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Abstract—In this paper, we present a two-port on-wafer 

scattering parameter measurement method to tackle the issue of 
crosstalk between probes. The proposed method treats the 
crosstalk separately during the system calibration and the device 
measurement stages, because the crosstalk during these stages is 
often different due to changes in the measurement conditions after 
the probes have been calibrated. For example, devices under test 
(DUTs) and calibration standards are often situated on different 
substrates, or, the distance between probes during calibration is 
different from that during DUT measurement. Based on this 
concept, we develop a new error model in which the crosstalk is 
treated as a standalone two-port error network in parallel with 
the two-port calibration standards or DUTs. The two-port 
crosstalk error generated during probing, ECT, is removed in the 
system calibration and corrected during the measurement of the 
DUT by using a dummy pair of open-circuit standards that are 
fabricated on the same substrate as the DUT. Since the crosstalk is 
corrected while measuring the DUT, rather than during system 
calibration, we call this method “calibration on the fly” (COF). 
The method is demonstrated using measurements of a 10-dB 
attenuator between 140 GHz and 220 GHz.  
 

Index Terms—Millimeter-wave measurement, on-wafer 
measurement, calibration, scattering parameter, error model.  
 

I. INTRODUCTION 
VER the past 30 years, system error models for scattering 
parameter (S-parameter) measurement have been 

developed and implemented in coaxial, waveguide, and 
on-wafer measurement systems. The most widely used 
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calibration methods, such as short-open-load-thru (SOLT) [1], 
thru-reflect-line (TRL) [2] and line-reflect-match (LRM) [3], 
are based on either 8-term or 12-term error models and do not 
contain corrections for crosstalk, because it is either 
non-existent or negligibly small.  

For on-wafer measurements, the limitations in using the 
conventional error models become significant at high 
frequencies e.g., 100 GHz and above. This is mainly due to the 
nonnegligible crosstalk or leakage generated when probes are 
brought closer together in order to reduce system losses at these 
frequencies. The fringing effect between the probes leads to a 
leakage path from one probe to the other when the probes are in 
close proximity with each other. This is the case when testing 
components and transistors in monolithic millimeter wave 
integrated circuits.  

The presence of crosstalk in S-parameter measurements is a 
well-documented problem. To address the probe-to-probe 
coupling issue, Speciale [4] introduced a 16-term error model, 
as shown in Fig. 1. The eight conventional error terms (plotted 
with solid lines in Fig. 1) and eight crosstalk error terms 
(plotted with dotted lines) are treated as a four-port network in 
cascade between the vector network analyzer (VNA) and the 
device under test (DUT). The 16 errors can be solved by using 
at least five two-port standards whose S-parameters are fully 
known, and at least one of them is asymmetric (e.g., an 
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Fig. 1.  The 16-term error model introduced by Speciale [4]. The solid lines 
represent the actual signal transmission and reflection paths; the dotted lines 
represent the leakages or crosstalk.   
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open-load pair [5], [6]). Since then, several developments have 
been proposed to improve and optimize the original 16-term 
error model.  

In 1997, Silvonen [7] developed a thru-match-reflect/ 
line-match-reflect (TMR/LMR) self-calibration method which 
reduces the number of calibration standards and therefore 
simplifies the calibration procedure. In 2012, a 
short-open-load-reciprocal (SOLR) calibration method for 
multi-port on-wafer measurement was introduced [8]. 
Subsequently, a method enabling the calibration of the full 
16-term errors was developed using only four calibration 
standards [9]. In 2014, Dahlberg et al. [10] proposed to define 
the calibration standards for the line-reflect-reflect-match 
(LRRM) method in a reciprocal 16-term error network. More 
recently, Williams et al. [11] used the 16-term error model as a 
second-tier calibration to determine the crosstalk error terms 
(plotted with dotted lines in Fig. 1) provided that the other eight 
error terms had been solved by a multiline-TRL calibration 
[12], [13]. In 2018, Liu et al. [14] showed that two leakage 
paths i.e., e21 and e12, actually represent the probe-to-probe 
crosstalk, and the other six error terms are negligibly small and 
so can be ignored. In all previous cases, the crosstalk generated 
between probe tips i.e., e21 and e12, is always treated as a 
constant. However, this is generally not the case. In practice, 
the crosstalk changes as probe separation changes, especially at 
high frequencies.  

