D,

Table S2). mTOR was borderline significant (FDR p = 0.09) and

there was a trend for a moderate correlation between mTOR and

SF2 (R = 0.48, p= 0.08, Figure 3D). These data reveal that while

there were considerable differences between the cells in terms of

protein expression and pathway activation, none of the proteins/

pathways were robustly associated with SF2 in this cell line cohort.

Head and Neck Cancer Cell Lines Show Similarities in
Global Gene Expression

Table 2 summarises the 11 HNSCC cell lines, which were all

HPV negative (Figure S2). Although reported to be squamous cell

carcinoma, three lacked p63 protein expression by Western blot

(Figure S3), and had low transcript levels detected by microarray.

The SF2 range (0.3–0.8) was similar to that for the cervix lines

(Figure 4A), but the HNSCC cell lines were more radioresistant

compared with the cervix (p= 0.003). The median SF2, used to

partition the cell lines was 0.36 for cervix and 0.61 for HNSCC

cell lines. As with cervix cell lines, there was no difference in SF2

between cell lines expressing high versus low levels of TP63

(Figure 4B) and unsupervised hierarchical clustering partitioned

the HNSCC cell lines into three groups reflecting TP63 expression

(Figure 4C). The most outlying cluster had the lowest TP63

expression while the remaining two clusters divided the cell lines

with expression ,/.6.0 (log2) TP63. These data show that both

cervical carcinoma and HNSCC cell lines have similar radiosen-

sitivities and global transcriptional profiles, with the majority of

differences relating to the transcription factor p63. As such, the

HNSCC cohort is a tissue-type distinct from cervix, but should be

a good comparator for SF2 associated genes derived in cervical cell

lines and vice versa.

Genes Differentially Expressed between High and Low
SF2 Groups are Primarily Cell Type Specific and Cannot
Stratify the NCI-60 Cell Lines

Differences between the cell lines partitioned using median SF2

were explored using genome-wide expression profiling. No

differentially expressed transcripts were found by LIMMA follow-

ing multiple-testing correction. This was also the case for linear

models incorporating HPV and p63 expression as covariates, or in

a 3-way ANOVA. While genes were identified that were

differentially expressed (raw p,0.05), none passed false-discovery

Figure 3. ZeptoMARK protein profiling of the cervix cancer cell lines. A) Histogram displaying the ZeptoMARK protein-array derived
abundance for the 16 cervix cancer cell lines. The y-axis displays E-cadherin protein level (relative fluorescent intensity (RFI) for each of the cell lines
(x-axis). Cell lines are ranked based on TP63 expression. Grouping into p63 negative and p63 positive cell lines confirms the association of E-cadherin
with p63. The p value is T-test derived comparing the difference in E-cadherin expression between the p63 positive and negative groups, error bars
display standard deviation of two biological replicates. B) x–y scatterplot showing E-cadherin gene expression (Exon array) on the y-axis against E-
cadherin protein expression on the x-axis. Dashed line represents perfect correlation. Exon array data-points represent the average of multiple exonic
probesets (n = 19) from a single Exon expression array, where protein data are the mean of two biological replicates. C) Heatmap showing clustering
of proteins with similar expression (y-axis) in the ZeptoMARK protein profiling data. Cell lines ranked by SF2. Heatmap colouring is based on row Z-
score. D) xy-scatter plot showing the expression (y-axis) of the top 5 proteins from LIMMA against SF2 (x-axis). Table summarises the results of Limma
differential protein expression analysis between high and low SF2 groups and Pearson correlation of protein expression (RFI) against SF2. p values
denote those proteins with differential expression (* p,0.05 or ** p,0.01) between SF2 low and high groups according to LIMMA analysis. However
these fail to pass false discovery rate correction.
doi:10.1371/journal.pone.0086329.g003
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correction. An alternative method, Rank Product Analysis, applied

to the cervix cell lines identified 96 differentially-expressed genes

(pfp,0.01) (Table S3). These genes separated the cervix samples

on the first principal component, accounting for 36% of the

variation (Figure 4D), but could not separate the HNSCC cell lines

based on SF2 (Figure S4A). A reciprocal analysis on the HNSCC

lines identified a similar number of probesets (n = 97, mapping to

42 unique gene symbols, pfp,0.01) differentially expressed

between high and low SF2 (Table S4). These genes performed

well in separating the HNSCC cell lines (Figure 4D), but failed to

separate the cervix lines (Figure S4B). This shows that the majority

of the genes identified are cohort/tumour type specific. Only four

(2.9%) of the 138 differentially expressed gene symbols were in

both gene lists: MGST1, IFITM2, TFPI and TGFB2. Of these only

two were congruent in being associated with radiosensitivity or

radioresistance in both cohorts (MGST1, TFPI). Expression of

these two genes did not separate the NCI-60 cell lines based on

SF2 (Figure 4D). Similar results were achieved taking the

convergence (n = 134) of the cervix and head and neck gene lists.

