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Abstract

Cryptocurrencies (CCs), especially bitcoin (BTC), which comprises a new digital
asset class, have drawn extraordinary worldwide attention. The characteristics of
the CC/BTC include a high level of speculation, extreme volatility and price discon-
tinuity. We propose a pricing mechanism based on a stochastic volatility with a cor-
related jump (SVCJ) model and compare it to a flexible cojump model by Bandi and
Renò (2016). The estimation results of both models confirm the impact of jumps and
cojumps on options obtained via simulation and an analysis of the implied volatility
curve. We show that a sizeable proportion of price jumps is significantly and con-
temporaneously anticorrelated with jumps in volatility. Our study comprises
pioneering research on pricing BTC options. We show how the proposed pricing
mechanism underlines the importance of jumps in CC markets.
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Bitcoin (BTC), the network-based decentralized digital currency and payment system, has

garnered worldwide attention and interest since it was first introduced in 2009. The rapidly

growing research related to BTC shows a prominent role in this new digital asset class in
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contemporary financial markets.1 Several studies have suggested econometric methods to

model the dynamics of BTC prices, including cross-sectional regression models involving

the major traded cryptocurrencies (CCs) and also multivariate time series models.2 Scaillet,

Treccani, and Trevisan (2020) show that jumps are much more frequent in the BTC market

than, for example, in the U.S. equity market (see, e.g., Eraker, 2004; Bajgrowicz, Scaillet,

and Treccani, 2015; Bandi and Renò, 2016 among others). These earlier studies suggest

that jumps should be considered when modeling BTC prices.

However, research on the BTC derivative markets is still limited despite the rapidly

growing availability of BTC futures and options traded on an unregulated exchange plat-

form (i.e., Deribit). Especially, the Chicago Mercantile Exchange (CME) Group, the

world’s leading derivatives marketplace, launched BTC futures based on the CME CF BTC

Reference Rate (BRR) on December 18, 2017. The limited research on pricing and hedging

BTC derivatives is partly attributed to the fact that pricing BTC derivatives (e.g., options)

encounters econometric challenges from the extraordinary occurrence of jumps as this mar-

ket is unregulated, lacks of central settlement and is highly speculation driven. This calls for

a more flexible model to capture the sudden jumps appearing in both the returns and vari-

ance processes.

In this article, we contribute to the existing literature by exploring the stochastic and

econometric properties of BTC dynamics and then pricing the BTC options based on these

properties. The investigation is carried out by using the most advanced stochastic volatility

(SV) models, that is, the stochastic volatility with a correlated jump (SVCJ) model of

Duffie, Pan, and Singleton (2000) and the SV with the possible nonlinearity structure of

Bandi and Renò (2016)(BR hereafter). The employed SVCJ model incorporates jumps in

both returns and the SV process, while the BR model captures the possible nonlinearity of

return and variance processes and characterizes a nonaffine structure. We aim to provide a

theoretical foundation for the future development of derivative markets on CCs.

Numerous empirical studies have applied the SVCJ model in different markets. For ex-

ample, Eraker, Johannes, and Polson (2003) and Eraker (2004) use the SVCJ model to de-

scribe equity market returns and estimate equity option pricing. They find strong evidence

of jumps in returns and volatility in the U.S. equity market. We further compare the SVCJ

estimates to the simplified versions such as Bates (2000; SVJ hereafter) and the SV model.

For the purpose of robustness check, we compare our results with those from the BR

model. Bandi and Renò (2016) propose a price and variance cojump model that generalizes

the SVCJ model to capture the possible nonlinearity in the parameters of the returns and

variance processes. The BR model characterizes independent and correlated jumps and

allows for a nonparametric parameter structure, and estimates the parameters by using

1 See, for example, Becker et al. (2013), Segendorf (2014), Dwyer (2015), also studies on economics

(Kroll, Davey, and Felten, 2013), alternative monetary systems (Rogojanu and Badea, 2014; Weber,

2016), and financial stability (Ali, 2014; Badev and Chen, 2014; ECB, 2015). An analysis of the legal

issues involved in using BTC can be found in Elwell et al. (2013).

2 For example, Hayes (2017) performs a regression using a cross-section dataset consisting of sixty-

six traded digital currencies to understand the price driver of CCs. Kristoufek (2013) proposes a bi-

variate vector autoregression model for the weekly log returns of BTC prices. Bouoiyour, Selmi and

Tiwari (2015) investigates the long- and short-run relationships between BTC prices and other

related variables using an autoregressive distributed lag model.
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high-frequency data. We also apply this model to the dynamics of BTC. We base our option

pricing on an experimental simulation where the parameters used to execute a simulation

are from the SVCJ and BR model, respectively.

We summarize our main empirical findings as follows. First, as in the existing literature, the

results from the SVCJ and BR models indicate that jumps are present in the returns and variance

processes and adding jumps to the returns and volatility improves the goodness of fit. Second, in

contrast to existing studies that commonly report a negative leverage effect, we find that the cor-

relation between the return and volatility is significantly positive in the SVCJ model. However,

we cannot find significant negative relations between risk and return in the BR model. This

implies that a rise of price is not associated with a decrease in volatility, which is consistent with

the “inverse leverage effect” found in the commodity markets (Schwartz and Trolled, 2009).

Third, we find that the jump size in the return and variance of BTC is anticorrelated.

The parameter estimates of the jump size (qj) from both the SVCJ and BR models are nega-

tive (though the SVCJ estimate is insignificant). It is worth noting that the correlation be-

tween the price jump size and the volatility jump size turns out to be significant with a

negative coefficient with high-frequency data, while tending to be insignificant for the

SVCJ fitting using daily prices. This finding is in line with existing studies of the stock mar-

ket from Eraker (2004), Duffie, Pan, and Singleton (2000), and Bandi and Renò (2016),

among others. For example, Bandi and Renò (2016) report an anticorrelation with the non-

affine structure. Eraker (2004) finds a negative correlation between jump size only when

augmenting return data with options data, and the negative correlation between cojump

size being identified in the implied volatility (IV) smirk. Using high-frequency data, Jocod

and Todorov (2009) and Todorov and Tauchen (2010) also report that the large jump size

of prices and volatility are strongly anticorrelated.

Finally, we observe that the option price level is prominently dominated by the level of

volatility and therefore overwhelmingly affected by jumps in the volatility processes. The

results from the plots of IV indicate that adding jumps in the return increases the slope of

the IV curves. The greater steepness of the IV curve can be strengthened by the presence of

jumps in volatility. The presence of cojumps enlarges the IV smile further. As evidenced

from the IVs curve, options with a short time to maturity are more sensitive to jumps and

cojumps. To fulfill a hedge or speculation need from institutional investors, we replicate the

entire analysis for the CRyptocurrency IndeX (CRIX), a market portfolio comprising lead-

ing CCs (see more detail in www.thecrix.de). A recent volatility index, VCRIX, created by

Kim, Trimborn, and Härdle (2019) also shows the evidence of jumps in CRIX.

To summarize our contributions, this study is the first paper to extensively investigate the

stochastic and econometric properties of BTC and incorporate these properties in the BTC

options pricing. Our results have practical relevance in terms of model selection for characteriz-

ing the BTC dynamics. We document the necessity of incorporating jumps in the returns and

volatility processes of BTC, and we find that jumps play a critical role in the option prices. Our

approach is readily applicable to pricing BTC options in reality. Our results are also important

for policymakers to design appropriate regulations for trading BTC derivatives and for institu-

tional investors to launch effective risk management and efficient portfolio strategies.

The article is organized as follows. Section 1 briefly introduces the BTC market. Section

2 studies the BTC return and variance dynamics with the SV, SVJ, and SVCJ models.

Fitting of the BR model is investigated in Section 3. Section 4 implements the

option-pricing exercises. Section 5 documents an examination of the CRIX, while Section 6
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concludes the study. A few preliminary econometrics analysis and estimation results for the

CRIX are in Appendix. The codes for this research can be found in www.quantlet.de.

