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ABSTRACT
Over the past few years, the study of magnetization dynamics in artificial spin ices has become a vibrant field of study. Artificial spin
ices are ensembles of geometrically arranged, interacting magnetic nanoislands, which display frustration by design. These were initially
created to mimic the behavior in rare earth pyrochlore materials and to study emergent behavior and frustration using two-dimensional
magnetic measurement techniques. Recently, it has become clear that it is possible to create artificial spin ices, which can potentially be
used as functional materials. In this perspective, we review the resonant behavior of spin ices in the GHz frequency range, focusing on
their potential application as magnonic crystals. In magnonic crystals, spin waves are functionalized for logic applications by means of
band structure engineering. While it has been established that artificial spin ices can possess rich mode spectra, the applicability of spin
ices to create magnonic crystals hinges upon their reconfigurability. Consequently, we describe recent work aiming to develop techniques
and create geometries allowing full reconfigurability of the spin ice magnetic state. We also discuss experimental, theoretical, and numer-
ical methods for determining the spectral response of artificial spin ices and give an outlook on new directions for reconfigurable spin
ices.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5142705., s

I. INTRODUCTION

Artificial spin ices are superlattices composed of interacting
magnetic nanoislands placed in a geometrical arrangement.1 Orig-
inally, artificial spin ices were intended as macroscopic model sys-
tems mimicking the atomic frustration in rare earth pyrochlores,2

as well as the monopole-like excitations found in those materials,3

with the advantage that their state could be directly measured using
two-dimensional magnetic measurement techniques. Artificial spin
ices were defined for crystallographic planes in the pyrochlores,
leading to two fundamental arrangements: the square2 and the
kagome1 lattices. Despite this dimensional reduction, artificial spin

ices exhibit massively degenerate ground states1 and their energy
can be minimized by magnetic field-driven and thermal relaxation
protocols.4–6 Building on these successes, artificial spin ices evolved
into superlattices designed to explore geometric frustration, free
from the crystallographic constraints of pyrochlore materials. Myr-
iad of novel artificial spin ices emerged,6–12 featuring an interplay
between frustration and topology.13

A subject of recent interest is the study of artificial spin ices
in the context of magnetization dynamics. As superlattices, artifi-
cial spin ices are natural analogs of magnonic crystals,14–18 where
spin waves are functionalized for logical applications by means
of band structure engineering. Indeed, there is a growing interest
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in using spin waves (magnons) in information technology and
computing.19 This interest stems from the need for disruptive
concepts requiring significantly lower energy consumption than
traditional CMOS-based technology, in which information is pro-
cessed using charge currents that dissipate significant power. A key
to achieving useful functionalities in magnonic crystals is the abil-
ity to reconfigure their magnetic state.20 The geometric frustration
and degeneracy of artificial spin ice ground states make artificial
spin ices, in principle, strong candidates for reconfigurable magnon-
ics. In addition, the possibility of patterning virtually any planar
geometry allows for the definition of structures exhibiting both
reconfigurable magnetic states and rich magnetization dynamics.
These elements are essential for the creation of magnonic func-
tional materials with a reprogrammable band structure, as illustrated
in Fig. 1.

In this perspective, we briefly review the progress made in the
understanding and control of spin waves in artificial spin ices. We
survey methods to reconfigure artificial spin ices, theoretical mod-
els, experimental techniques, and salient advances in the study of
magnetization dynamics in artificial spin ices. We discuss a num-
ber of outstanding challenges and perspectives for achieving recon-
figurable artificial spin ices. Finally, we describe perspectives for
the use of artificial spin ices for magnonic applications. For an in-
depth review of fabrication processes, recent developments in “con-
nected” artificial spin ices, and prospects for artificial spin ices as
frustrated superlattices, we refer the reader to recent reviews in Refs.
21 and 22.

FIG. 1. Creating magnonic functional materials, such as magnonic crystals, based
on artificial spin ices relies on the interplay of three main elements. The geom-
etry of the array determines the dynamics of the magnetization as well as the
reconfigurability of its magnetic state (e.g., using external fields). The possibility
of globally and locally reconfiguring the magnetic state is essential to achieving a
reprogrammable band structure.

II. SPIN ICE RECONFIGURABILITY

The first reports on artificial spin ices were on square2 and
kagome23 ices. These systems are straight-forward to design as the
unit cell contains a small number of elements. The relative sim-
plicity of the lattices makes them attractive from the point of view
of magnonic crystals. There is also considerable design freedom in
that the nanoisland dimensions are decoupled from the lattice con-
stant. This means that parameters, such as shape anisotropy and
the magnetostatic coupling between elements, can be tuned inde-
pendently to the extent allowed by lithographic limitations. Both
lattices, however, suffer from the fact that their magnetic state can, in
practice, only be reconfigured in a limited number of ways. Indeed,
the square ice can be set in a well-defined remanent state by apply-
ing an external field along one of the array diagonals, resulting in
a type-II state, shown in Fig. 2(a). Moreover, the different nearest-
neighbor distances between the four nanoislands at a vertex leads to
non-equivalent interactions, and the type-I ground state is doubly
degenerate and can in principle be reached. However, the ground
state is difficult to achieve using demagnetizing protocols4,24 and is
more readily achieved during thermal relaxation, as demonstrated
in Ref. 5, using very thin nanoislands (∼2–3 nm thick). It is also pos-
sible to attain the square ice type-I ground state in thicker nanoele-
ments by raising the temperature above the Curie temperature, TC,
of the magnetic elements and subsequently cooling down to room
temperature.25–27 However, due to the rather high Curie tempera-
ture of Permalloy (∼870 K), which is typically used in artificial spin
ices, annealing may lead to interdiffusion and loss of magnetism.
Alternatively, the Curie temperature of the system can be lowered
by tuning the material composition, as demonstrated using FePd in
Ref. 28. The square ice also supports high energy states2,5,29

[type-III and type-IV vertices in Fig. 2(a)], which are analogous to
monopoles3 and act as defects that play an important role in defining
relaxation pathways.5

While the kagome ice [Fig. 2(b)] also has states with remanent
magnetization that are relatively easy to obtain by applying exter-
nal magnetic fields, the interactions between the three nanoislands
at a vertex are degenerate, in constrast to the square ice. Conse-
quently, the global ground state30 could so far not be accessed in
kagome lattices, either through field-induced demagnetizing pro-
tocols or thermal relaxation but only through direct write of the
magnetic state of each nanoelement.31 Other frustrated lattices, such
as Shakti lattices,32,33 similarly, are not easily configured into their
ground states.

Defining spin ice geometries in which the magnetic state is fully
reconfigurable is essential for magnonic applications. In this context,
a different spin ice geometry, the charge ice, has recently been inves-
tigated by Wang et al.9 It consists in replacing specific nanoislands in
the square ice with diagonally oriented elements while maintaining
the locations of the magnetic charges (present at the extremities of
the nanoislands) as in the square ice. These geometric modifications
result in great flexibility: they allow reconfiguring the entire lattice
into eight distinct configurations with long-range order, using only
an external uniform magnetic field applied at different angles. The
equivalent type-I and type-II states are shown in Fig. 2(c).