To tackle this problem, we propose a new error model to 
represent the system errors in a modern two-port on-wafer 
S-parameter measurement system. The varying probe-to-probe 
crosstalk is considered as a standalone two-port error network 
in parallel with any two-port standard or DUT. Since the 
crosstalk generated during system calibration and device 
measurement stages is different, it is treated separately. We first 
remove the crosstalk error in the system calibration and then 
correct the crosstalk generated during the device measurement 
stage. We therefore call this method “calibration on the fly” 
(COF).  

In addition, we will limit our study to coplanar waveguide 
(CPW) with ground-signal-ground topology in this paper. 
Other topologies such as leakage in multimode waveguides for 
multiport or differential measurements [15], [16] are beyond 
the scope of this work.  

II. PROBE-TO-PROBE CROSSTALK 
In Speciale’s 16-term error model [4], crosstalk is treated as a 

constant and corrected during system calibration. However, the 
crosstalk often changes as the measurement environment 
changes whether it is for off-chip calibration, where DUTs and 
calibration standards are on different substrates, or for on-chip 
calibration where DUTs and calibration standards are on the 
same substrate. For the former, different substrates have 
different dielectric properties therefore different coupling; for 
the latter, the distance between probes during calibration is 
often different from that during the measurement of the DUTs. 
This also applies to the off-chip calibration scenario. To 
demonstrate how crosstalk is affected by the conditions of the 
measurement, we undertook the two experiments described 

below.  
In the first experiment, we measured raw (uncorrected) 

forward transmission coefficients (S21), which represents the 
crosstalk, between two G-band (140 GHz to 220 GHz) probes 
when placed in air and separated by various distances. As 
shown in Fig. 2, |S21| is close to -20 dB at 220 GHz when the 
probes were separated by 200 µm and decreases as the distance 
between the probes increases. When the two probes are 
separated by 30 mm, the coupling is as low as -80 dB, and even 
-100 dB when a microwave absorber (Cascade PN 116-344) is 
inserted between the probes. From this experiment, we 
conclude that the crosstalk varies greatly with the distance 
between probes.  

In another experiment we investigated how probe-to-probe 
crosstalk is influenced by the type of DUT being measured. To 
do this, we measured three pairs of standards – open-open, 
short-short, and load-load – on a commercial CS-15 impedance 
standard substrate (ISS) from GGB Industries, Inc. Each pair 
has the same separation distance i.e., 150 µm. The measured 
|S21| is plotted in Fig. 3. From these results, we can see that the 
crosstalk changes with both frequency and the type of DUT. 
The reflection coefficient of the DUTs has a significant 
influence on the crosstalk. Therefore, we conclude that it is 
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Fig. 2.  Measured uncorrected raw data of |S21| for different separations 
between probes while probe tips are in the air. Probe separation has a large 
impact on crosstalk [14].  
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Fig. 3.  Measured uncorrected raw data of |S21| for DUTs with the same 
separation and different reflection. The reflection has a large impact on 
crosstalk.   
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inappropriate to treat crosstalk for calibration and measurement 
as a constant.  

To truly represent the crosstalk, we propose a new error 
model. As shown in Fig. 4, the probe-to-probe crosstalk is 
treated as a standalone two-port error network in parallel with 
the DUT during measurement. The crosstalk error, generated 
when probing, is removed during the system calibration and 
characterized using a dummy open-open pair that are fabricated 
on the same substrate as the DUTs. Then the crosstalk can be 
removed from the DUT measurements.  