1 The BTC Dynamic

We start by briefly introducing BTC. BTC was the first open-source distributed CC released

in 2009, after it was introduced in a paper “Bitcoin: A Peer-to-Peer Electronic Cash

System” by a developer under the pseudonym Satoshi Nakamoto. It is a digital, decentral-

ized, partially anonymous currency, not backed by any government or other legal entity.

The system has a preprogrammed money supply that grows at a decreasing rate until reach-

ing a fixed limit. Since all is based on open source, the design and control are open for all.

Traditional currencies are managed by a central bank, while BTCs are not regulated by any

authority; instead, they are maintained by a decentralized community. The transactions of

BTCs are recorded in the ledgers (known as the blockchain), which is maintained by a net-

work of computers (called “miners”). Since BTC is not a country-specific currency, inter-

national payments can be carried out more economically and efficiently.

Our empirical analyses are carried out based on both daily closing (SVCJ model) prices

and five minutes intradaily (BR model) prices. The data cover the period from August 1,

2014 to September 29, 2017 and are collected from Bloomberg. The dynamics of BTC daily

prices (left panel) and BTC returns (right panel) are depicted in Figure 1. It shows that the

BTC return is clearly more volatile than the stock return, along with more frequent jumps

or the scattered volatility spikes. BTC’s price spent most of the year 2015 relatively stable.

The BTC price in the first four months of 2016 was in the range of 400–460 USD. It moved

upward dramatically after 2016 and increased to almost 5000 USD by the end of our sam-

ple period in 2017. At the time of the writing of this article, the BTC market capitalization

is more than USD 7 billion (source: Coinmarketcap 2017).

Both the BTC prices and returns react to big events in the BTC market. A dramatic surge

observed after March 2017 was due to the widespread interest in CCs. The subsequent drop in

June 2017 was caused by a sequence of political interventions. Several governmental announce-

ments of bans on initial coin offerings (ICOs) have spurred intensive movements on CC mar-

kets. For example, the Chinese Securities and Exchange Commission denied permission for a

BTC exchange-traded fund (ETF) on March 10, 2017; and BTC crashed down after China

banned ICOs on September 4, 2017. The large upward movements in BTC prices caused the

returns of BTC displaying extremely high volatility and with scattered spikes/jumps. Several

large jumps triggered by a series of big events in the BTC market can be detected from the

returns series, see also Kim, Trimborn, and Härdle (2019). We have implemented a number of

time series models to the BTC returns and the results are shown in Appendix A.1 and Appendix

A.2. We find that the standard set of stationary models, such as autoregressive integrated mov-

ing average(ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH),

cannot fit the BTC returns well due to the presence of jumps.

2 SVCJ: Affine Specification

In this section, we estimate the SVCJ model using BTC prices. We begin with a simple

SVCJ jump specification, and switch to the BR model in Section 3. We focus the analysis on

BTC and then introduce CRIX in Section 5.
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2.1 Models

In order to estimate the BTC dynamics with the SV and SVCJ models regarding returns and

volatility, we employ the continuous-time model of Duffie, Pan, and Singleton (2000) that

encompasses the standard jump diffusion and the SV with jumps in returns only (SVJ)

model of Bates (1996). More precisely, let Stf g be the price process, d log Stf g the log

returns, and Vtf g be the volatility process. The SVCJ dynamics are as follows:

d log St ¼ ldt þ
ffiffiffiffiffi
Vt

p
dW Sð Þ

t þ Zy
t dNt (1)

dVt ¼ j h� Vtð Þdt þ rV

ffiffiffiffiffi
Vt

p
dW Vð Þ

t þ Zv
t dNt (2)

Cov dW Sð Þ
t ; dW Vð Þ

t

� �
¼ qdt (3)

P dNt ¼ 1ð Þ ¼ kdt: (4)

Like in the Cox–Ingersoll–Ross model, j and h are the mean reversion rate and mean re-

version level, respectively. W Sð Þ and W Vð Þ are two correlated standard Brownian motions

with correlation denoted as q. Nt is a pure jump process with a constant mean jump-arrival

rate k. The random jump sizes are Zy
t and Zv

t . Since the jump-driving Poisson process is the

same in both Equation (1) and (2), the jump sizes can be correlated. The random jump size

Zy
t conditional on Zv

t is assumed to have a Gaussian distribution with a mean of ly þ qjZ
v
t

and standard deviation set to ry. The jump in volatility Zv
t is assumed to follow an exponen-

tial distribution with mean lv:

Zy
t jZv

t � N ly þ qjZ
v
t ; r

2
y

� �
; Zv

t � exp lvð Þ: (5)

The correlation q between the diffusion terms is introduced to capture the possible lever-

age effects between returns and volatility. The jumps may be correlated as well. The correl-

ation term qj takes care of that. The SV process
ffiffiffiffi
V
p

t is modeled as a square root process.

With no jumps in the volatility, the parameter h is the long-run mean of Vt, and the process

reverts to this level at a speed governed by the parameter j. The parameter rV is referred to
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Figure 1 BTC prices and returns.

Notes: This figure graphs the BTC daily price (left panel) from August 1, 2014 to September 29, 2017

and BTC returns (right panel). The returns (Rt) are calculated as Rt ¼ logðPt Þ � logðPt�1Þ, where Pt is

the BTC price at time t.
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as the volatility of volatility, and it measures the variance responsiveness to diffusive volatil-

ity shocks. In the absence of jumps, the parameter l measures the expected log-return.

SVCJ is a rich model since it encompasses the SV and SVJ approaches. If we set Zv
t ¼ 0

in Equation (5), then jumps are only present in prices, we obtain the SVJ model of Bates

(1996). Taking k¼ 0 such that jumps are not present, the model reduces to the pure SV

model originally proposed by Heston (1993). If we set j ¼ h ¼ rV ¼ 0 and define Zv
t ¼ 0,

the model reduces to the pure jump diffusion introduced in Merton (1976).

2.2 Estimation: Markov Chain Monte Carlo

There are plenty of different methods to estimate the diffusion process to real data. The generality

of simulation-based methods offers obvious advantages over the method of simulated moments

of Duffie and Singleton (1993), the indirect inference methods of Gourieroux, Monfort, and

Renault (1993), and the efficient method of moment method of Gallant and Tauchen (1996).

For example, Jacquier, Polson, and Rossi (1994) show that Markov Chain Monte Carlo

(MCMC) is particularly well suited to deal with SV models. Eraker, Johannes, and Polson (2003)

and Eraker (2004) identify several advantages of using the MCMC approach over other estima-

tion models because MCMC methods are computationally efficient and the estimating is more

flexible when using simulations. The MCMC method also provides more accurate estimates of

latent volatility, jump sizes, jump times, etc. A general discussion and review of the MCMC esti-

mation of continuous-time models can be found in Johannes and Polson (2009).

For the reasons discussed above, we estimate the SVCJ model using the MCMC method.

Doing this allows for a wide class of numerical fitting procedures that can be steered by a

variation of the priors. Given that there are no BTC options yet, the MCMC method is

more flexible in estimating the stochastic variance jumps and thus able to reflect the market

price of risk (Franke, Härdle, and Hafner, 2019). The estimation is based on the following

Euler discretization:

Yt ¼ lþ
ffiffiffiffiffiffiffiffiffiffi
Vt�1

p
ey
t þ Zy

t Jt (6)

Vt ¼ aþ bVt�1 þ rV

ffiffiffiffiffiffiffiffiffiffi
Vt�1

p
ev
t þ Zv

t Jt; (7)

where Ytþ1 ¼ log Stþ1=Stð Þ is the log return, a ¼ jh; b ¼ 1� j and ey
t ; ev

t are the N 0;1ð Þ vari-

ables with correlation q. Jt is a Bernoulli random variable with p Jt ¼ 1ð Þ ¼ k and the jump

sizes Zy
t and Zv

t are distributed as specified in Equation (5). The daily data sample from August

1, 2014 to September 29, 2017 is used to estimate the model. All returns are in decimal form.