The relative ease with which the charge ice can be reconfig-
ured is clearly very attractive from the point of view of reconfig-
urable magnonic crystals. However, this reconfigurability comes at
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FIG. 2. (a) Possible vertex configurations in square ice. Type-I is the ground state
and has two possible degenerate configurations. Type-II is the remanent state,
following saturation along one of the diagonals of the system and has four pos-
sible degenerate configurations, one for each diagonal. Both are charge-neutral
and follow the ice rule.2 Types-III and IV are singly and doubly charged defects
(monopoles). The notations G and G∗ are from Ref. 29. Type-III has eight pos-
sible degenerate states, while type-IV has two. (b) Possible vertex configurations
in kagome lattices. (c) Charge ice configurations equivalent to type-I and type-II
configurations in the square ice (a). Each configuration can be toggled with almost
100% yield by applying a field in the (1̄1̄) direction (type-I) or (11) direction (type-II).

a price: the equivalence between the location of magnetic charges
in the square and the charge ices imposes a condition on the rela-
tion between the length ℓ of the nanoislands and the center-to-center
nanoisland separation d,

d = ℓ(1 +
√

2). (1)

Consequently, the magnetostatic interactions cannot be tuned inde-
pendently of the nanoisland size (although the shape anisotropy
can in principle be modified by varying the width). As an exam-
ple, for nanoislands of dimensions 35 × 100 nm2, the nanoisland
separation is about 240 nm, leading to weak magnetostatic cou-
pling. Even if the nanoisland size is significantly reduced, which

is bound by lithographic limits, the nanoisland separation will
remain relatively large and the magnetostatic interactions between
nanoislands will be weak. Weak interactions make magnon bands
relatively flat with small or zero group velocities and a weak depen-
dence of the magnon spectrum on the magnetic configuration of
the lattice. This is a serious impediment to using the charge ice as
a reconfigurable magnonic crystal. We discuss possible solutions for
enhancing inter-island coupling in Sec. V C.

III. EXPERIMENTAL TECHNIQUES
So far, the most versatile techniques for measuring resonant

dynamics in artificial spin ices have been broadband ferromagnetic
resonance (FMR) and Brillouin light scattering (BLS) spectroscopy.
The main advantage of FMR is its relative ease of use. However, it
lacks spatial resolution, and signal transmission is measured for large
ensembles of nanoislands. Consequently, it does not allow for the
measurement of antisymmetric modes, in which oscillations of the
magnetization with opposite phases cancel out, and does not pro-
vide a spatial map of the magnetization dynamics. The magnetic
structure needs to be determined either using other techniques such
as magnetic force microscopy (MFM)4,26 or transmission electron
microscopy (TEM),34,35 or through comparison with micromagnetic
simulations. Microfocused BLS,36 on the other hand, typically allows
for the measurement of the mode spectrum with a spatial resolution
of a few hundreds of nanometers, allowing to identify edge and bulk
modes.37

A number of other techniques can potentially be used for mea-
suring magnetization dynamics in artificial spin ices, and we expect
that they will become more broadly used in the near future. In partic-
ular, x-ray imaging exploiting the x-ray magnetic circular dichroism
(XMCD)38 effect has been employed to map the magnetic state dur-
ing field-induced magnetization reversal39 as well as during thermal
relaxation.5,10,40–43 While such measurements were essentially quasi-
static, time-resolved stroboscopic measurements taking advantage
of the x-ray beam bunch structure can currently achieve tempo-
ral resolutions below 100 ps44 and allow imaging spin waves.45–47

A pulsed or continuous wave excitation, phase-locked and time-
delayed with respect to the photon bunch repetition frequency, is
used to excite the magnetization precession. The response of the
magnetization can thus be measured at different delay times.48 So
far, one of the main challenges of these types of dynamic measure-
ments of spin ices has been achieving sufficient magnetic contrast
and spatial resolution to detect rather small variations of the mag-
netization on length scales of the order of a few tens of nanometers
during resonant dynamics.

Recently, the stray field of an artificial spin ice was measured
during magnetization reversal49 using a nanometer-sized supercon-
ducting quantum interference device (SQUID) fabricated on the
apex of a sharp quartz tip and integrated into a scanning SQUID
microscope.50–52 The lateral resolution, determined by the tip size,
was sufficient to detect the magnetostatically induced bending of
the magnetization at the edges of individual nanoislands. Advan-
tages of this technique include the possibility of combining sub-
100 nm lateral resolution with field sensitivities of the order of a
few tens of nT/Hz1/2 and the possibility of measuring in external
magnetic fields up to 1 T. In principle, suitable modifications of
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the electronics and of the detection scheme should allow perform-
ing stroboscopic measurements, given that the Josephson junction
typically has a characteristic frequency in the GHz range. Alter-
natively, scanning techniques using nitrogen-vacancy (NV)-based
sensing53,54 have the advantage of working at room temperature and
in ambient conditions.

Lateral resolutions of ∼5 nm can in principle be obtained with
aberration-corrected TEM.35,55 In this case, FMR measurements
could be performed in situ using specially designed holders56 while
at the same time having the possibility to image and control the
magnetic state.

IV. THEORETICAL FORMULATION
The magnetic configurations of ferromagnetic nanoislands in

artificial spin ices and their collective dynamics are studied based on
the Landau–Lifshitz–Gilbert (LLG) equation,57

∂M
∂t
= −γμ0M × [Heff −

α
γμ0Ms

∂M
∂t
], (2)

where γ is the gyromagnetic ratio, μ0 is the vacuum permeability, M
is the magnetization, Ms is the saturation magnetization, and α is
a phenomenological, dimensionless magnetic damping parameter.
This form assumes that α ≪ 1, as is typically the case for systems
of practical interest. For numerical implementations, it is more con-
venient to rewrite the equation in the form originally proposed by
Landau and Lifshitz,58

∂M
∂t
= − γμ0

1 + α2 M × [Heff +
α
Ms

M ×Heff]. (3)

The effective field μ0Heff = −δE/δM parameterizes the relevant
physical terms of the total magnetic free energy E. Typically, the
effective field contributions used in artificial spin ices (and, indeed,
in most micromagnetic simulations) are

Heff = Hexc + Hani + Hzee + Hdem, (4)

which includes exchange (Hexc), intrinsic anisotropy originating
from crystalline spin–orbit coupling or from material structures
such as layering, interfaces, or grain structures59 (Hani), an applied
external field (Hzee), and nonlocal magnetostatic (e.g., dipolar) fields
(Hdem).

The exchange field can be written as Hexc = Msλ2
excΔm, where

m = M/Ms and Δ is the Laplacian. The equation expresses the fact
that the energy is minimized when the magnetization is collinear
within a characteristic length, the exchange length λexc, which is
typically on the order of 10 nm for metallic ferromagnets.59

The magnetostatic field arises from volume charges∝∇ ⋅M and
surface charges due to the discontinuity of the normal component
of the magnetization density at boundaries ∝M ⋅n, where n is an
outward-pointing unit normal vector at an interface. In artificial
square ices, magnetostatic interactions provide the main coupling
mechanism between the nanoislands.

The LLG equation (2) subject to the effective field (4) is, in
general, a system of coupled nonlinear partial differential equations.
Analytical solutions are typically found in cases where the magneto-
static field is simplified, e.g., in the thin film limit where it reduces
to a local field.60 It must be noted that the effect of the magneto-
static field is fundamental to describe the profile and dispersion of

long-wavelength spin waves in thin films, so-called magnetostatic
waves.61 Such spin waves have been instrumental in magnonics
research.18 Consequently, numerical techniques are often required
in order to solve the LLG equation.

A. Micromagnetic simulations
Micromagnetic62 simulations are the most common and pow-

erful tool for solving the LLG equation based on finite-difference or
finite-element techniques while taking magnetostatics into account.
The system of equations is stiff, which means that time-integration is
usually done using implicit time-steppers as small errors in explicit
schemes can easily grow exponentially. A recent review of computa-
tional micromagnetics can be found in Ref. 63.