III. THE PROPOSED ERROR MODEL 
As discussed in the previous section, crosstalk exists 

between probes in a two-port on-wafer S-parameter 
measurement system due to signals leaking from one probe tip 
to the other both in the substrate and in the air. The crosstalk 
varies depending on the loads being probed. We treat the 
crosstalk as a “virtual two-port network” (e.g., as an attenuator 
with high attenuation and high impedance) which is in parallel 
with a DUT during measurement, or a pair of standards during 
calibration. As shown in Fig. 4, all errors in the error model can 
be decomposed into three types: system errors, probe errors and 
crosstalk errors. This assumption is based on a modern VNA 
which has very low internal leakages [17]. The S-parameters of 
the “virtual network” are marked as ECT, ij, where i, j = 1 or 2, 
separately. If there is no crosstalk, the “virtual network” can be 
treated as an ideal pair of ideal open standards i.e., ECT, 11 = ECT, 

22 =1, and ECT, 21 = ECT, 12 = 0. In this case, this error model 
becomes the conventional 8-term error model which is widely 
used in TRL and LRM calibration methods for coaxial and 
rectangular waveguides.  

To apply this error model to a real on-wafer S-parameter 
calibration, we need to separate the crosstalk, or the “virtual 
network”, from the DUT. Fig. 5 illustrates a possible 
implementation of the new technique at frequencies from 140 
GHz to 220 GHz (G-band). We define the reference planes at 
each waveguide port as Plane I and Plane II, respectively, and 
the reference planes at the probe tips as Plane III and Plane IV, 
respectively.  

Like a two-tier calibration, the correction procedure requires 

two calibrations. The first calibration is a waveguide 
calibration, which is performed at Plane I and Plane II. Since 
there is no crosstalk between two waveguide ports, a standard 
SOLT calibration in waveguide can be implemented. The 
second calibration, i.e., probe calibration, is performed at Plane 
III and Plane IV, which are probe tips to remove probe errors, 
therefore an ISS is used. To characterize the crosstalk generated 
when measuring DUTs, an open-open pair on the same wafer as 
the DUTs and having the same physical length as the DUTs is 
required. A detailed calibration procedure, showing how the 
errors in the new model are solved, is described below.  

A.  Waveguide Calibration 
A VNA is first calibrated as its waveguide ports (i.e., Plane I 

and Plane II in Fig. 5) using the conventional two-port SOLT 
method with waveguide standards. This calibration solves the 
eight system error terms, i.e., e00, e10, e01, e11, e33, e23, e32 and 
e22, as shown in Fig. 4.  

B.  On-wafer Calibration 
After the two-port waveguide calibration, probes are 

installed and one-port SOL calibration is performed at the 
probe tips (i.e., Plane III and Plane IV in Fig. 5) individually 
using a commercial ISS (e.g., CS-15 from GGB Inc.) to extract 
the S-parameters or probe error terms of the left probe, EpL, and 
the right probe, EpR. This extraction can be achieved using the 
built-in programme “AdaptorChar Marco” in a Keysight 
PNA-X VNA (all of the major VNA vendors have a similar 
Bauer-Penfield utility [18]). We used the models provided by 
the vendor for the SOL standards. More accurate models e.g., 
based on full-wave simulation of SOL standards [19]-[20] can 
be used for the extraction. In addition, the SOL method can be 
replaced with an over-determined set of offset shorts for probe 
characterization [21]. Note when performing one-port SOL 
calibration on one probe, the other probe should be separated by 
at least 30 mm to avoid probe-to-probe crosstalk. Once the 
S-parameters of the two probes have been obtained, the 
reference planes can be moved from Planes I and II to Planes 
III and IV using de-embedding techniques. Details about this 
de-embedding process are given in the next sub-section.  

In fact, Steps A and B can be combined using an on-wafer 
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Fig. 4. The proposed new error model described in this paper. The crosstalk 
errors (plotted with dotted lines) are treated as a two-port network in parallel 
with DUT.  
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Fig. 5. Block diagram for full two-port S-parameters on-wafer measurement 
systems. The reference plane for each waveguide port is marked as Plane I and 
Plane II, respectively, and the reference plane for each probe tip is marked as 
Plane III and Plane IV, respectively.  
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SOLR calibration method which requires an additional thru. 

C.  Crosstalk Characterization 
The crosstalk errors are corrected with a dummy open-open 

pair with the same physical length as the DUT fabricated on the 
same wafer. This is because open standards, as shown in Fig. 3, 
have increased crosstalk as the frequency increases and are 
believed to be the main source of the coupling between probes. 
If the open-open pair standard is ideal i.e., |S11| = |S22| = 1, and 
|S21| = |S12| = 0, the measured S-parameters are the cascaded 
S-parameters of the left probe, crosstalk network, and the right 
probe. In reality, the open-open pair is nonideal and so its 
S-parameters (Sopen) can be defined using [22]. Based on the 
waveguide calibration, the measured S-parameters (SM) are the 
cascaded S-parameters of the left probe, the crosstalk network 
in parallel with the open-open pair standard, and the right 
probe.  