Let us present a brief description on how to estimate the SVCJ model with MCMC (see

also Tsay, 2005; Asgharian and Bengtsson, 2006; Johannes and Polson, 2009 for more

details). Define the parameter vector as H ¼ l;ly; ry; k; a;b; rv;q; qj;lv

� �
and Xt ¼

Vt;Z
y
t ;Z

v
t ; Jt

� �
as the latent variance, jump sizes, and jump. Recall that Yt is the log returns.

The MCMC method treats all components of H and X¼def Xtf gt¼1;::;T as random varia-

bles. The fundamental quantity is the joint pdf pðH;XjYÞ of parameters and latent variables

conditioned on data using the Bayes formula:

pðH;XjYÞ ¼ pðYjH;XÞpðXjHÞpðHÞ: (8)

The Bayes formula can be decomposed into three factors: p YjH;Xð Þ, the likelihood of the

data, p XjHð Þ the prior of the latent variables conditioned on the parameters and p Hð Þ the
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prior of the parameters. The prior distribution p Hð Þ has to be specified beforehand and is

part of the model specification. In comfortable settings, the posterior variation of the

parameters, given the data, is robust with respect to the prior.

The posterior is typically not available in the closed form, and therefore simulation is

used to obtain random draws from it. This is done by generating a sequence of draws,

fHðiÞ;XðiÞt g
N

i¼1 which form a Markov chain whose equilibrium distribution equals the pos-

terior distribution. The point estimates of parameters and latent variables are then taken

from their sample means.

We use the same priors specified in Asgharian and Nossman (2011), who estimate a large

group of international equity market returns with jump-diffusion models using the MCMC

method, that is, l � N 0;25ð Þ; a; bð Þ � N 02�1; I2�2ð Þ;rV
2 � IG 2:5;0:1ð Þ; ly � N 0;100ð Þ;

ry
2 � IG 10;40ð Þ;q � U �1;1ð Þ;qj � N 0;0:5ð Þ; lV � IG 10;20ð Þ (Inverse Gaussian) and k �

Be 2;40ð Þ (Beta Distribution). The full posterior distributions of the parameters and the

latent-state variables can be found in Asgharian and Nossman (2011) and Asgharian and

Bengtsson (2006). We have varied the variance of the priors and found stable outcomes, that

is, the reported mean of the posterior that is taken as an estimate of H is quite robust relative

to changes in variance of the prior distributions. The posterior for all parameters except rV

and q are all conjugate (meaning that the posterior distribution is of the same type of distribu-

tion as the prior but with different parameters). The posterior for Jt is a Bernoulli distribution.

The jump sizes Zy
t and Zv

t follow a posterior normal distribution and a truncated normal dis-

tribution, respectively. Hence, it is straightforward to obtain draws for the joint distribution

of Jt, Zy
t and Zv

t . However, the posteriors for q, rV
2 , and Vt are nonstandard distributions and

must be sampled using the Metropolis–Hastings algorithm. We use the random-walk method

for q and Vt, and independence sampling for r2
V . For the estimation of posterior moments, we

perform 5000 iterations, and in order to reduce the impact of the starting values, we allow

for a burn-in for the first 1000 simulations.

The SVCJ model is known for being able to disentangle returns related to sudden unex-

pected jumps from large diffusive returns caused by periods of high volatility. For the BTC

situation that we consider here, we are particularly interested in linking the latent historical

jump times to news and known interventions. The estimates Ĵt ¼def 1=Nð Þ
PN

i¼1 Ji
t (where N

is the total number of iterations and i refers to each draw) indicate the posterior probability

that there is a jump at time t. Unlike the “true” vector of jump times, it will not be a vector

of ones and zero. Following Johannes, Rohit, and Polson (1999), we assert that a jump has

occurred on a specific date t if the estimated jump probability is sufficiently large, that is,

greater than an appropriately chosen threshold value:

~Jt ¼ 1 Ĵt > f
� �

; t ¼ 1;2; . . . ;T (9)

In our empirical study, we choose f so that the number of inferred jump times divided

by the number of observations is approximately equal to the estimate of k.

We first estimate the BTC returns by taking the log first differences of prices, then use

returns to estimate the SVCJ model. The parameter estimates (mean and variance of the

posterior) of the SVCJ, SVJ, and SV models for BTC are presented in Table 1. The estimate

of l is positive. The correlation between returns and volatility q is significant and positive.

This is remarkable and worth noting since it is different from a negative leverage effect

observed over a sequence of studies in stock markets (see, e.g., French and Stambaugh,
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1987; Schwert, 1989). The effect is named the “inverse leverage effect” and has been dis-

covered in commodity markets (see Schwartz and Trolled, 2009). In other words, the

“inverse leverage effect” (associated with a positive q) implies that increasing prices are

associated with increasing volatility. The reason for this positive relationship between risk

and returns might be due to BTC prices being different from conventional stock prices. The

digital currency price may be dominated by the “noise trader” behavior described by Kyle

(1985) and DeLong et al. (1990). Such investors, with no access to inside information, ir-

rationally act on noise as if it were information that would give them an edge. This positive

leverage effect has been also reported by such as Hou (2013) on other highly speculative

markets, for example, the Chinese stock markets.

Moreover, the estimates for the SVCJ model are much less extreme than for the SVJ and

SVCJ models. More precisely, the volatility of variance rv is substantially reduced from

0.017 (SV) to 0.011 (SVJ) and 0.008 (SVCJ). The mean of the jump size of the volatility lv

is significant and positive. The jump intensity k is also significant. The jump correlation qj

is negative but insignificant, which parallels the results of Eraker, Johannes, and Polson

(2003) and Chernov et al. (2003) for stock price dynamics. This effect might be due to the

fact that even with a long data history, jumps are rare events. (The evidence is stronger for

the BR specifications considered in Section 3.) In summary, the SVCJ model fits the data

well by an MSE that is smaller than those of the SVJ and SV models.

Table 1 BTC parameters for SVCJ, SVJ, and SV models

SVCJ SVJ SV

l 0.041 0.029 0.030

(0.022, 0.060) (0.011, 0.046) (0.014, 0.046)

ly �0.084 �0.562 –

(�0.837, 0.670) (�1.280, 0.155) –

ry 2.155 2.685 –

(1.142, 3.168) (1.519,3.850) –

k 0.041 0.029 –

(0.025, 0.056) (0.019, 0.047) –

a 0.010 0.010 0.009

(0.008, 0.012) (0.006, 0.015) (0.006, 0.012)

b �0.132 �0.116 �0.033

(�0.151, �0.114) (�0.137, �0.094) (�0.052, �0.013)

q 0.407 0.321 0.169

(0.232, 0.583) (0.225, 0.417) (0.066, 0.271)

rv 0.008 0.011 0.017

(0.007, 0.010) (0.007, 0.014) (0.014, 0.021)

qj �0.573 – –

(�1.832, 0.685) – –

lv 0.620 – –

(0.426, 0.813) – –

MSE 0.735 0.757 0.763

Notes: This table reports posterior means and 95% finite sample credibility intervals (in parentheses) for

parameters of the SVCJ, SVJ, and SV models. All parameters are estimated using BTC daily returns calculated

as the log-first difference based on the prices from August 01, 2014 to September 29, 2017.
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Figure 2 shows the estimated jumps in returns (first row) and the estimated jumps in

volatility (middle row) together with the estimated volatility (last row). One sees that esti-

mated jumps occur frequently for those of the returns and volatility. The estimated jumps

size in returns and variance are different. Figure 3 presents the in-sample fitted volatility

processes for the SVCJ and SVJ models, respectively. It is not hard to see that both models

lead to a similar overall pattern for the volatility process, though the SVCJ model produces

sharper peaks for BTC.

A useful model diagnosis is to examine the standardized residuals obtained from the dis-

crete model, which estimates,

ey
t ¼

Yt � l� Zy
t Jtffiffiffiffiffiffiffiffiffiffi

Vt�1

p (10)

The normality would be violated if the jumps are not perfectly estimated. However, sev-

eral previous researches such as Larsson and Nossman (2011), Asgharian and Bengtsson

(2006), and Asgharian and Nossman (2011) have estimated the SVCJ model with the

MCMC in the equity market and use the normal plot as a diagnostic tool to visualize the

model performance. We follow this literature calculating these standardized residuals based

on the estimated parameters, then show the QQ plots of the standardized residuals from

the fitting of different models in Figure 4. From these diagnostics, it is evident that the

GARCH and even the SV models are mis-specified. For the SVJ and SVCJ models, the QQ

plot diagnostics are substantially improved. However, it is apparent that the SVCJ model is

the preferred choice which is consistent with the MSE reported in Table 1.