While artificial spin ices can be conceptually thought of as bar
magnets,1 the magnetization within individual nanoislands is typ-
ically non-uniform.64,65 Thus, in order to simulate the properties
of large arrays, a compromise has to be reached between the spa-
tial resolution and the extent of the simulated domain. A common
approach consists in reducing the artificial spin ice to a micromag-
netic super-cell and imposing periodic boundary conditions, which
mimic an infinite lattice. An accurate calculation of the static mag-
netic states can be obtained in this way.6,66 The same principle can
be naturally extended to determine resonances.65–69 An alternative
approach relies on simulating small artificial spin ice lattices, which
include as many unit cells as computational resources allow, without
periodic boundary conditions. This approach was, for example, used
to determine the effect of topological defects on the dynamical spin-
wave spectrum of the square ice.29 Reduced lattices have also been
used to determine normal modes via the dynamical matrix method70

and to study in detail the magnetostatic interaction between nanois-
lands,71 e.g., in pairs of nanoislands,72 frustrated vertices,73 and
pinwheel artificial spin ices.74

Micromagnetic simulations have also been used to probe mag-
netic transport in “connected” artificial spin ices, discussed in
Ref. 21.

B. Semi-analytical models
The computational cost of micromagnetic simulations can be

greatly reduced by analytical methods. While simple band structures
can be found exactly in some cases, e.g., the well-known Bloch waves
for free electrons in a periodic potential,75 computing realistic band
structures typically necessitates semi-analytical models.

Semi-analytical models require two key simplifications: First,
the exchange field is considered to be negligible, assuming that the
magnetization, M, is approximately uniform within each nanois-
land. Second, the magnetostatic field is treated as a dipole–dipole
interaction between nanoislands with an effective field acting on
nanoisland i of the form

Hi
d =

V
4π∑j

[3ri,j(Mj ⋅ ri,j)
∣ri,j∣5

− Mj

∣ri,j∣3
]. (5)

The sum is performed over the whole lattice, V is the volume of
the magnetic element, and ri ,j is the distance between two mag-
netic elements i and j. Note that care has to be taken when summing
the long-range dipolar interactions over the entire lattice to ensure
correct convergence. In Eq. (5), the magnetic elements can repre-
sent an entire nanoisland or subdivisions of a nanoisland. With this
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approximation, and assuming conservative dynamics (α = 0), the
LLG equation reduces to the Larmor torque equation expressed as a
set of vector, coupled, ordinary differential equations that are much
simpler to treat analytically. This approach has been used in the
context of magnetic nanodots,76–78 Fe-intruded yttrium iron garnet
(YIG),79 and “decorated” honeycomb lattices.80

A model that takes into account both the dipolar field and the
edge canting of the magnetization in nanoislands was proposed in
Ref. 67. To this effect, a tight-binding-like approach was used to cal-
culate the effective field acting on the artificial spin ice unit cell. Key
to this process was the reduction of the long-range dipole–dipole
field into intra-unit cell and inter-unit cell components. The latter
can be pre-computed to desired numerical accuracy, as detailed in
the Appendix of Ref. 67.

V. RESONANT MAGNETIZATION DYNAMICS
A. Square ice

The magnetization dynamics in the square ice was first inves-
tigated in Ref. 29, in particular, the influence of topological charge

defects on the resonant dynamics of the square ice. Such defects
occur when the magnetization at a vertex is not in a two-in/two-out
state (so-called ice rule, corresponding to type-I and type-II vertices),
resulting, for example, in vertex states where the magnetization is in
a one-in/three-out state (monopoles or type-III vertices) or even a
four-in state (doubly charged monopoles or type-IV vertices), shown
in Fig. 2(a). In the pyrochlore compounds, such defects have been
found to display behavior similar to that of Dirac monopoles.3 These
emergent monopoles occur in pairs (e.g., monopole–antimonopole)
connected by a string, along which the magnetization is reversed
with respect to a reference state. While it was known that these
defects affect the equilibrium behavior and the magnetization rever-
sal in spin ices,4,34,81,82 Gliga et al.29 found that each type of topologi-
cal defect as well as the strings of reversed magnets connecting these
defects display distinct and localized features, both spatially as well
as in frequency, as summarized in Fig. 3(a). These features, in the
GHz frequency range, thus act as fingerprints for each type of defect.

The resonant dynamics of long-range ordered square artifi-
cial spin ices were first investigated experimentally by Jungfleish
et al.65 Using broadband FMR spectroscopy, they found a number

FIG. 3. (a) Micromagnetic simulations of the evolution of the magnetization dynamics spectrum as a function of increasing string length (type-I vertices) and number of singly
charged (type-III vertices) and doubly charged (type-IV vertices) monopole–antimonopole pairs compared to the remanent (reference) state (type-II vertices). The bulk-like
mode (shown at 8.33 GHz) is shifted with respect to the same mode in the reference state. Adapted and reprinted with permission from Gliga et al., Phys. Rev. Lett. 110,
117205 (2013). Copyright 2013 The American Physical Society. (b) Illustration of a spin ice array patterned on top of a coplanar waveguide for the broadband ferromagnetic
resonance measurement configuration and measured ferromagnetic resonance response of a square ice. Reprinted with permission from Jungfleisch et al., Phys. Rev. B 93,
100401(R) (2016). Copyright 2016 The American Physical Society. (c) Top: vertex symmetry breaking through bending of the magnetization at the edges of the nanoelements.
Two possible degenerate configurations of the magnetization in strongly magnetostatically coupled nanoislands are considered (labeled e-I and e-II). Each has a single axis
of magnetic symmetry (A1 or A2), effectively lowering the vertex symmetry, which would have two axes (both A1 and A2) in the absence of edge bending. Bottom: the
ground-state spectrum (gray) for a lattice only made of e-I-type vertices displays a peak at 3 GHz. Introducing an increasing number of e-II vertices in the system leads to a
decrease in the original mode intensity and to the evolution of a peak at 3.6 GHz corresponding to the mode associated with the e-II vertices. Reprinted with permission from
Gliga et al., Phys. Rev. B 92, 060413(R) (2015). Copyright 2015 The American Physical Society. (d) Simulated mode spectra of charge ice coupled to a thin film underlayer.
While the interaction between nanoislands in this geometry is weak, coupling to a Permalloy underlayer leads to very different spectra for type-I and type-II configurations.
The spatial distribution of the lowest frequency type-I and type-II modes (shown on the right) reveals underlayer modes, which define spin-wave channels. Figure adapted
from Ref. 68.
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of modes within a range between 4 GHz and 16 GHz as a func-
tion of the in-plane magnetic field, shown in Fig. 3(b). Some of
the lower-frequency modes disappeared or exhibited complex hys-
teretic behavior at low fields. A detailed comparison with micromag-
netic simulations showed that the hysteresis in the mode spectrum
was related to the magnetization configuration of particular nanois-
lands, resulting from the applied field history. The experimentally
measured resonance spectroscopy was quantitatively described by a
semi-analytical model.