T-parameters are used to de-embed the left probe and the 
right probe from SM [23]. The S-parameters of the open-open 
pair in parallel with the crosstalk network (Sopen||CT) can then be 
obtained. (Here the “||” sign means “in parallel”.)  

Converting S-parameters to Y-parameters, and then using (1) 
to separate Sopen from Sopen||CT, we can obtain ECT from YCT.  

CT open||CT openY Y Y= −        (1) 

The relationship between S-parameters and Y-parameters is 
given in (2) and (3) [23], where  

( )( )11 22 21 121 1+Y S S S S S∆ = + −      (4) 

( )( )0 11 0 22 21 12Y Y Y Y Y Y Y∆ = + + −     (5) 

where Y0 is the system admittance (i.e., the inverse of the 
system impedance, Z0).  

We also investigated short-short and load-load pair standards 
at lower frequencies i.e., below 50 GHz, and found that the 
load-load pair standard has similar effect as the open-open pair 
standard; however, the short-short pair standard is not feasible 
due to a singularity generated in (1). The singularity could 
perhaps be mitigated using a mathematical means.  

D.  DUT Test 
Also, based on the waveguide calibration, the S-parameters 

obtained between Plane I and Plane II for a DUT are labelled as 
Sm. Again, using T-parameters to de-embed EpL and EpR from 
Sm, the S-parameters of the DUT in parallel with the crosstalk 
network (SDUT||CT) can be obtained. Then, using Y-parameters to 
separate the crosstalk network from SDUT||CT in (6), the 
S-parameters of the DUT are obtained from YDUT.  

DUT DUT||CT CTY Y Y= −        (6) 

When measuring other DUTs of different lengths, the 
crosstalk network will change and will need to be 
re-characterized. In this case, a corresponding open-open pair 
with the same length as the new DUT is required and the same 
crosstalk characterization procedure described in sub-section C, 
above, should be implemented for the actual S-parameters of 
the new DUT.  

According to the above method, the crosstalk error is 
removed while measuring the DUT rather than during the 
system calibration - hence, this method is called “calibration on 
the fly” (COF).  

IV. EXPERIMENTAL RESULTS 
To evaluate the COF method, a 10-dB attenuator was 

designed with the aid of commercial software (i.e., CST 
Microwave Studio) and fabricated on a 600-μm thick 
semi-insulating gallium arsenide substrate using standard 
photolithography technology. A 400-nm layer of gold was 
deposited for the conductors and a thin layer of nickel-chrome 
alloy was used for the resistors. A two-port open-open pair was 
also fabricated on the same substrate. The spacing between 
circuits was kept to a minimum of 3λg, which is greater than that 
suggested in [24]. The substrate was then thinned down to 100 
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21 11 22 21 1221 22

1 1 2
2 1+ 1Y

S S S S SY Y Y
S S S S SY Y S

ª º− + + −ª º
= « »« » − − +∆¬ ¼ ¬ ¼

          (2) 

( )( )
( )( )

0 11 0 22 21 12 12 011 12

21 0 0 11 0 22 21 1221 22

21
2

Y Y Y Y Y Y Y YS S
Y Y Y Y Y Y Y YS S Y
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         (3) 

TABLE I 
SYSTEM CONFIGURATION 

System Configuration Model & Manufacturer / Parameters 
VNA PNA-X N5247A, Keysight 
Frequency Extenders WR-05, VDI 

Probe station Customized Cascade (manual) 
Probes 220-GSG-75-BT-M, GGB 
No. of frequency points 801 
IF bandwidth 100 Hz 

 

        
(a)                                                         (b) 

Fig. 6. SEM image of the open-open pair standard (a) and the attenuator (b). 
The open-open pair standard and the attenuator were fabricated on the same 
4-inch semi-insulating gallium arsenide substrate using a standard 
photolithography method.  
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µm after all circuits were made.  
Fig. 6 shows a scanning electron microscope (SEM) image 

of the fabricated attenuator. All aforementioned components 
have the same edge-to-edge distance (i.e., 160 µm) in order to 
keep the distance constant during calibration and measurement. 
We defined the offset of the standards with reference to [22]. A 
G-band (i.e., 140 GHz to 220 GHz) on-wafer S-parameter 
measurement setup, including a manual probe station, at the 
National Physical Laboratory (NPL), U.K. and two probes from 
GGB Industries, Inc., was used for the measurements. The 
system configuration is shown in Table I.  