3 SV Model with Jumps: High-Frequency Data

3.1 BR Model in Return-Volatility Cojumps

Imposing a specific structure in the stochastic process as documented in Section 2 may pro-

duce a specification error. Defining St and rt ¼
ffiffiffiffi
V
p

t as the price and volatility process, re-

spectively, following the notation of BR, we therefore consider the BR affine jump-

diffusion model:

d log Stð Þ ¼ lrdt þ rt qtdW1
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

t

p
dW2

t

n o
þcJ

r;tdJr;t þ cJJ
r;tdJr;r;t;

dn r2
t

� �
¼ m0 þm1 log r2

t

� �� �
dt þ KdW1

t þ cJ
r;tdJr;t þ cJJ

r;tdJr;r;t;

qt ¼ max min q0 þ q1rt; 1ð Þ;�1
� �

;

(11)

where nð�Þ is an increasingly monotonic function (we will choose it as logð�Þ in the following

discussions), W ¼ W1;W2
� �

is a bivariate standard Brownian motion vector and J ¼
Jr;t; Jr;t; Jr;r;tf g is a vector of mutually independent Poisson processes with constant inten-

sities, which are denoted as kr, kr, and kr;r, respectively. Thus we allow for common and in-

dependent jumps in the system. The Poisson processes are also assumed to be independent

from the Brownian motion.

The BR model is estimated through a GMM-like procedure based on infinitesimal cross-

moments dubbed by the authors Nonparametric Infinitesimal Method of Moments
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Figure 2 Jumps estimated in returns and volatility from the SVCJ model.

Notes: This figure graphs the estimated jumps in returns and volatility from the SVCJ model. The

model is estimated using BTC daily returns calculated as the log-first difference based on the prices

from August 1, 2014 to September 29, 2017. The first-, second-, and third-subfigures plot jumps in

returns, jumps in volatility and the estimated volatility, respectively.
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0
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Figure 3 Estimated volatility from the SVCJ and SVJ models.

Notes: This figure plots the estimated volatility from the SVCJ (dotted blue) and SVJ (solid black) mod-

els. All models are estimated using BTC daily returns calculated as the log-first difference based on

the prices from August 1, 2014 to September 29, 2017.
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(NIMM). We assume the distribution of the jumps to be normal, that is, ðcJ
r;t; c

J
r;tÞ �

NðlJ;RJÞ and ðcJJ
r;t; c

JJ
r;tÞ � NðlJJ;RJJÞ, with

lJ ¼
lJ;r

lJ;r

" #
; lJJ ¼

lJJ;r;0 þ lJJ;r;1rt

lJJ;r

" #
;

RJ ¼
r2

J;r 0

0 r2
J;r

2
4

3
5; RJJ ¼

rJJ;r;0 þ rJJ;r;1r
rJJ;r;2

t

� �2
qJ rJJ;r;0 þ rJJ;r;1r

rJJ;r;2

t

� �
rJJ;r

qJ rJJ;r;0 þ rJJ;r;1r
rJJ;r;2

t

� �
rJJ;r r2

JJ;r

2
4

3
5:

(12)

For any p1 � p2 � 0, the generic infinitesimal cross-moment of order p1 and p2 is defined

as:

hp1 ;p2
ðrÞ ¼ lim

D!0

1

D
E ½logðStþDÞ � logðStÞ�p1 ½logðr2

tþDÞ � logðr2
t Þ�

p2 jrt ¼ r
n o

: (13)

In particular, hp1 ;0 helps to identify features of the price process, and h0;p2
helps to identify

those of the variance process, while the genuine cross-moments with p1 � p2 � 1 are

required to identify the common parameter shared by the two processes q0;q1; kr;r, and qJ.

Figure 4 QQ plots for the SVCJ, SVJ, and SV models.

Notes: This figure graphs the QQ plots versus standard normal for fitted standardized residuals from

the SVCJ, SVJ, and SV models using BTC daily returns calculated as the log-first difference based on

the prices from August 1, 2014 to September 29, 2017. We also include the QQ plot for the GARCH

model using the same sample period.
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To conduct the NIMM estimation in BR, we first need to estimate the cross-moments

that are in theory functions of parameter of interest. The cross-moments are estimated via a

nonparametric kernel method. In particular, denote the day index as t ¼ 1; . . . ;T and the

equispaced time index as i ¼ 1; . . . ;N within each day. Denote rt;i;k as the high-frequency

log returns for day t, knot i, and minute k. We define the closing logarithmic prices as

log pt;ið Þ and logarithmic spot variance estimates as

r̂2
t;i ¼

T

T � 1� nj
f�2

1

XT

k¼2

jrt;i;kjjrt;i;k�1j1 jrt;i;k j � ht;i;kf g1 jrt;i;k�1 j � ht;i;k�1f g; (14)

where f1 	 0:7979; ht;i;k is a suitable threshold, and nj is the number of returns whose

absolute value is greater than ht;i;k. Then the generic cross-moment estimator ĥp1 ;p2
rð Þ is

defined as

ĥp1 ;p2
rð Þ ¼

PT�1

t¼1

PN
i¼1

K
r̂ t;i�r

h

� �
log Stþ1;ið Þ � log St;ið Þ
� �p1 log r̂2

tþ1;i

� �
� log r̂2

t;i

� �n op2

D
PT
t¼1

PN
i¼1

K
r̂ t;i�r

h

� � (15)

where K �ð Þ is a kernel function and h is the bandwidth. Finally, with the estimated cross-

moments, one can estimate the parameters of interest via the NIMM method, see the details

as in Bandi and Renò (2016) for the parametric estimation.

3.2 Correspondence between SVCJ and BR Model

In this section, we fit the BR model using high-frequency data and discuss the comparison

with the estimation of the SVCJ model. We collect high-frequency BTC prices from

Bloomberg. The price data range is from July 31, 2014 to July 29, 2017, and we collect raw

data at a frequency of 60 seconds 24 hours a day. Following Section 3.1, we aggregate the

logarithm returns of BTC over a 60-minute time range, namely rt;i;k ¼ log St;i;k � log St;i;k�1,

with k ¼ 1; . . . ; 60. In addition, we also obtain the spot variance estimates for each day t

and each knot i by applying the jump robust threshold bipower variation estimator as in

Equation (14).

To compare the data of the high-frequency aggregated volatility and the daily BTC vola-

tility, we plot the average daily spot volatility from the high-frequency data and the daily

spot volatility estimates from the SVCJ model together as in Figure 5. We observe that the

two sequences sometimes peak at different time points despite that the general pattern

agrees.

In Table 2, we show the full model estimation results. The drift parameter lr is esti-

mated to be small and insignificant. The linear mean reversions, which can be seen as m0

and m1, are both negative. However, they are both insignificant. The volatility of volatility

K is estimated to be very significant with a value of 0.6766. The average number of inde-

pendent jumps in volatility is estimated at an annual rate of 0.0519 � 252, which is around

13. The estimated number of cojumps is around 0.0584 � 252 	 17. The mean of the inde-

pendent variance jumps is significant at a level of –0.2783. lJJ;r;0 is small (�0.0187) and

negative, and lJJ;r;1 is 0.1265. Both parameters are insignificant at the 95% level of confi-

dence. We do not see an obvious tendency for the jumps to be downward, as observed in

Bandi and Renò (2016).
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We find that the leverage q0 is estimated to be negative, that is, –0.1485, though insig-

nificant. The leverage would increase with an increasing volatility level as q1 is estimated to

be significant and with a value of 0.9292. The standard deviation of the jumps in return rJ;r

is estimated to be significant with a value of 0.6890. When fitting a nonlinear structure to

the standard deviation of the common price jumps, the parameters rJJ;r;1 and rJJ;r;2 are both

significant. The standard deviation of jumps in volatility rJ;r is estimated to be 0.8619 with

significance. The standard deviation of the common volatility jump rJJ;r is estimated to be

insignificant. Notably, the correlation of jumps qJ is estimated to be negative and significant

with a value of –0.5257, which is in line with BR. This negative and significant cojump size

correlation is discovered by Duffie, Pan, and Singleton (2000), who conclude that the price

and the volatility jump sizes are “nearly perfectly anti-correlated.” Eraker (2004) finds a

statistically significant correlation between the jump sizes only when employing option

data in addition to stock returns data. Bandi and Renò (2016) also report a “nearly perfect

anti-correlation” of �1.