More recently, Ghosh et al.83 also experimentally investigated
the resonant modes of square ices using FMR spectroscopy and the
evolution of those modes as a function of nanoisland thicknesses. By
comparing their experimental results with micromagnetic modeling,
they could identify bulk-like as well as (symmetric) edge modes in
the spectra. They also identified local configurations during mag-
netization reversal as well as their spectral signatures. The resonant
modes in the square ice have been spatially mapped by Li et al.37

using micro-BLS. Recently, anti-spin ice systems consisting in thin
films with geometrically placed holes instead of nanoislands (anal-
ogous to antidots) have also been studied using BLS. These struc-
tures have been found to support frequency-dependent spin-wave
confinement in regions between holes.84

Beyond macrostates, it has also been found that seemingly
small variations in the magnetic state of individual elements could
equally affect the magnetization dynamics. In particular, due to
magnetostatics, in elements above a certain thickness (∼5–10 nm
in Permalloy, depending on lateral dimensions and thickness), the
magnetization state changes from an “onion” state (mostly uni-
form) to C or S states in which the magnetization bends at the
extremities of the element.85 These changes affect the magnetic
symmetry of the vertices and the torques in the presence of an
applied field, as shown in Fig. 3(c), resulting in distinct mode
spectra for C and S configurations.64 Additionally, the presence
of such internal degrees of freedom affects the thermal evolution
of the system, giving rise to edge melting, in which the magne-
tization stochastically switches between the C and S states. This
behavior is reflected in the mode spectrum of the thermal mag-
netization dynamics in the form of 1/f -type flicker noise at low
frequencies.64

B. Kagome ice
The magnetization dynamics of kagome artificial spin ices were

investigated experimentally by Dion et al.69 and based on micro-
magnetic simulations by Arroo et al.86 In Ref. 69, the patterned
shape of the nanoislands, and thus the shape anisotropy, was altered
in the three sublattices such that the threefold rotational symme-
try was broken. Different resonant modes and responses could then
be obtained by aligning an external magnetic field along the three
inequivalent directions. Moreover, because of the different coer-
cive fields of the nanoislands in the three sublattices, a variety of
microstates could be obtained through the application of a mag-
netic field in different directions. These microstates were shown to
have different spin-wave spectra using micromagnetic modeling. In
Ref. 86, the mode spectrum in the kagome ice was investigated,
demonstrating that the magnetic microstate influences the spin-
wave spectra. In addition to mode shifting, the uniform mode can
strongly be enhanced or suppressed, thus allowing its activation and

deactivation. The magnetization dynamics in a connected kagome
lattice was studied by Bhat et al.87 They showed that topo-
logical defect configurations give rise to different, distinguish-
able dynamics and that Dirac strings connecting two topologi-
cal charge defects induce pronounced modifications in magnon
frequencies.

C. Charge ice
The charge ice geometry, introduced in Sec. II, is based on the

square ice, and its global magnetic state is fully reconfigurable by
applying magnetic fields at successive angles, in a defined order. The
downside of this system is that the geometric constraints in building
the lattice lead to largely spaced and, consequently, weakly coupled
elements. Addition of an exchange biased magnetic underlayer68 has
been shown to lead to interactions between the spin ice and the
magnetic film that significantly modify the modes of the spin ice,
in particular, leading to significant differences in the mode spectra
of type-I and type-II states [spectra in Fig. 3(d)]. In addition, cou-
pling to the uniaxially anisotropic thin film gives rise to modes in
the underlayer, two of which are shown in Fig. 3(d), and can act as
spin-wave channels, similar to those present in antidot magnonic
crystals.84,88

D. Magnonic band structure
The magnon bands in square ices were investigated numerically

by Iacocca et al.67 Square ices in type-I and type-II states were con-
sidered, and the effect of the magnetic state as well as that of the edge
bending of the magnetization on the magnon dispersions was deter-
mined. Figures 4(a) and 4(b) depict the magnon dispersion for the
two configurations, taking into account the possible edge bending
states. Clearly, the magnon bands in the type-I and type-II config-
urations are very different. The type-I configuration has four bulk
bands representative of the four nanoislands in the unit cell, while
the type-II configuration with only two nanoislands in the unit cell
has two bulk bands. Moreover, the type-II bands, in particular, the
bulk bands, are much flatter than the type-I dispersive bulk bands
with a much smaller forbidden gap than between the type-I dis-
persive bulk bands. Beyond introducing a semi-analytical model for
calculating the band structure, that work clearly demonstrated that
square spin ices can be viewed as reconfigurable magnonic lattices.
Toggling between magnetic states results in fundamentally different
magnonic band structures.

An interesting, and presently relevant, question arising in the
context of band structures is whether magnonic bands can be
designed to be topologically non-trivial and perhaps even toggled
between topologically trivial and non-trivial band structures. In gen-
eral, systems with topologically non-trivial band structures will nec-
essarily exhibit edge modes at the interface with a topologically
trivial structure. Perhaps, the best known example is time-reversal-
invariant topological insulators, which exhibit edge states in the gap.
In the case of a topological insulator, the edge states have a spe-
cific spin-momentum locking so that, in the absence of impurities
that break time-reversal invariance, the edge states propagate with-
out scattering. In general, the topological edge states exhibit some
kind of chirality coupling the propagation vector to an internal
degree of freedom.
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FIG. 4. (a) Magnon band dispersions for a square ice in the type-I state taking into
account the edge bending of the magnetization. The bulk and the edge modes
are, respectively, depicted by solid blue and black dashed lines. (b) Magnon band
dispersions for a square ice in the type-II state. The bulk and edge modes are,
respectively, depicted by solid blue and black dashed lines. Reprinted with per-
mission from Iacocca et al., Phys. Rev. B 93, 134420 (2016). Copyright 2016 The
American Physical Society.

Shindou and co-workers79,80 theoretically examined peri-
odic magnetic structures that can exhibit topologically non-trivial
magnon bands. While the structures they considered are technically
not artificial spin ices, they are nevertheless interesting to discuss
in the context of magnonic lattices. The first considered structure79

was an yttrium iron garnet (YIG) thin film in which a periodic
rectangular array of circular holes was introduced with lattice con-
stants (ax, ay). The holes were filled with Fe. The key to obtaining
topologically non-trivial magnon bands is that the dipolar interac-
tion between the Fe cylinders can act analogously to the spin–orbit

interaction and cause a gapped band inversion when the Fe cylin-
ders are in a periodic array (as opposed to in a continuous film).
When the unit cell size λ = √axay becomes larger than a typical
magnetic exchange length, a gap opens up and the lowest magnon
band acquires a non-trivial topology. Reducing λ takes the system
to a topological transition where the bandgap closes and the two
lowest magnon bands form Dirac cones at the band closing points.
Shindou et al. also demonstrated that when the system is gapped
with a non-trivial topology, chiral edge states form, which propagate
unidirectionally.

A second structure considered in Ref. 80 was a two-dimensional
periodic array of square or honeycomb lattices of ferromagnetic par-
ticles. Here, the particles were assumed to be small enough such that
each one could be treated as a single macrospin. In the presence of
an external magnetic field perpendicular to the plane of the arrays,
these arrays could admit magnon bands with non-trivial topologies
with chiral edge modes.

An extension of the semi-analytical model in Ref. 67 was used
to investigate the properties of a square ice on top of a heavy-metal
thin film, such as Pt.66 It is well known that Py or other ferromag-
netic thin films deposited on a heavy-metal spin–orbit scatterer, such
as Pt, Pd, Ta, or W, leads to an interfacial Dzyaloshinskii–Moriya
interaction (DMI).89–92 The DMI allows for a chiral magnetization
structure.93,94 The principle demonstrated in Ref. 66 was that the
presence of DMI can lead to a topologically non-trivial magnon
band structure in the square ice. Indeed, upon increasing the DMI
strength, a band inversion can occur between the two lowest magnon
bands forming Dirac cones with non-trivial topologies.

VI. PERSPECTIVES
A. Reconfigurability

As illustrated in Fig. 1, one of the main challenges in using
spin ices as reconfigurable magnonic lattices is finding a geometry
whose magnetic state is easily reconfigurable and exhibits sufficiently
strong magnetostatic interactions to generate rich dynamics. The
square and kagome ices, along with modified geometries such as
Shakti lattices, can easily be reconfigured to a limited number of
long-range ordered remanent states, using external fields. However,
generally a large number of states, including the ground state, are
difficult to access. Here, we discuss possibilities and perspectives to
overcome this situation, including using local probes provided by
scanning probe microscopy, spin transfer torque (STT), and lattice
geometries.