Identification and Independent Validation of a Signature
Associated with p63 Protein Expression

To test our signature generation approach, we applied the same

methods (i.e. Rank product, mapping Exon 1.0ST gene-level data

to U133 plus 2.0 array) to a more obvious biological phenotype:

p63 protein expression. Rank product analysis identified genes

differentially expressed between p63 positive and negative cell lines

in both cervix (n = 395) and HNSCC (n = 335) cell lines pfp,0.01

(Figure S5A&B). Of these genes 62 were differentially expressed in

both cell types and associated with p63 expression (Figure S5C).

These common genes represent genes previously associated with

squamous histology (e.g. KRT5, DSC3, CTA-55I10.1) [21].

Reassuringly, when this gene signature was applied to an

independent dataset it could discriminate between adenocarcino-

ma and squamous cell carcinoma of the lung (non-small cell lung

cancer) (Figure S6) [34]. There was little overlap between the p63

negative component of this signature and the adenocarcinoma

signature applied previously (Figure 2). Given HeLa is the only

adenocarcinoma cell line, this suggest that losing p63 expression is

not the same transcriptionally as being ‘adenocarcinoma’. In terms

of classification, it is predominantly the p63 positive component of

the signature that facilitates separation in both cell lines and

tumours. That said, as our methods could derive a signature

capable of independent validation, SF2 appears to be a difficult

phenotype to describe at the transcriptional level.

Figure 4. Characterisation of a head and neck squamous cell carcinoma (HNSCC) cell line cohort. A) Graph showing the mean SF2
(log10) (y-axis) for each of the 11 cervix cancer cell lines (x-axis). Error bars show the standard error of mean of 2–3 independent experiments. B)
Graph showing that there is no difference in TP63 expression between the SF2 high and low groups. Bar shows the median expression. C)
Unsupervised hierarchical clustering of the top 1000 genes ranked by coefficient of variation (from U133 array data). Heatmap colouring is by log2
expression value. Rows represent genes and columns are cell lines. x-axis dendrogram (clusters) indicates the similarity of the cell lines and y-axis
dendrogram the similarity of genes. Cluster 1 represents two samples with the lowest TP63 values (p63 negative). Cluster 2 shows the grouping of
the other p632 cell line, along with low TP63 expressing lines. Cluster 3 groups together all HNSCC lines with.6.0 (log2 expression) TP63 expression.
D) Diagram to represent the integrated SF2 analysis of the cervix and HNSCC cell lines. Rank product analysis (FDR ,0.05) identified 96 genes in the
cervix cohort differentially expressed between SF2 low and high cell lines. An identical analysis in the HNSCC cell lines identifies 97 probesets (42
genes) differentially expressed between SF2 low and high cell lines. PCA of the cervix genes shows that they are capable of separating the cell lines
by SF2. PCA of the HNSCC genes is equally capable of separating the samples based on SF2. The Venn diagram shows that only 4/138 genes are
common between the two cohorts and of these only 2/138 are ‘‘congruent’’ and associated with the same directionality (high SF2/low SF2 in both
HNSCC and cervix). PCA shows probeset expression of these two ‘‘common’’ and ‘‘congruent’’ genes (MGST1 and TFPI) in the NCI-60 dataset. The NCI-
60 upper PCA shows data-points coloured for median SF2 and lower PCA coloured for 0.2, used previously to partition radiosensitive and
radioresistant cell lines in this cohort.
doi:10.1371/journal.pone.0086329.g004

Table 2. Summary characteristics of the head and neck cancer cell lines.