4 Option Pricing

In the previous sections, we have shown that the SVCJ and the BR models can well describe

the log-returns dynamics of BTC. In this section, we discuss option pricing for BTC based

on the SVCJ and BR models, respectively.

4.1 BTC Options

After fitting the SVCJ and the BR model, we advance with a numerical technique called

Crude Monte Carlo (CMC) to approximate the BTC option prices. Derivative securities

such as futures and options are priced under a probability measure Q commonly referred to

as the “risk neutral” or martingale measure. Since our purpose is to explore the impact of

model choice on option prices, we follow Eraker, Johannes, and Polson (2003) and set the

Figure 5 The average daily spot volatility and the daily spot volatility estimates.

Notes: This figure plots the average daily spot volatility from the high-frequency data (dotted line in

blue) and the daily spot volatility estimates (solid line in black)
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Table 2 BR parametric estimates and their 95% confidence intervals. The parametric model is

specified as in Equations (11) and (12). The first column specifies that Jr ;r ¼ 0 (no cojumps) and

the second column specifies that Jr ¼ Jr ¼ 0 (no independent jumps)

No cojumps No ind. jumps Full model

lr 0.0021 0.0027 0.0082

(�0.1939, 0.1981) (�0.1933, 0.1987) (�0.0444, 0.0608)

q0 0.0044 �0.0148 �0.1485

(�0.1150, 0.1237) (�0.1401, 0.1105) (�0.4851, 0.1882)

q1 �0.3744 �0.2237 0.9292

(�0.8513, 0.1025) (�0.7088, 0.2614) (0.5884, 1.2699)

m0 �0.0500 �0.0500 �0.0495

(0.1275, 0.0275) (�0.1275, 0.0275) (�0.1475, 0.0485)

m1 �0.0168 �0.0125 �0.0600

(�0.2128, 0.1792) (�0.2085, 0.1835) (�0.2560, 0.1360)

K 0.7634 0.7853 0.6766

(0.5674, 0.9594) (0.5893, 0.9813) (0.6570, 0.6963)

lJ;r 0.1577 0 2.5486

(0.0372, 0.2782) – (2.3526, 2.7446)

lJJ;r;0 0 �0.0804 �0.0187

– (�0.5383, 0.3774) (�0.1085, 0.0711)

lJJ;r;0 0 0.0192 0.1265

– (�0.6850, 0.7234) (�0.4183, 0.6713)

rJ;r 0.6801 0 0.6890

(0.5453, 0.8148) – (0.4930, 0.8850)

rJJ;r;0 0 0.0864 0.0043

– (�0.3242, 0.4971) (�0.5459, 0.5544)

rJJ;r;1 0 1.8713 1.2159

– (1.8436, 1.8991) (1.0199, 1.4119)

rJJ;r;2 0 2.6521 3.9590

– (2.5377, 2.7664) (3.7630, 4.1550)

lJ;r �0.5000 0 �0.2783

(�0.5364, �0.4636) – (�0.4992, �0.0574)

lJJ;r 0 �1.9181 �0.4927

– (�2.0805, �1.7557) (�0.6429, �0.3425)

rJ;r 0.7945 0 0.8619

(0.7379, 0.8511) – (0.7237, 1.0001)

rJJ;r 0 1.0705 0.0717

– (0.8716, 1.2693) (�0.0767, 0.2202)

qJ 0 �1.0000 �0.5257

– (�1.4648, �0.5351) (�0.7217, �0.3297)

kr 0.0002 0 0.0000

(�0.1958, 0.1962) – (�0.1960, 0.1960)

kr 0.0700 0 0.0519

(0.0504, 0.0896) – (0.0323, 0.0715)

kr;r 0 0.0060 0.0584

– (�0.0136, 0.0256) (0.0564, 0.0603)

Notes: This table reports the parameter estimates of the model specified in Equations (11) and (12) using the

intradaily BTC returns. For each parameter, we report the estimate and the corresponding 95% finite sample

credibility intervals in parentheses. The full model is shown in the fourth column, and the second and third col-

umns report the same model with the restriction of no cojumps and no independent jumps, respectively.
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risk premia to zero. This choice can be disputed, but for the lack of existence of the official-

ly traded options a justifiable path to pricing BTC contingent claims. Suppose we have an

option with a payoff at time of maturity T as C(T), and typically for call option

C Tð Þ ¼ ST � Kð Þþ. The price of this option at time t is denoted as:

E Q exp �r T � tð Þ
� �

C Tð ÞjF t

	 

; (16)

where F t is a set that represents information up to time t. We approximate the European

option prices of BTC using the CMC technique. The CMC simulation is done for 20,000

iterations to approximate the option price using the parameters reported in Table 1 for the

SVCJ, SVJ, and SV models and in Table 2 for the BR (assuming a daily interval) model.

Since no BTC option market exists yet, we do not have real market option prices for

comparison. Thus, we chose July 2017 randomly as the experimental month in our option-

pricing simulation analysis. Throughout our entire analysis of option pricing, the money-

ness for strike K and S at t is defined to be K=St. The pricing formula is a function of

moneyness and time to maturity s ¼ T � tð Þ where T is the maturity day.

In Figure 6, we plot the simulated volatility of various models based on the parameters

reported in Table 1 (for the SVCJ, SVJ, and SV models) and in Table 2 (for the BR model)

for the month of July 2017. It can be seen from this figure that the approximated volatility

on July 15, 2017 had a large jump (there was a large increase observed on July 15, 2017 in

the BTC historical prices). The sudden jump is perfectly captured by the BR, SVCJ, and SVJ

models, while the SV model cannot characterize the volatility as well as the other three

models. The BR model estimates the jump more than the SVCJ and the SV models, this

could be attributed to the uncorrelated jumps, which is not considered by the SVCJ and the

SVJ models. Assuming a BTC spot price St ¼ 2250, the estimated BTC call option prices

across moneyness and time to maturity on July 17, 2017, obtained using the SVCJ model3

are presented in Table 3. We see that, for example, a call option on BTC with the strike

K¼ 1250 and time to maturity of 90 days would be traded at 1157.95 on July 17, 2017.

To further understand how the option price changes with respect to changes in time to

maturity and moneyness for different models, we show in Figure 7 the one-dimensional

contour plot of the option prices surface across time to maturity and moneyness estimated

from the SVCJ, SVJ, SV, and BR models for the month of July 2017. When examining mon-

eyness, the time to maturity is fixed at 30 days, and when looking at the time to maturity,

moneyness is fixed at at-the-money (ATM). We can see from the contour plot that the rela-

tionship between the option price and the time to maturity or moneyness varies over time

for all four models. The BR model and the SVCJ models have more volatile patterns than

those of the SCJ and SV models. This figure conveys a homogeneous message as we can see

from Figure 6 in the volatility plots. For example, for the BTC price, we see a drastic change

in the contour structure on, for example, July 15, 2017 as the price suddenly drops from

2232.65 USD on July 15, 2017 to 1993.26 USD. The sudden drop in price should be attrib-

uted to the big jump in volatility shown in Figure 6, and we can also observe this jump on

July 15 in Figure 7.

Figure 8 displays the estimated BTC call option price differences between the SVCJ and

SVJ models with respect to changes in moneyness and across time to maturity for July

3 We have also calculated option prices for the SVJ and SV models. These results are available

upon requests. The codes for this research can be found in www.quantlet.de.
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Figure 6 Estimated volatility of BTC for July 2017: BTC.