Recently, Gartside et al.31,95 used a high-moment magnetic
force microscopy (MFM) tip to controllably reverse the magnetiza-
tion in selected spin ice nanoislands. This tip acts as a monopole
source when in close proximity to the magnetic nanostructures.
When the tip is moved perpendicular to the long axis of the nanois-
land, a domain wall pair is nucleated. As the tip completes its
motion across the nanoisland, the domain walls move apart toward
the opposite ends of the nanoisland, leaving a reversed magneti-
zation behind. This technique was consequently named topological
defect-driven magnetic writing. Reference 31 further demonstrated
that it is possible to design configurations both in connected and
magnetostatically coupled kagome spin ices, including the kagome
ground state as well as more exotic out-of-equilibrium states. An
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MFM tip has also been used in Ref. 9 to locally define the mag-
netic state of a charge ice. It has also been used in Ref. 96 to define
the magnetic state of individual elements in order to achieve differ-
ent ferro-toroidic states in an artificial spin ice structure, forming
an artificial magneto-toroidal crystal. While this technique is ver-
satile, it is also rather slow as it hinges on the mechanical motion
of the tip. Other means of generating stray fields to nucleate domain
walls can be envisioned, which do not rely on mechanical motion. As
an example, Gartside et al. “envisaged a system comprising a three-
dimensional (3D) network of nanowires whereby current-controlled
domain walls replace the magnetic force microscope tip, greatly
enhancing flexibility, throughput, and integration with existing tech-
nologies.” However, such schemes also present limits: as the size of
the nanoislands shrinks close to the domain-wall width, the rever-
sal of nanoislands becomes coherent (Stoner–Wohlfarth switching)
rather than domain-wall driven. An external field, whether gener-
ated by domain walls in nanowires or by other means, will have to
be large enough to overcome the coercive field of the nanoislands,
which can typically be larger than the field required to nucleate
domain walls.

Another means of reconfiguring the magnetic state consists
in using spin transfer torque (STT) to switch magnetic nanostruc-
tures and nanoislands. This effect is equally used in commercially
available STT magnetic random access memories (STT-MRAMs).97

However, designing and realizing an artificial spin ice in which indi-
vidual nanoislands are switched using STT requires complex depo-
sition and patterning techniques. This can certainly be overcome in
principle as for STT-MRAMs, but it would make reconfigurable arti-
ficial spin ices considerably more expensive and, perhaps, technolog-
ically out of range for academic laboratories. Another issue would
be that stray fields from polarizing layers in STT devices would have
to be mitigated. This can also in principle be done using, e.g., syn-
thetic antiferromagnets as polarizing layers but again would generate
increasing complexity and cost.

A different avenue to reconfigure artificial spin ices is to explore
new lattices that may allow for simpler protocols. As discussed in
Sec. V C, the charge ice9 allows for reconfiguration using a saturat-
ing field along different directions at the price of reduced coupling
between the nanoislands. In contrast, it has been shown that strongly
coupled nanoislands can support long-range order according to a
well-defined phase diagram. For example, Sklenar et al.6 investigated
a quadrupole lattice that could support both ferro-quadrupolar and
antiferro-quadrupolar long-range order. Long-range ordered states
were observed after annealing without any applied field, and a full
phase diagram was computed by Monte Carlo simulations, estab-
lishing clear field and temperature transitions for the long-range
ordered state, paramagnetic state, and their coexistence.

Another recently investigated geometry consists of a chi-
ral pattern, obtained by rotating the elements in each vertex of
the square ice by 45○. This chiral ice has been found to exhibit
ratchet behavior.10 Indeed, following saturation, the net vertex
magnetization rotates in a single direction (e.g., clockwise) during
thermal relaxation at room temperature. Thus, while the magneti-
zation dynamics is locally stochastic, globally it unfolds in a well-
defined direction. The final magnetic state can be set by using a
weak bias field. While this allows a certain degree of reconfigura-
bility, which may lead to the creation of functional materials, it
also requires very thin magnets (∼2–3 nm thick) and it is not clear

at present to which extent the resonant dynamics of different mag-
netic states in such thin nanoislands is interesting. Li et al.35 have
used thicker nanoislands in the same geometry, also called pinwheel
ice, and showed that it is possible to obtain a number of specific
vertex configurations during field-induced magnetization reversal.
These thicker elements equally exhibit edge bending of the magne-
tization,49,74 as well as chiral magnetization reversal dynamics at the
vertex level49 and might possess rich spectral features. One of the
main advantages of this geometry is that the ground state is ferro-
magnetic98 and can trivially be obtained through saturation in an
external field.

In addition, it is in principle possible to engineer physical
defects in the lattice in order to achieve local control of the magnetic
structure. In Ref. 99, physical defects such as a missing nanoisland
accompanied by lattice distortion were introduced in the square ice.
Such defects have been found to lead to the formation of domain
walls across ground-state regions. In these systems, the spin ice can-
not support continuous ground-state ordering, demonstrating that a
single physical defect can alter the topology of the system, thus pro-
viding a possible path for tuning the magnetic ordering. In a kagome
lattice, Chopdekar et al.100 tailored the shape anisotropy of specific
nanoislands, and thus their switching fields, to achieve desired states
with near perfect reliability.

Finally, we note that while magnonic response is confined to
the GHz regime, artificial spin ice dynamics over a large range of
frequencies still remains unexplored, ranging from the quasi-static
measurements of hysteretic behavior or thermal relaxation (a few
Hz) to a few GHz. For example, it has been proposed that using
microwave assisted switching, it should be possible to facilitate the
nucleation of certain types of defects in connected kagome ices,101

and AC fields could also be used for clocking artificial spin ice-based
logic architectures.102,103

B. Intrinsic damping
Another challenge in realizing magnonic crystals based on spin

ices is due to the relatively large damping in ferromagnetic transi-
tion metals, such as Ni, Co, Fe, and their common inter-metallic
alloys. This is a result of the spin–orbit interactions, which cause
dephasing of the magnetization dynamics (see, for example, the
work of Skadsem et al.104). For example, in Permalloy, the value
of the damping constant α is of about 0.008.105 While this is small
enough for a number of studies of magnetization dynamics, such as
vortex motion in Permalloy disks, it is still sufficiently large that lin-
ear spin-wave packets only propagate over distances of the order of a
few hundred nanometers106 before being damped out, and magneti-
zation dynamics is damped out within ∼5 ns.105 This obviously limits
applications such as logic devices, in which wave packet propaga-
tion is desirable over large distances, for example, between features,
as well as to gate the propagation of the wave packets. An obvious
possibility to extend the propagation length of spin waves is to use
materials with smaller intrinsic damping. Relatively recently, it was
discovered that the intermetallic CoFe alloy can have a very small
intrinsic damping107 of about 10−4 at a Co concentration of about
25%, when the density-of-states at the Fermi energy has a sharp
minimum, which limits the scattering of electrons. This is of great
interest as CoFe alloys can be deposited using a range of different
techniques, including sputtering. Additionally, there is a long history
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of using CoFe alloys in academic and industrial research, as well
as in industrial applications. Another advantage of CoFe alloys is
their large magnetic moment: their polarization μ0Ms is over 2.0 T
at this Co concentration. It is also important to keep in mind that
at 25% Co, the alloy structure is bcc rather than fcc, with much
larger magnetostriction and magnetocrystalline anisotropy than the
fcc alloys.

Another material of interest is YIG, with a very low damp-
ing of about 10−4. However, YIG is not easily grown in thin films
and it is difficult to pattern. Recent advances in pulsed laser depo-
sition have demonstrated YIG thin films of thickness down to
3.4 nm.108 However, the saturation polarization is smaller, μ0Ms
≈ 150 mT, than its bulk value of about 180 mT at room tempera-
ture for relatively thick films (90 nm). The saturation polarization
decreases especially rapidly below 10 nm. Other possibilities are
Heusler alloys,109 especially half-metallic L21 Heusler alloys such as
Co2MnAl or Co2MnSi,110 which can exhibit very small damping.