Fig. 7 shows the extracted S-parameters of the probes. Port 1 
and Port 2 refer to the waveguide port and probe tip of the 
probes, respectively. Fig. 8 shows extracted S-parameters of the 
crosstalk network (SCT) using the above-mentioned calibration 
procedure. As shown in this figure, the transmission 
coefficients (i.e., |S21| and |S12|) are approximately –30 dB at 
140 GHz, increasing to close to –10 dB when the frequency 
reaches 220 GHz. Port reflections (i.e., |S11| and |S22|) are 
greater than 0 dB. This may result from probe launch 
differences between calibration and measurement [25]-[27]. 

Fig. 9 shows S-parameters of the 10-dB attenuator, corrected 
using the COF method, 16-term error model based on SVD 
method [6], and the standard on-wafer SOLT calibration 
method, along with simulated S-parameters using CST 
Microwave Studio. It is clear that the magnitudes of S21 and S12 
corrected by the COF method show better agreement with the 
simulation results compared with the results corrected using the 
SOLT method, particularly at the higher frequencies in the 
band (i.e., above 180 GHz) where the presence of crosstalk is 
more likely to be a problem. The main reason for this is that the 
conventional 12-term error based SOLT calibration technique 
does not correct for the effect of crosstalk properly; therefore, 
the crosstalk contributes to the total observed transmission 
between the probes.  

It is also observed that the S-parameters corrected using COF 
method is free of ripples comparing with those corrected using 
the 16-term error model. In the authors’ opinion, the ripples 
shown in the 16-term error model are likely due to two reasons: 
one is that the 16-term error model treats the probe-to-probe 
crosstalk as a constant, but in fact it varies with the length and 
impedance of the DUT, as described in Section II; the other is 
that the 16-term error model requires five standards whose 
S-parameters are fully known, but in practice four standards 
along with SVD method are used which leads to 
approximation.  

In addition, one may notice that the inconsistent of return 
loss shown in Fig. 9. In the authors’ opinion, the difference in 
reflection may be caused by the inconsistent broadband 
matched standards between the chip and the rectangular 
waveguide. The reflection is heavily dependent on the load 
standard in SOLT calibration. However, it is difficult to 
manufacture broadband matched loads very accurately for 
rectangular waveguides or on-chip.  

V. CONCLUSION 
In this paper, we have presented a new error model for a 

two-port on-wafer measurement system.  The new model truly 
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Fig. 8. S-parameters of the crosstalk network.  
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Fig. 9. Comparisons of S-parameters of a 10-dB attenuator corrected using the 
COF method (described in this paper), 16-term error model based on SVD 
method [6], SOLT (conventional 12-term error model), along with the 
simulated results.  
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Fig. 7. S-parameters of the probes. Ports 1 and 2 are the waveguide port and 
probe tip, respectively.  
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reflects the variable probe-to-probe crosstalk that is subject to 
change during the calibration/measurement process. The new 
error model separates the probe errors from the system errors 
and treats the probe-to-probe crosstalk as an error network in 
parallel with the DUT. Thus, the crosstalk can be corrected 
while measuring the DUT. Based on the new error model, a 
novel COF calibration and measurement method has been 
presented. To implement this method, an open-open pair 
standard fabricated on the same substrate as the DUT was used 
for crosstalk correction. A load-load pair standard can also be 
used but not a short-short pair standard as it leads to a 
singularity when solving the equations. To test the method, a 
10-dB attenuator was measured using a G-band on-wafer probe 
system. The results showed that the correction using the new 
error model provide improvement by almost 1-dB (i.e., 10%) 
compared with the conventional SOLT method.  
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