Notes: This figure plots the estimated volatility of the SVCJ, SVJ, SV, and the BR models. The volatility

is approximated based on the parameters reported in Tables 1 and 2 for the month of July 2017. The

x-axis notes the dates in July 2017. The blue/red/orange/purple line plots the volatility from the SVJ/

SVCJ/SV/BR models.

Table 3 Call option price of BTC on July 17, 2017 from the SVCJ model

K s 1 7 30 60 90 180 360 720

1250.00 1069.18 1017.81 1099.87 1125.90 1157.95 1248.98 1361.04 1365.96

1350.00 959.02 959.02 1006.02 1066.67 1094.08 1224.48 1302.60 1316.03

1450.00 885.20 860.15 929.32 995.45 1046.89 1099.35 1258.83 1438.90

1550.00 802.38 791.34 901.27 950.34 1015.76 1114.94 1192.24 1332.08

1650.00 707.97 739.10 825.07 882.17 902.32 1062.17 1175.59 1282.36

1750.00 625.86 678.22 786.88 856.72 896.56 962.79 1192.61 1338.49

1850.00 552.26 618.94 697.11 785.62 862.83 897.74 1110.36 1289.51

1950.00 502.28 545.58 663.47 740.32 819.72 903.60 1052.09 1229.45

2050.00 425.46 511.28 629.14 741.65 772.51 905.30 1027.76 1193.43

2150.00 358.30 460.57 597.44 683.55 740.64 870.66 1036.76 1164.23

2250.00 302.88 408.62 543.02 633.31 720.57 872.42 938.68 1051.71

2350.00 265.91 378.10 492.86 594.01 651.03 783.37 887.62 1064.33

2450.00 211.26 347.79 470.85 580.30 657.43 761.39 940.90 1085.75

2550.00 193.69 304.13 437.06 547.15 608.36 766.19 914.62 1101.72

2650.00 156.38 266.64 421.86 518.27 571.42 719.92 827.17 992.20

2750.00 136.24 247.38 397.92 484.70 556.31 651.86 863.10 1066.75

2850.00 135.28 228.47 345.42 465.75 541.61 672.76 788.25 955.97

2950.00 100.02 202.57 341.11 413.75 488.15 627.52 780.53 917.27

3050.00 103.45 179.93 313.83 424.23 496.05 619.88 758.99 911.33

3150.00 82.59 162.72 290.90 371.20 450.85 593.10 752.88 888.89

3250.00 72.93 140.40 273.97 358.26 442.91 571.96 726.49 933.57

Notes: This table reports the approximated call option prices at different time to maturity s and strike prices K the

SVCJ model on July 17, 2017 based on the parameters reported in Table 1. The numbers in the first row are the

time to maturity. The numbers in the first column are the strike prices. The spot BTC price is assumed to be 2250.
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2017. It is not hard to see that the pattern is similar to the fitted volatility shown in

Figure 6. The difference between the SVCJ and SVJ models is similar besides on July 15

when there is a large spike in the estimated volatility. Therefore, the price differences be-

tween the SVCJ and SVJ models are mainly caused by the jumps in the volatility process

and the volatility level, which reflects the necessity of adopting the SVCJ model in practice.

4.2 BTC Implied Volatility Smiles

It is well known that SV determines excess kurtosis in the conditional distribution of

returns. The excess kurtosis causes symmetrically higher implied Black–Scholes volatility

when strikes are away from the current prices, for example, the level of moneyness is away

from the ATM level. This phenomenon is called the “volatility smile”. It is well docu-

mented in the existing literature that the effect is stronger for short and medium maturity

options than for long maturity options for which the conditional returns are closer to nor-

mal (Das and Sundaram, 1999). The presence of cojumps and the negative correlation be-

tween the presence of cojumps sizes yield additional sources of skewness in the conditional

distribution of stock returns (Bandi and Renò, 2016).

To further examine the option-pricing property of BTC, we approximate the implied

Black–Scholes volatility from various models for different degrees of moneyness (strike/

spot) and different times to maturity. First, the European call option prices are simulated

using the model parameters reported in Table 1 for the SVCJ, SVJ, and SV models and

Table 2 for the BR model. Then the volatility from various models is implied from the

Black–Scholes model based on the options approximated from different models. We con-

sider four times to maturity: one week, one month, three months, and one year. We report

Figure 7 Call option prices across moneyness and time to maturity: BTC.

Notes: This figure graphs the call option prices surface counter plot across different moneyness and

different times to maturities for the month of July 2017, as shown in the right-hand side labels. When

looking at moneyness, the time to maturity is fixed at 30 days, and when looking at the time to matur-

ity, moneyness is ATM. The color in the graph represents the price level; the brighter the color, the

higher the price.
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the IV surface as a function of moneyness and time to maturity. The results indicate that

jumps in returns and volatility include important differences in the shape of the IV curves,

especially for the short maturities options.

Figure 9 shows the IV curves for the SVCJ, SVJ, and SV models for four different matur-

ities and across moneyness. It can be seen from Figure 9 that adding jumps in returns

steepens the slope of the IV curves. Jumps in volatility further steepen the IV curves. For

short maturity options, the difference between the SVCJ, SVJ, and SV models for far ITM

options is quite large, with the SVCJ model giving the sharpest skewness among the three

models. The difference between the SVCJ and SV volatility is approximately 2–3% for up

to one month. All three models have one-side volatility skewness. This could be due to the

skewness in the conditional distribution of BTC returns (Das and Sundaram, 1999) and/or

that the negative cojump size yields an additional source of skewness (Bandi and Renò,

2016). As time to maturity increases, the volatility curve flattens for all models. According

to Das and Sundaram (1999), jumps in returns result in a discrete mixture of normal distri-

butions for returns, which easily generates unconditional and conditional non-normalities

over short frequencies such as daily or weekly. Over longer intervals, for example, more

than a month, a central-limit effect results in decreases in the amount of excess and kur-

tosis. Indeed, diffusive SV models may generate very flat curves, such as a flat BTC IV for

the three-month and the one-year time to maturity.

However, for the SVCJ model, the curve flattens at a slightly higher level. The IV of the

SVJ model is closer to the SVCJ model than the SV model. The difference between the

SVCJ, SVJ, and SV models becomes larger with short time to maturity options, that is, the

one-week and one-month times to maturity. Similar results have been documented in other

studies in which these models have been applied to equity index data. Eraker, Johannes,

and Polson (2003), Eraker (2004), and Duffie, Pan, and Singleton (2000) find that jumps in

returns and variance are important in capturing systematic variations in Black–Scholes

volatility. In general, although the BTC market has the unique feature of having more

Figure 8 Call option price differences between the SVCJ and SVJ models: BTC.

Notes: This figure plots the option price differences between the SVCJ and SVJ models for July 2017.

When looking at moneyness, the time to maturity is fixed at 30 days, and when looking at the time to

maturity, moneyness is ATM. The color in the graph represents the price difference level; the brighter

the color, the larger the difference between the price from the SVCJ and SVJ models.
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jumps, which makes it different from other mature markets (e.g., equity), the option prices

and the IV from the affine models generally follow the conventional characteristics reported

from other option markets.

We have also estimated the BR IVs with the same time to maturity and moneyness used

for the SVCJ IVs. We simulate the option prices using the model parameters reported in col-

umn 4 of Table 2. We distinguish the case of qJ, which is set to be a model-fitted parameter

from the SVCJ fit or to be zero, that is, the IV surface corresponds to a case with a correl-

ation between jump sizes equaling �0.5257 or a correlation between jump sizes equaling to

zero. The IVs as a function of moneyness from the BR model are plotted in Figure 10. We

can see that the IVs of the BR model agree with the SVCJ model. We see a one-side volatil-

ity skewness, that is, the ITM call option prices are higher than the OTM call options.

However, due to the significantly negative jump-size correlation qJ, the slope of the IVs

from the BR full model is steeper than the BR model with a case of uncorrelated jump sizes.

The impact of the negative jump size correlation is stronger for short time to maturity

Figure 9 The IV for the BTC market: the SVCJ, SVJ, and SV models.