We note that very low damping has recently been measured
in magnetically soft epitaxial spinel NiZnAl ferrite thin films,
which also exhibit strong magnetoelastic coupling.111 Such materi-
als potentially allow the development of spin–mechanical devices,
opening a new route for realizing reconfigurable magnonic crystals.

C. Coupling schemes
A number of interesting directions of research involve hybrid

structures combining artificial spin ices with different systems. In
Sec. V C, we have described a heterostructure in which the charge ice
was coupled to a soft magnetic underlayer as a means of increasing
and modifying the interaction between the nanoislands. Other types
of heterostructures can equally be used to define specific behav-
ior and functionalities. Wang et al.112 placed a charge ice on top
of a type-II superconducting thin film. The magnetic charges in
the spin ice gave rise to stray fields that introduced a vortex lat-
tice in the superconducting thin film. Using the ability to con-
trollably reconfigure the charge ice, the state of the vortex lattice
could be toggled between geometrically frustrated, highly degenerate
vortex lattices and non-frustrated ones. Different charge ice con-
figurations gave rise to distinct transport properties, and Ref. 112
demonstrated that this heterostructure can be used to realize repro-
grammable superconducting electronic devices. Golovchanskiy
et al.113 built a hybrid metamaterial structure of Nb and Py thin films.
In their work, they showed that the diamagnetic response of the
superconductor affected the magnon dispersion, and furthermore,
they could distinguish between the Meissner state of the supercon-
ductor (in which all magnetic flux is expelled) and the mixed state,
in which penetrating flux gives rise to a vortex lattice. One can also
envisage patterning artificial spin ices on top of type-I superconduc-
tors. In these, the magnetic stray fields from the spin ice will not
form vortices due to field penetration, as in type-II superconduc-
tors. Instead, as long as the fields are below the critical field Hc, the
superconductor will act as a perfect magnetic mirror. This should
radically change the magnetostatic interactions between the nanois-
lands as well as within the nanoislands, as shown in Ref. 113. In
addition to reconfiguring the magnetic state of the artificial spin ice,
one could also drastically alter the magnetostatic interactions simply
by changing the temperature of the superconductor, above or below
the critical temperature.

Other exotic materials, in particular, materials with topolog-
ically non-trivial electronic properties, exhibit interesting interac-
tions with magnetic materials and magnetic fields, which can, in
principle, be exploited. For example, topological insulators114–119

with time-reversal symmetry have gapless topological surface states,
which cannot backscatter due to spin-momentum locking and are
(in principle) dissipationless. Spin-momentum locking can also be
exploited in spintronics applications: for example, the topolog-
ical surface states in the topological insulator Bi2Se3

120,121 were
used to switch the magnetization122 of the insulating ferromag-
net BaFe12O19. The switching efficiency at low temperatures was
much higher than in Pt/BaFe12O19 heterostructures using spin orbit
torques. In topological insulators such as Bi2Se3, the topological
surface states are protected by time-reversal symmetry, and mag-
netic impurities that break this symmetry generally suppress or even
destroy the topological surface states. However, the question of how
topological insulators and their topological surface states interact
with lattices of magnetic charges is an interesting one.

A further question is whether the topological surface states
and their charge and spin transport properties can be manipulated
using reconfigurable artificial spin ices. Other topological materi-
als include Dirac and Weyl semimetals.123 Dirac semimetals124–126

are gapless, obey time-reversal and inversion symmetry, and have a
number of Dirac cones that are doubly degenerate. Weyl semimet-
als127–129 can be obtained from Dirac semimetals by breaking either
inversion or time-reversal symmetry; breaking either symmetry lifts
the degeneracy of the Dirac cones, and each Dirac point sepa-
rates into two non-degenerate Weyl nodes. Both Dirac and Weyl
semimetals also admit surface states, Fermi arc states, which have
specific spin-momentum lockings. While the Dirac Fermi arc states
are protected by symmetry, the Weyl Fermi arc states are topo-
logically protected and are more robust than the Dirac Fermi arc
states. Weyl semimetals with broken time-reversal symmetry are
in general magnetic and so respond to magnetic fields. This opens
exciting directions for developing functional materials by combin-
ing magnetic Weyl semimetals with different materials. For example,
heterostructures of magnetic Weyl semimetals exhibit an unusual
inverse Edelstein effect, which converts a pure spin current to a
charge current;130 the unusual properties, such as a pronounced
anisotropy, originate in the topological properties of the electronic
states. It is thus likely that reconfigurable artificial spin ices could
be combined with Dirac or Weyl semimetals to affect and manipu-
late the spin charge transport properties, especially of the Fermi arc
states. Such heterostructures could possibly also be used to mediate
interactions and entanglement of quantum states, thereby enabling
new avenues for devices in quantum computing and quantum
sensing.

D. Three-dimensional structures
Recently, the possibility of creating three-dimensional (3D)

structures using e-beam lithography,131 two-photon lithography,132

as well as focused electron beam induced deposition133,134 has
opened radically new possibilities for defining artificial spin sys-
tems. The use of the third dimension allows for increased control
and optimization of the magnetostatic interaction between differ-
ent elements of the system. A recent example is the creation of 3D
square ice, in which the two sublattices are separated by a height
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FIG. 5. (a) Schematic view of a 3D square ice, with a height offset between
the two nanoisland sublattices. J1 and J2, respectively, represent the interactions
between neighboring and opposite elements.136 Reproduced with permission from
Farhan et al., Sci. Adv. 5, eaav6380 (2019). Copyright 2019 Author(s), licensed
under a Creative Commons Attribution 4.0 License. (b) Micromagnetic simula-
tions of resonant modes in the 3D square ice ground state. The red-white-blue
colormap encodes the amplitude of the the modes (blue represents zero ampli-
tude and red the maximal amplitude). (c) Cobalt tetrapod structures fabricated
using two-photon lithography.138 Reproduced with permission from Sahoo et al.,
Nanoscale 10, 9981 (2018). Copyright 2018 The Royal Society of Chemistry.
(d) Scanning electron microscopy (SEM) image of a Ni plated mesoscopic “buck-
yball” structure fabricated by two-photon lithography. The structure is 5 μm in
diameter. Reprinted with permission from Gliga et al., Mater. Today 26, 100 (2019).
Copyright 2019 Elsevier.

offset,135,136 as shown in Fig. 5(a). Such structures have permitted
the realization of systems with extensive degeneracy and unbound
monopoles,136 analogous to those found in the rare earth pyrochlore
compounds.3 Indeed, while the magnetic moments in atomic spin
ices are located at the vertices of a tetrahedral lattice, the artifi-
cial square ice is obtained by projecting these moments onto a
plane, leading to unequal interactions between the four nanois-
lands. The height offset can be chosen such that it restores the
equivalence of the magnetostatic interactions. In terms of magne-
tization dynamics, we expect such systems to offer further possi-
bilities for tailoring the mode spectrum and the band structure in
artificial spin ices, exploiting not only topological defects but also
the offset in the third dimension, as simulated in Fig. 5(b). Con-
currently, more complex elementary structures have been created,
which consist of connected bars and allow for the study of mag-
netic frustration in three dimensions.137 For example, the dynamics
of “tetrapods” such as in Fig. 5(c) has been investigated using the
magneto-optical Kerr effect (MOKE), revealing that it is possible to
measure localized oscillations of the magnetization in such struc-
tures.138 Larger and more complicated geometries, such as meso-
scopic “buckyballs” [Fig. 5(d)], have recently been fabricated,139–141

and their structure measured using x-ray ptychographic tomogra-
phy.139 We expect that these proofs-of-concept will enable the devel-
opment of novel materials combining specific mechanical and mag-
netic properties to create structures with reconfigurable functions.