Cell Line* Tumour sub-site* Tumour Histotype* SF2 HPV
$

p63{ (Western) TP63{ (array)

PE/CA PJ41 Oral squamous epithelium SCC 0.3360.01 – + 6.01

RPMI2650 Nasal septum SCC 0.4160.03 – – 4.47

PE/CA PJ34 Oral cavity SCC 0.4560.00 – + 6.6

Detroit 562 Pharynx SCC 0.4860.01 – + 5.62

CAL27 Tongue SCC 0.5260.01 – + 6.65

SW579 Thyroid SCC 0.6160.01 – – 4.46

OE21 Oesophagus SCC 0.6260.01 – + 6.48

PE/CA PJ15 Tongue epithelium SCC 0.6360.01 – + 5.69

FaDu Pharynx SCC 0.6760.01 – + 5.79

PE/CA PJ49 Tongue SCC 0.6860.02 – + 6.02

KYSE 30 Oesophagus SCC 0.8060.02 – – 4.97

*Provenance information was derived from ATCC including tissue origin and tumour histological type.
$
Table also includes the results of HPV genotyping (by HPV qRT-PCR),

{p63 expression from Western analysis and U133 plus 2.0 array derived TP63 expression values.
doi:10.1371/journal.pone.0086329.t002
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Figure 5. Assessment of established radiosensitivity gene signatures. A) PCA of the Tewari radiosensitivity gene signature. The original
signature consists of 49 genes, with mapping to the NCI-60 (60 Plus2 probesets) HNSCC (60 Plus2 probesets) and cervix cell line (48/49 genes)
datasets. The x-axis shows PC1, accounting for the largest amount of variation in the experiment and the y-axis shows the second principal
component (PC2). Colouring based on median SF2, blue data-points are radiosensitive cell lines (below the median SF2) with red data-points being
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Combined Analysis of Cervix and Head and Neck Cell
Lines Increases Statistical Power, but Fails to Give Rise to
a Robust Gene Signature Associated with SF2

Given our suspicion that there are only small transcriptional

differences associated with the SF2 phenotype, we calculated the

sample size required to detect transcriptional difference reflecting

SF2 from the cervix cell line data. Using gene CTC-359D24.3

which had the largest standardised difference between group

means of 2.48 (log2) combined with the smallest within group

standard deviation (1.54) provides an optimistic estimate of

required sample size for microarray classifiers [35]. This suggests

that 27 samples (13 SF2 low and 14 SF2 high) would be required

given the current spread of the data. The cohorts were combined

to improve statistical power (n = 25). The two cohorts were split

independently based on median SF2, as splitting on SF2 alone

would create a bias between the cervix and HNSCC samples

(Figure S7A). Samples below the median, whether cervix or head

and neck were defined as radiosensitive and above the median

were classified as radioresistant (Figure S7B). Twenty-two genes

were differentially expressed between the SF2 high and low

cohorts. These genes competently separated the cervix and

HNSCC cell lines, with only one misclassification (Figure S7A),

but did not separate the NCI-60 samples, whether separated on

the median or 0.2 (Figure S8) [10]. This suggests that the data are

potentially over-fitted and cannot generalise to the NCI-60

dataset. Interestingly 3/22 genes (KRT5, CSTA, FGFBP1) were

identified as being associated with p63 previously and suggest an

imbalance between histologies within the two SF2 groups.

Repeating the analyses using the overall median for the combined

cervix and HNSCC cell line cohort or the lowest quartile as a cut-

off did not improve the discriminatory power in the three cell line

cohorts. Similarly, pooling the cervix, HNSCC and NCI-60

cohorts did not work.

Published Radiosensitivity Gene Signatures have a
Varying Ability to Classify Cell Lines based on SF2

We also investigated published radiosensitivity gene signatures.

Given that principal component analysis (PCA) gives an unsuper-

vised/unbiased view of the major variation between different

samples we used this method to assess how well a gene signature

could separate samples based on SF2. First, we considered the

Tewari signature derived by assessing cell viability in in vitro

irradiated cervix tumour samples [8]. A 54 transcript signature

mapped to 49 unique gene symbols partly separated the cervix

(Figure 5A) but did not separate the HNSCC or NCI-60 cell lines

into SF2 groupings (Figure 5A).