Notes: This figure plots the Black–Scholes IV for the BTC market based on the SVCJ, SVJ, and SV mod-

els. The x-axis shows moneyness and the y-axis shows the IV. Four times to maturity have been con-

sidered: one week, one month, three months, and one year. The lines with 
, *, and � plot the IVs of

the SVCJ, SVJ, and SV models, respectively.
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options, that is, the one-week and one-month times to maturity. This is mentioned in the

results of Duffie, Pan, and Singleton (2000) as well, who find a superior fit of the IV smirk

when calibrating a more negative correlation between jump sizes. Similarly, Eraker (2004)

finds a statistically significant correlation between jump sizes only when employing option

data in addition to returns data. Bandi and Renò (2016) also show that anticorrelated jump

sizes are a fundamental property of prices and volatility. However, the use of high-

frequency data is sufficient to reveal this property with no further need for option data.

5 The CRIX

The CRIX, a value-weighted CC market index with an endogenously determined number

of constituents using some statistical criteria, is described in Härdle and Trimborn (2015)

Figure 10 The IV for the BTC market: BR model.

Notes: This figure plots the implied Black–Scholes volatility for the BTC option prices based on the BR

model. The x-axis shows moneyness, and the y-axis shows the IV. Four times to maturity have been

considered: one week, one month, three months, and one year. The IVs are based on the simulated

option prices using the model parameters reported in Table 2. The full model uses parameters from

column 4 of Table 2. A cojumps correlation of 0 means that qJ is set to 0 while the other parameters re-

main the same as in the full model.
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and further sharpened in Trimborn and Härdle (2018). It is constructed to track the entire

CC market performance as closely as possible. The representativity and the tracking per-

formance can be assured as CRIX considers a frequently changing market structure. The re-

allocation of the CRIX happens on a monthly and quarterly basis (see Trimborn and

Härdle, 2018 and thecrix.de for details). CRIX has been widely investigated in the pioneer-

ing research on CCs, including by Chen et al. (2017), Hafner (2020), Chen and Hafner

(2019), and da Gama Silva et al. (2019).

There are two advantages of holding a portfolio comprising a wide variety of CCs like

CRIX. The first advantage is the diversification benefit. The evidence from Härdle,

Harvey, and Reule (2020) shows that the correlations among the most leading coins are

around 0.5, indicating a promising potential of diversification. The correlations among

coins vary over time, as shown in Härdle, Harvey, and Reule (2020). It shows that the di-

versification effect through forming a portfolio is beneficial, although this effect may vary

over time.

The second advantage underscores that the efficient portfolio, like CRIX, entails a

higher Sharpe ratio than that of BTC. From the view of institutional investors, a

smart strategy is to hold a market portfolio comprising of the coins with sufficient li-

quidity and market capitalization to leverage between profitability and risk-sharing.

A simple calculation of the annual Sharpe ratio for both BTC- and CRIX-based port-

folios sheds some light. The Sharpe ratios of CRIX in 2016 and 2017 are, respective-

ly, 0.094 and 0.194, however, the ratios of BTC are relatively lower (0.085 in 2016

and 0.149 in 2017). It suggests that investors should rather look at all possible port-

folios in an investment opportunity set that potentially optimize their mean–variance

preference.

Given the merits of portfolio deployment over a single altcoin investment rule, institu-

tional investors may demand the corresponding derivatives for hedging position risk. The

options with a CRIX as underlying may fulfill such needs in practice. Apart from hedging

purposes, and for speculators without any position, such index options are quite precious

and enable them to bet on future movement.

Therefore, we perform an analysis for CRIX. All econometric models have been esti-

mated with the CRIX data. We summarize our major findings here and place the sup-

plementary parts in Appendix. In brief, all the model parameters estimated with CRIX

convey a similar configuration as estimated with BTC, for example, the mean jump size

of the CRIX volatility process reported in Table 4 is 0.709, which is 0.620 for BTC

shown in Table 1. The estimated volatility from the SVCJ and SVJ models (see

Figure 11) shows that the jumps are better captured by the SVCJ than the SVJ model. In

addition, Figure 12 displays the call option prices surface contour plot from the SVJ,

SV, and SVCJ models with respect to changes in moneyness and time to maturity. It

shows that the SVCJ model has more volatile patterns than those of the SVJ and SV

models with the BTC options. In general, we confirm the consistency between BTC and

the CRIX.

6 Conclusion

“The Internet is among the few things that humans have built that they do not truly under-

stand” according to Schmidt and Cohen (2017). CC, a kind of innovative Internet-based
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asset, brings not only new challenges but also new ways of thinking for economists, cliome-

tricians, and financial specialists. Unlike classic financial markets, the BTC market has a

unique market microstructure created by a set of opaque, unregulated, decentralized, and

highly speculation-driven markets.

This study provides a way of pricing CC derivatives using advanced option-pricing mod-

els such as the SVCJ and BR models. We find that in general, the SVCJ model performs as

well as the nonaffine BR model. We especially find that the correlation between the jump

sizes in returns and the volatility process is anticorrelated. The jump-size correlation is stat-

istically (marginally) negative in the BR (SVCJ) model. Deviating from the equity market,

we cannot obtain a significant negative “leverage effect” parameter q, which implies a non-

negative relation between returns and volatility. The reason for this relationship might be

that BTC is different from the conventional stock market, not only because the BTC market

is highly unregulated but also due to the fact that the BTC price is not informative (as there

are no fundamentals allowing the BTC market to set a “fair” price) and is driven by emo-

tion and sentiment. This speculative behavior can be explained by the “noise trader” theory

from Kyle (1985). The positive relation might result from the fact that BTC investors ir-

rationally act on noise as if it were information that would give them an edge.

Table 4 Parameters for the SVCJ, SVJ, and SV models: CRIX

SVCJ SVJ SV

l 0.042 0.0437 0.017

(0.030, 0.054) (0.027, 0.061) (0.000, 0.034)

ly �0.0492 �0.515 –

(�0.777, 0.678) (�1.110, 0.079) –

ry 2.061 2.851 –

(1.214, 2.907) (1.349, 4.354) –

k 0.0515 0.035 –

(0.038, 0.065) (0.017, 0.052) –

a 0.0102 0.026 0.010

(0.009, 0.012) (�0.012, 0.063) (0.007, 0.012)

b �0.188 �0.240 �0.038

(�0.205, �0.170) (�0.383, �0.096) (�0.056, �0.020)

q 0.275 0.214 0.003

(0.140, 0.409) (0.014, 0.415) (�0.130, 0.136)

rv 0.007 0.016 0.018

(0.005, 0.009) (�0.001, 0.033) (0.014, 0.022)

qj �0.210 – –

(�0.924, 0.503) – –

lv 0.709 – –

(0.535, 0.883) – –

MSE 0.673 0.707 0.736

Notes: The table reports posterior means and 95% credibility intervals (in parentheses) for the parameters of

the SVCJ, SVJ, and SV models. All parameters are estimated using CRIX daily returns calculated as the log dif-

ference based on the prices from August 01, 2014 to September 29, 2017.
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We find that option prices are very much driven by jumps in the returns and volatility

processes and cojumps between the returns and volatility. This can be seen from the shape

of the IV curves. This study provides a grounding base, or an anchor, for future studies that

aim to price CC derivatives. This study provides useful information for establishing an

options market for BTC in the near future.

Figure 12 Call option prices across moneyness and time to maturity: CRIX.

Notes: This figure graphs the call option prices surface counterplot across moneyness and time to

maturities for the month of July 2017 for CRIX. When looking at moneyness, the time to maturity is

fixed at 30 days, and when looking at the time to maturity, moneyness is ATM. The color in the graph

represents the price level; the brighter the color, the higher the price.

Jul14 Feb15 Aug15 Mar16 Sep16 Apr17 Nov17
0

0.5

1

1.5

2

2.5

3

3.5

4
SVCJ
SVJ

Figure 11 Estimated volatility from the SVCJ and SVJ models: CRIX.
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Appendix

We provide preliminary fit results of econometric models on the BTC time series. We also

collect results on analysis of the CRIX.