At the same time, dedicated techniques are necessary to measure the
properties of such structures. Presently, tomography techniques are
being actively developed, which allow probing 3D magnetic struc-
tures with x rays,142–145 neutrons,146 or electrons.147,148 Very recently,
stroboscopic time-resolved measurements of magnetization dynam-
ics in 3D have been demonstrated based on magnetic laminogra-
phy.149 Beyond x rays, ferromagnetic resonance measurements of
3D objects have been made possible by employing microresonator
loops.150 Ultimately, the combination of such techniques will enable
the full structural and magnetic characterization of 3D magnetic
structures.

E. Modeling
The plethora of experimental possibilities directly impacts the

theoretical and numerical modeling of artificial spin ices. The inter-
play between short-range and long-range interactions discussed in
Sec. IV A imposes serious constraints on the feasibility of imple-
menting numerical models with predictive power. The first issue to
address is the growing size of the artificial spin ice unit cell, which
also increases the full size of the micromagnetic domain and may
also increase the size of the micromagnetic super-cell when impos-
ing periodic boundary conditions. For example, a type-I square ice
has a unit cell consisting of four nanoislands and a micromagnetic
super-cell consisting of eight nanoislands (four whole and eight split
by the periodic boundary conditions). We illustrate this in Fig. 6(a)
where the nanoislands in the unit cell are colored blue and the
micromagnetic super-cell is indicated by the orange-shaded area.
The reason why the number of nanoislands in the unit cell and the
super-cell do not coincide is that typical implementations of peri-
odic boundary conditions require orthogonal translation vectors for
the super-cell. Under such implementations, and using the same
color-scheme in panels (b) and (c), we identify the unit cell of a
Shakti lattice7 and a Tetris lattice,8 both in long-range ordered states.
We note that the magnetic states depicted in Figs. 6(b) and 6(c) do
not correspond to the ground states identified, e.g., in Ref. 32 (see
Figs. 8 and 10) but instead are illustrations of long-range ordered
states with relatively simple unit cells. The Shakti lattice in such a
configuration has 20 nanoislands in both the unit cell and the super-
cell (12 whole and 16 split by the periodic boundary conditions).
The Tetris lattice in the configuration shown has 20 nanoislands in
the unit cell and 40 in the super-cell (32 whole and 16 split by the
periodic boundary conditions). These examples show that dynamic
simulations of Shakti and Tetris lattices could increase the mem-
ory allocation fourfold and eightfold, respectively, compared to a
type-I square ice. In typical finite-difference approaches151 where
the entire domain is discretized, such an increase in memory allo-
cation will necessarily impose a lower bound on the cell-size (due to
the finite amount of RAM), resulting in a poor spectral resolution of
the modes. This suggests that at least some novel artificial spin ices
may preferentially be modeled by finite-element methods,29 where
non-magnetic regions can be managed more efficiently to compute
magnetostatic fields,63 in particular, in combination with a boundary
element method.152 In addition, one can envision dedicated schemes
including skewed periodic boundary conditions to allow for arbi-
trary translation vectors and thus equalize the super-cell to the unit
cell.

Another intriguing direction consists in using artificial intel-
ligence methods to accelerate or complement micromagnetic
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FIG. 6. Unit cell vs super-cell configurations in selected states of (a) square,
(b) Shakti, and (c) Tetris ices for numerical modeling using periodic boundary
conditions with orthogonal translations. The unit cell is indicated by blue-colored
nanoislands. The orange-shaded area indicates the micromagnetic super-cell.

modeling. Machine learning methods have recently been used to
describe Stoner–Wohlfarth switching in single-domain particles.153

This study employed supervised learning, in which machine learn-
ing models (random forest, support vector machine, and deep neural
networks) were first trained on a large number of modeled exam-
ples of particles with different damping, anisotropy fields, external
field strengths and directions, and the switching behavior predicted
by the surrogate models was then validated against other modeling
datasets. In another work,154 convolutional neural networks were
used to construct a surrogate model for the time-stepping predictor
in micromagnetic modeling of the LLG equation. The authors relied
on dimensional reduction methods (principal component analy-
sis) to reduce dimensions of the non-linear time-stepping prob-
lem. Unsupervised learning was then used to train a convolutional
neural network which provided an estimator for time-stepping.
The model was applied to the micromagnetic benchmark prob-
lems 1 and 2 (see μMAG micromagnetic modeling activity group:
http://www.ctcms.nist.gov/rdm/mumag.org.html). There exist sev-
eral potential directions for employing artificial intelligence methods
to the dynamics of artificial spin ices. One possibility is to replace the
micromagnetic description of the internal dynamics of nanoislands

by surrogate machine learning models. These can be constructed, for
example, by supervised training of deep neural networks using mod-
eled dynamics of a single nanoisland as training data. The gain would
be dimensional reduction by eliminating all but a small number of
internal degrees of freedom of the nanoislands, and the remaining
problem would be that of the larger-scale inter-island interactions
coupled to the surrogate models. Another direction would be to
replace the long-range inter-nanoisland interactions with a machine
learning based surrogate model, thus reducing the problem to that
of individual nanoislands coupled to an effective field given by a
surrogate model.

Another limitation of micromagnetic simulations is that
dynamic excitations are computed for collective modes (k = 0)
and periodic boundary conditions allow for the excitation of even
wavevectors harmonically proportional to the super-cell size. Such
short wavelengths are essentially irrelevant for the artificial spin ice
band structure defined within the first Brillouin zone. Under the
constraint that increasing the super-cell size to contain many unit
cells is an unfeasible approach, novel schemes to compute Bloch
waves155 must be found. A possible solution is to use semi-analytical
models, such as in Ref. 67, where a tight-binding-like approach was
used to collapse the k-dependent effective field into the unit cell by
invoking Bloch’s theorem. The solution is then obtained by solv-
ing an eigenvalue problem. For such an approach to be viable, it
is important to determine irreducible micromagnetic super-cells to
avoid aliasing. Implementing this type of micromagnetic simulation
would constitute a hybrid approach where the detailed micromag-
netic structure informs the computation of an effective field acting
on the super-cell from which the eigenmodes can be calculated.
Admittedly, the computational efficiency of such a hybrid approach
would be low, but it may be feasible to implement in situations
requiring accuracy at the nanometer level.

To explore the Brillouin zones in artificial spin ices, the semi-
analytical model proposed in Ref. 67 is an attractive method. Com-
putation of the Brillouin Zones is achieved through an involved
determination of the matrix elements in the eigenvalue problem
and results in a coarse spatial mode resolution compared to micro-
magnetic simulations. Because the magnetization vector is recast
in terms of a Holstein–Primakoff transformation,156 i.e., a complex
conjugate pair of dynamic variables, the resulting eigenvalue prob-
lem is of size 2NM, where N is the number of considered macrospins
in each nanoisland and M is the number of nanoislands per unit
cell. Therefore, the growing complexity of artificial spin ices will lead
to both complicated expressions for the matrix elements and dense
matrices. However, this would be a one-time exercise, suggesting the
possibility of developing a matrix library as a function of artificial
spin ice geometry and magnetic state.