The Torres-Roca signature was trained on a historical

microarray platform and when applied to the authors NCI-60

test subset [12] on a current array version (U133 plus 2.0) with

standard normalisation (RMA), did not predict SF2 in the NCI-60

test subset (Figure 5B), the cervix lines or the HNSCC cells

(Figure 5C). There was no statistically significant difference

between the calculated radiosensitivity index (RSI) and the SF2

groupings in either the cervix (p = 0.74) or HNSCC (p = 0.32) cell

lines (Figure S9) and no grouping by PCA when considering the

gene expression values for the ten ‘‘hub’’ genes (Figure S10). In a

subset of four published and described genes [12] there was a

weak, but significant correlation between expression of RPIA

(R =20.3, p,0.01), RBBP4 (R =20.36, p,0.01), RGS19

(R =20.4, p,0.01) and SF2, in the NCI-60 (training) data. These

genes however showed no association with SF2 in the cervix or

HNSCC cohorts (Figure S11). Taken together our findings suggest

that this gene signature, while capable of prognostication in

clinical datasets [11] and successfully classifying cell lines based on

SF2 in 5/12 (41.7%) cases, was not sufficiently robust to predict

SF2 on the same cell lines on a different microarray platform or in

independent cell line cohorts.

The last signature (Amundson) assessed was also derived using

the NCI-60 panel and the basal expression of genes associated

with SF2 [10]. Twenty-one genes partitioned the samples based on

an SF2 threshold of 0.2. This 21-gene signature separated the

NCI-60 cell lines according to SF2 along the first principal

component (Figure 5D). These genes also partly separated the

HNSCC cell lines using the second principal component. Similarly

the cervix cell lines showed grouping based on SF2, using the first

two principal components. These groupings are not ideal and

could be optimised further, but this demonstrates for the first time

that a gene signature trained on basal SF2 can be successfully

applied to two independent cell line cohorts. This suggests that

some genes associated with SF2 may generalise across cell-types,

rather than being cohort/cell type specific.

Discussion

Cell line-derived gene signatures have been successfully

translated to clinical biomarkers that are both prognostic and

predictive [36] and are particularly relevant in situations where

measurements in primary tumours are difficult, as with radiosen-

sitivity. Radiotherapy plays an important part in the management

of cervix cancer and HNSCC and measurements of radiosensi-

tivity have been shown to correlate with clinical radioresponse

[3,4]. The use of these tissue types is, however, currently under-

represented when training signatures on radiosensitivity [10,12].

As expected [30] the cervix cell line SF2 values varied but were

independent of proliferation and plating efficiency. We also

showed no association between SF2 and the expression of key

cancer associated proteins. However, mTOR was .20-fold higher

in radioresistant compared with radiosensitive cells and was

moderately correlated with SF2 (R = 0.48, p= 0.08). High

expression of mTOR protein was associated with a poor prognosis

in cervical cancer treated with radiotherapy [37]. Therefore,

mTOR may have a role in intrinsic radiosensitivity and clinical

radioresponse and should be investigated further.

A rationale of this study was that radiosensitivity signatures

might be improved if derived from homogeneous rather than

the radioresistant lines (above the median SF2). B) Implementation of the Eschrich radiosensitivity model [12]. Applied to a training set of 16 samples
from the NCI-60 [13]. xy-scatterplot with the x-axis showing reported SF2 values, generated with these cell lines on a earlier array type (U95) against
values generated by implementing the model in the current U133 plus 2.0 dataset (y-axis). Line indicates perfect correlation. C) Applied to the HNSCC
and cervix cancer cell line cohorts. The y-axis indicates the predicted SF2 determined from the radiosensitivity model. The x-axis shows the empirically
derived SF2 values. D) Principal component analysis of the Amundson radiosensitivity gene signature [10]. The original signature consists of 22 genes
(33 Plus2 probesets), with mapping to the NCI-60 (33 Plus2 probesets), HNSCC (33 Plus2 probesets) and cervix cell line (21/22 genes) datasets. The x-
axis shows PC1, accounting for the largest amount of variation in the experiment and the y-axis shows the second principal component (PC2). In the
NCI-60 data colouring is based a threshold of 0.2 (previously defined [21] where the HNSCC and cervix cell line datasets are coloured by median SF2.
In all cases blue data-points are radiosensitive cell lines (below the median SF2) with red data-points being the radioresistant lines (above the median
SF2).
doi:10.1371/journal.pone.0086329.g005
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heterogeneous cell line cohorts involving multiple tissues of origin

and culture conditions. Despite the greater homogeneity of our

cohort, there were key differences between the cell lines.

Transcriptome analysis showed that C33a, commonly used as a

model for HPV negative cervix cancer [38], is likely to be derived

from small cell carcinoma and therefore may not be a good model,

given that most cervix cancers are squamous cell in origin [39].