A.1 ARIMA

We first fit an ARIMA model. After an inspection through the ACF and PACF plot in

Figure A.1, we start with an ARIMA(p, d, q) model,

a Lð ÞDyt ¼ bLet (17)

where yt is the variable of interest, Dyt ¼ yt � yt�1, L is the lag operator and et a stationary

error term. Model selection criteria such as AIC or BIC indicates that the ARIMA(2,0,2) is

the model of choice. The parameters estimated from the ARIMA(2,0,2) are reported in

Table A.1. The significant negative signs in a1 and a2 indicate an overreaction, that is, a

promising positive return today leads to a return reversal in the following two days or vice

versa. Hence, the CC markets tend to overreact to good or bad news, and this overreaction

can be corrected in the following two days. An ARIMA model for the CC assets, therefore,

suggests predictability due to an “overreaction.” The Ljung–Box test confirms that there is

no serial dependence in the residuals based on the ARIMA(2,0,2) specification. Note that

the squared residuals carry incremental information that is addressed in the following

GARCH analysis.

Figure A.1 ACF and PACF of BTC.

Notes: This figure plots the ACF and PACF for BTC returns. The returns are the log-first difference cal-

culated based on the price from August 1, 2014 to September 29, 2017. The x-axis plots the lags, and

the y-axis plots the ACF and PACF values.
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A.2 GARCH Model

The GARCH model, introduced first by Bollerslev (1986), reflects the changes in the condi-

tional volatility of the underlying asset in a parsimonious way. The volatility properties of

digital currency assets have been studied in a vast amount of literature that applies

GARCH-type methods (Chan et al., 2017; Chu et al., 2017; Conrad, Custovic, and

Ghysels, 2018; Hotz-Behofsits, Huber, and Zörner, 2018).

Let us start with a GARCH-type model for characterizing the conditional variance pro-

cess of BTC. The ARIMA-t-GARCH model with t-distributed innovations used to capture

fat tails is as follows:

a Lð ÞDyt ¼ bLet (18)

et ¼ Ztrt; Zt � t �ð Þ

r2
t ¼ xþ b1r

2
t�1 þ a1e

2
t�1 (19)

where r2
t represents the conditional variance of the process at time t and t �ð Þ refers to the

zero-mean t distribution with � degrees of freedom. The choice of the t-distribution rather

than the Gaussian distribution is supported by Hotz-Behofsits, Huber, and Zörner (2018)

and Chan et al. (2017).

The covariance stationarity constraint a1 þ b1 < 1 is imposed. As shown in Table A.2,

the b1 estimate from BTC indicates a persistence in the variance process, but its value is

relatively smaller than those estimated from the stock index returns (see Franke, Härdle,

and Hafner, 2019). Typically, the persistence-of-volatility estimates are very near to one,

showing that conditional models for stock index returns are very close to being integrated.

By comparison, BTC places a relatively higher weight on the a1 coefficient and relatively

lower weight on the b1 to imply a less-smooth volatility process and striking disturbances

from the innovation term. This may further imply that the innovation is not pure white

noise and can occasionally be contaminated by the presence of jumps.

In addition to the property of leptokurtosis, the leverage effect is commonly observed in

practice. According to a large body of literature, starting with Engle and Ng (1993), the lever-

age effect refers to an asymmetric volatility response given a negative or positive shock. The

leverage effect is captured by the exponential GARCH (EGARCH) model by Nelson (1991),

Table A.1 Estimation result of ARIMA(2,0,2)

BTC

Coefficients Estimate Standard error (robust)

Intercept c 0.002 0.001

a1 �0.867 0.304

a2 �0.596 0.177

b1 0.868 0.321

b2 0.539 0.190

Notes: This table reports the parameter estimated from ARIMA (2,0,2) with BTC daily returns. The residual

distributions are assumed to be Gaussian. The maximized likelihood value is 2231.7. The AIC and BIC are

�4451.4 and �4415.74, respectively.
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et ¼ Ztrt

Zt � t �ð Þ

log r2
t

� �
¼ xþ

Xp

i¼1

bi log r2
t�i

� �
þ
Xq

j¼1

gj Zt�j

� � (20)

where gj Ztð Þ ¼ ajZt þ /j jZt�jj � EjZt�jj
� �

with j ¼ 1;2; . . . ; q. When /j ¼ 0, we have the

logarithmic GARCH (LGARCH) model from Geweke (1986) and Pantula (1986). To ac-

commodate the asymmetric relation between stock returns and volatility changes, the value

of gj Ztð Þ must be a function of the magnitude and the sign of Zt. Over the range of 0 <

Zt < 1; gj Ztð Þ is linear in Zt with slope aj þ /j, and over the range �1 < Zt � 0; gj Ztð Þ
is linear in Zt with slope aj � /j.

The estimation results based on the ARIMA(2,0,2)-t-EGARCH(1,1) model are reported

in Table A.3. The estimated a1 is no longer significant, showing a vanished sign effect.

However, a significant positive value of /1 indicates that the magnitude effect represented

by /1 jZt�1j � EjZt�1jð Þ plays a bigger role in the innovation in log r2
t

� �
.

We compare the model performances between two types of GARCH models through in-

formation criteria, and a t-EGARCH(1,1) model is suggested. Note that, as shown in

Figure A.2, the QQ plots demonstrate a deviation from the student t. In Chen et al. (2017),

GARCH and variants such as t-GARCH, EGARCH have been reported, and, while they

Table A.3 Estimated coefficients of t-EGARCH(1,1) model

Coefficients Estimates Robust std t-value

BTC

x 3:84e� 05 1:47e� 05 2:61

a1 1:05e� 03 5:10e� 02 0:98

b1 9:52e� 01 1:54e� 02 61:73

/1 4:16e� 01 6:64e� 02 6:25

� 3:26eþ 00 4:16e� 01 7:82

Notes: This table reports the estimated parameters from the t-EGARCH(1,1) model. The robust version of

standard errors (robust std) is based on the method of White (1982).

Table A.2 Estimated coefficients of t-GARCH(1,1)

Coefficients Estimates Robust std t-value

BTC

x 3:92e� 05 1:49e� 05 2:63

a1 2:28e� 01 4:46e� 02 5:12

b1 7:70e� 01 5:13e� 02 14:98

� 3:64eþ 00 4:08e� 01 8:91

Notes: This table reports the estimated parameters from the t-GARCH(1,1) model. The robust version of

standard errors (robust std) is based on the method of White (1982).
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are seen to fit the dynamics of BTC nicely, they still could not handle the extreme tails in

the residual distribution. Equipped with these findings and taking into account the occa-

sional interventions, we opt for the models with jumps for better characterization of CC dy-

namics. The presence of jumps is indeed more likely in this decentralized, unregulated, and

Jul14 Feb15 Aug15 Mar16 Sep16 Apr17 Nov17
−5
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Jumps in returns

Jul14 Feb15 Aug15 Mar16 Sep16 Apr17 Nov17
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Jumps in volatility
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Figure A.3 Jumps estimated in returns and volatility from the SVCJ model: CRIX.

Figure A.2 The QQ plot for BTC based on the residuals of t-GARCH(1,1) model.
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illiquid market. Numerous political interventions also suggest the introduction of the jump

component into a pricing model.

A.3 CRIX

Appendix presents the empirical results of CRIX covering (1) jumps in returns and volatility

from the SVCJ model shown in Figure A.3 and (2) the estimated volatility from the SVCJ

and SVJ models shown in Figure 11. (3) The estimated call options across moneyness and

time to maturity in Figure 12. In general, a general consistency can be found between CRIX

and BTC. Other results are available upon request.
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Bandi, F. M., and R. Renò. 2016. Price and Volatility Co-Jumps. Journal of Financial Economics

119: 107–146.

Bates, D. S. 1996. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche

Mark Options. Review of Financial Studies 9: 69–107.

Bates, D. S. 2000. Post-’87 Crash Fears in the S & P 500 Futures Option Market. Journal of

Econometrics 94: 181–238.

Becker, J., D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Böhme. 2013. “Can We Afford
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