The predictive power of semi-analytical models is useful to
explore the features of the first Brillouin zone. An interesting appli-
cation consists in determining the onset of topologically protected
bands that can give rise to edge modes akin to surface conduc-
tion in topological insulators. Such “topological magnons” have been
explored so far in two different contexts. One is the use of periodic
lattices with broken symmetry,79,80 as discussed in Sec. V. Numerical
demonstration of edge modes in a “decorated” honeycomb lattice80

is shown in Fig. 7(a). Similar ideas were explored in artificial spin
ices in Ref. 66, where a square ice coupled to a heavy-metal substrate
was modeled to investigate chiral effects induced by the interfacial
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FIG. 7. (a) Spin-wave edge modes simulated in a 25 × 25 unit cell of a deco-
rated honeycomb lattice.80 Reprinted with permission from Shindou et al., Phys.
Rev. B 87, 174402 (2013). Copyright 2013 The American Physical Society. (b)
Spin-wave band-diagram in the first Brillouin zone of a square ice patterned on
top of a heavy metal including interfacial DMI with parameter D. A non-zero D
parameter gives rise to a Dirac point indicated by the red arrow.66 Reprinted with
permission from Iacocca and Heinonen, Phys. Rev. Appl. 8, 034015 (2017). Copy-
right 2017 The American Physical Society. (c) Kagome artificial spin ice realized
by chiral nanoislands where the DMI of the underlayer tilts the magnetization of
the nanoislands’ edges.11 Reprinted with permission from Luo et al., Science 363,
1435–1439 (2019). Copyright 2019 AAAS.

Dzyaloshinskii–Moriya interaction (DMI) on the spin ice. The DMI
parameter D was used to toggle the onset of topological bands. As
shown in Fig. 7(b), a non-zeroD parameter gives rise to a Dirac point
indicated by a red arrow and the concomitant change in the band’s
Chern number, c. The associated chirality in reciprocal space should
lead to band inversion in the surface states, although no direct com-
putation of this case has been presented. The use of DMI to induce
chirality in ferromagnetic nanoislands has recently been demon-
strated experimentally.11 So far, only the static magnetization has
been tuned to realize arbitrary structures including a kagome lat-
tice depicted in Fig. 7(c). The dynamic behavior of such structures
remains to be studied. It would indeed be interesting to excite spin
waves in such systems and explore their topology as well as recon-
figurability. A second approach to topological magnons has been to
consider chirality on the atomic level. This is typically obtained in
pyrochlore spin ices157 and in honeycombs lattices.158 Recent stud-
ies have further shown the possibility of toggling the chirality of
edge modes by tuning the DMI to exchange interaction ratio159 or
by inducing DMI by time-dependent interactions or Floquet engi-
neering.159,160 The recently investigated kagome ice with nanoislands
with varying anisotropies69 could be a starting point to explore the
onset of topological bands by pattering the structure on a heavy
metal or by studying the next-nearest-neighbor interactions between
the nanoislands.

Other type of artificial spin ices can be deliberately designed
to take advantage of broken long-range order. The initial work by
Gliga et al.29 explored precisely how topological charge defects in
a square ice would impact the collective dispersion of waves. Sim-
ilarly, it would be interesting to consider structures exhibiting col-
lective, topological frustration,13,33 and not only vertex frustration.

This would allow exploring possible links between the geometrical
topology and the topological character of excited spin waves. Finally,
quasi-crystals, i.e., ordered lattices without a well-defined spatial
periodicity, are other types of structures, which have been explored
in the context of magnonics161,162 and in artificial spin ices.163,164 A
predictive theoretical or numerical model of these artificial spin ices
will no doubt be challenging to implement. Experiments will likely
drive the need to develop numerically efficient techniques.

F. Devices, logic, and information processing
In magnonics,15–18 spin waves are utilized as carriers of infor-

mation for technologically relevant functions. One direction of
research consists in exploring the design of logic gates and multi-
plexers based on spin-wave interferometry165–167 and the directional
propagation of waves.168–171 In particular, this has led to the demon-
stration of NAND gates165 as well as a three-terminal YIG-based
magnonic transistor.172 Another direction of research consists in the
creation of periodically patterned, magnetostatically coupled nanos-
tructures with feature sizes of the order of the magnon wavelength in
which spin waves can propagate. These allow creating devices with
tailored band structures, defining frequency ranges for which spin-
wave propagation is allowed along with forbidden bandgaps.14 Such
structures, called magnonic crystals, in analogy to photonic crystals,
potentially provide the basis for a wide range of magnon spintronic
devices, including waveguides, signal filters, phase shifters, and sig-
nal processing elements operating in the GHz frequency range.173,174

Magnon-based applications are therefore compatible with the speeds
of current CMOS-based circuits and, if antiferromagnetic magnons
can be harnessed, this could even be pushed to the THz range. Fur-
thermore, the band structure can be reprogrammed by exploiting
different possible magnetic states in the unit cell of the periodic
lattice.175–177

So far, artificial spin ices have shown potential for magnonic
applications: they possess rich mode spectra29,37,65,69,83,86 and tun-
able band structures,67 which can be engineered to have non-trivial
topologies in the presence of DMI66 and, when coupled to an under-
layer, can in principle support spin-wave propagation along defined
channels.68 Going forward, these characteristics are essential for
the development and demonstration of relevant building blocks
for information transmission and detection, gating and switching,
or logic devices. Generally, we expect such functionalities to be
achieved in two ways, schematically illustrated in Fig. 8. The first
[Fig. 8 (left)] consists in tailoring the band structure through the
geometry and magnetic state of the artificial spin ices to obtain
desired functionalities required, e.g., for spin-wave filters and phase
filters or to define spin-wave propagation channels.68 Achieving
such functionalities requires the possibility of reconfiguring the
global state of the artificial spin ice, such as by means of an external
field. For practical devices, however, a more promising route is the
use of voltage-controlled anisotropy,178,179 which allows for magneti-
zation switching using applied electric voltages. This would be much
easier to engineer as the building blocks for integration already exist,
and it would also lead to smaller power consumption than the gen-
eration of magnetic fields. The second way [Fig. 8 (right)] consists
in exploiting topological charge defects2,5,29,180 (e.g., monopoles)
and the strings of reversed nanoislands connecting them in
order to define regions with specific functions, such as spin-wave
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FIG. 8. Possible routes for creating reconfigurable magnonic devices based on arti-
ficial spin ices. (Left) Global reconfigurability is achievable in specific geometries,
such as the charge ice, allowing for the definition of on-demand band structures.
These can lead to the creation of magnonic crystals to control spin-wave propaga-
tion, e.g., through spin-wave or phase filters. (Right) Local reconfigurability, here
illustrated by using an MFM tip, enables “writing” specific configurations,31 such
as strings and charge defects. Reprinted with permission from Gartside et al., Nat.
Nanotechnol. 13, 53-58 (2018). Copyright 2018 Springer Nature. These can be
useful to create well-defined regions for spin-wave interference and create logical
gates.

interference. This hinges upon the possibility of locally reconfigur-
ing the magnetic state of the artificial spin ices using tip-induced
reversal,31 local contacts for the injection of spin-polarized currents,
or applied voltages through the use of voltage-controlled anisotropy.
Such schemes will also have to allow for large-scale processing,
which is in principle rather an engineering than a fundamental mate-
rials science problem—indeed, modern commercial spin transfer
torque random access memories, for example, use processing tech-
nology compatible with CMOS technology. (For a recent review, see,
for example, Ref. 181.)

Magnons can be generated in a number of different ways, but
the most likely path compatible with miniaturization and large-
scale processing is using spin-torque oscillators (STOs). STOs can
generate magnetic oscillations with frequencies from ∼1 GHz to
over tens of GHz that directly couple to the magnonic medium.
Using low-damping materials, such as YIG, magnons can propagate
macroscopic distances without significant attenuation.19 Detection
of magnons should ideally be performed in a way that is compat-
ible with large-scale integration, i.e., based on giant magnetoresis-
tance or tunneling magnetoresistance, in which read-out elements

are deposited on the magnetic medium. Thus, artificial spin ices, as
reconfigurable magnonic lattices, combine several necessary func-
tions: they can be reconfigured to switch or multiplex information
flow and are not limited to information flow in a single direction.
The nanoislands can be directly integrated with STOs for generation
and detection of spin waves, while local and global magnetization
switching allows reconfiguration of the magnetic state. Finally, the
nanoislands can also serve as non-volatile memory elements directly
integrated into a magnonic-based IT and computing system.
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