The epithelial marker p63 that can be lost in culture by squamous

cells [18] was the most significant source of transcriptional

variation between cervix cell lines. We also show that p63 has

no association with SF2 in these cell lines. This result was also seen

in HNSCC lines, showing that SF2 in two independent cohorts of

cell lines is not associated with epithelial character.

HNSCC cell lines were similar to cervix cancer cell lines in their

SF2 range, basal gene expression and partitioning based on p63

status. However, radiosensitivity signatures did not transfer

between the tumour types. Only two genes (MGST1 and TFPI)

were differentially expressed between low and high SF2 groups in

both tumour types. There are a number of potential reasons for

this finding. First, cell lines from different origins may have

different mechanisms and consequential gene expression to deal

with radiation-induced damage. This is supported by different

tissues and their derivative cell lines having varying radiocurability

and radiosensitivity [17]. However, cervix and head and neck

cancer have broadly similar radiosensitivities and radiocurabilities.

Second, the simple dichotomisation strategy applied (i.e. median

partitioning of the cell lines) might not be the best approach,

however previous work in clinical samples showed that median

SF2 informed clinical radioresponse [3,4], and repeating the

analyses using a lower cut-off did not work. However, with a larger

cohort, perhaps including the extremes of SF2, a different

partitioning strategy might be more successful. Third, technical

variation in measuring SF2 might be a problem, particularly with

borderline samples. Fourth, differences in radiosensitivity (SF2)

occur at a post-transcriptional level and protein-profiling methods

may be more fruitful in deriving a radiosensitivity signature,

although these rely on the availability and selection of appropriate

antibodies [40]. Although there is interest in the protein expression

of DNA damage response, the literature is conflicting with high

expression associated with both good [41,42] and poor [40]

outcomes following radiotherapy. Another technical issue that

might account for the lack of transferability of the signatures is the

use of different platforms to measure gene expression. For example

the methods for filtering applied to the Exon 1.0ST arrays used to

generate the cervix signature cannot be applied to the U133 plus

2.0 arrays. However we show that this technical issue can be

overcome in the generation of a p63 signature, using the same

platforms (Figures S5 & S6).

Validation in an independent cohort is required to avoid over-

training of gene signatures but has been rarely applied for

radiosensitivity signatures. We tested three published signatures

trained on either SF2 or viability 48 h following 3 Gy irradiation.

The most developed signature trained on SF2 in the NCI-60 panel

did not validate. However, the normalisation (MAS 5.0) and array

type (HU6800) used in the original derivation and testing of the

signature were different and this may account for the lack of

reproducibility. This signature had been shown to be prognostic

for radioresponse (locoregional control) and predictive of benefit

from adjuvant radiotherapy in breast cancer patients [11].

Nevertheless, using the raw expression values alone or PCA

transformation showed no separation of the three datasets;

showing the signature is not sufficiently robust to transfer to other

cell line datasets.

A signature derived in cervix tumours based on viability 48 h

following 3 Gy irradiation [8] partly stratified the cervix lines, but

did not separate the HNSCC or NCI-60 lines. This observation is

consistent with our original hypothesis that radiosensitivity

signatures might be more robust if trained on more homogeneous

(and radiobiologically relevant) cell line cohorts. However, the

NCI-60 trained Amundson signature separated the cervix and

head and neck lines into high and low SF2 groups, albeit

imperfectly. This finding does not support our original hypothesis

but does suggest that further development of radiosensitivity

signatures is worthwhile. The research area will benefit from

expanding the number of cell line cohorts which have been well

characterised and for which gene expression data are available. It

is hoped that making our data publically available will aid further

developments of radiosensitivity signatures.

In summary, our attempt to identify common transcripts

associated with low and high SF2 measurements was not fruitful

in a homogeneous single tumour type cell line cohort. We applied

a relatively naı̈ve approach to identify the genes associated with

SF2. While it is likely that more advanced modelling of the data

will result in a better understanding of the data and potentially

reveal interesting candidate transcripts, this is beyond the scope of

this paper. What is clear from these analyses is that intrinsic

radiosensitivity, as measured by SF2, is a relatively subtle

phenotype. The datasets generated in this study should benefit

future work aimed at deriving a robust radiosensitivity signature.

Our work suggests that a common transcriptional signature can

reflect the radiosensitivity of tumours of heterogeneous origins,

although much larger cohorts are required to overcome

background noise.
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