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ABSTRACT

Recently network slicing has been introduced as a key enabler to accommodate diversified services in NFV-enabled
software-defined mobile networks. Although there has been some research work on network slice deployment and
configuration, how user equipments (UEs) select the most appropriate network slice is still an essential yet challenging
issue, as slice selection may substantially affect the resource utilization and user quality of service. In this paper,
we investigate the optimal selection of end-to-end slices with aim of improving network resources utilization while
guaranteeing the quality of service (QoS) of users. We formulate the optimal slice selection problem as maximizing the
users satisfaction degree, and prove it is NP-hard. We thus resort to genetic algorithm (GA) to find a sub-optimal solution,
and develop a GA based heuristic algorithm. The effectiveness of our proposed NS selection algorithm is validated via
simulation experiments. Copyright c� John Wiley & Sons, Ltd.
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1. INTRODUCTION

Network slicing is based on the concept of network
softwarization, i.e. novel technologies including network
functions virtualization (NFV) and software-defined
networking (SDN) [1-4]. An end-to-end network slice
carries a set of flows belonging to various end users and
has complete control over a collection of virtual resources.
Multiple slices are mapped to the same underlying physical
network.

In slice-based mobile networks, users need to select
appropriate network slice according to the service
requirements. A base station (BS) may be associated with
multiple network slices. Each slice is allocated a certain
amount of resources, and resource isolation between
slices is enforced. The same type of network slice may
cover multiple different base stations [4-5]. Therefore, the

available resources and service load of different slices
on the same BS are independent from each other, and
the available resources and service load of the same type
of slices on different base stations may vary. When a
mobile user accesses the network, it needs to consider the
available service capabilities and available resources of the
network slice according to the service requirements and
select an appropriate one to support the user applications.
On the other hand, it is also necessary to consider the
wireless channel conditions of the base station when
determining a slice to access. Therefore, in slice-based
mobile communication networks, access to a slice needs
to consider not only the slice service as well as available
resources, but also the radio channel conditions from the
user to the corresponding BS of the slice.

In traditional UE association problem, only optimal
matching between mobile users and access points is

Copyright c� John Wiley & Sons, Ltd. 1
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considered. In comparison, in the slice selection problem,
optimal matching between mobile users, network slices,
and access points should be addressed. The design
objective of traditional access point selection is usually
network resource utilization maximization subject to
radio channel conditions of access points and system
capacity [8][15][16]. Individual user’s service demands
are ignored, and thus it is difficult to ensure the user’s
quality of service. In contrast, in slice-based mobile
communication networks, user service demands should
be carefully considered when performing slice selection
or slice association. In the meantime, it is essential
to maximize network resource utilization. Furthermore,
in an end-to-end network slice architecture, it is also
necessary to consider the constraints of the core network
(CN) segment. Therefore, existing access point selection
mechanisms and algorithms cannot be directly applied to
slice selection problem.

Recently, end-to-end network slicing for mobile
network has attracted a lot of research interest. While
existing research mainly focuses on network architecture
and feasibility analysis, little research effort is devoted to
access selection mechanisms for network slicing [3-7]. The
authors of [3] introduce the design principle of network
slicing and investigate the deployment and implementation
of the network function of slicing selection. In [4],
a wireless network architecture based on end-to-end
network slicing is proposed, and the basic procedure of
slice selection is analyzed. The authors of [5] propose
a network slice access scheme based on QoS Class
Identifiers. The authors of [7] mainly focus on the feasible
framework and basic procedure of slice selection. In [6],
the authors address the problem of user’s optimal access
selection under the network architecture of virtual access
points (VAP) and core network slices. However, only the
deployment of network slicing in the core network is
considered without considering the access network of a
slice and providing services for users through end-to-end
network slices. Therefore, research on selection of end-to-
end network slice according to user’s service requirements
is still not adequate. It is imperative to investigate the
selection of access points and slices according to the
service requirements and the constraints of the network,
and achieve optimal matching between users, BSs, and
slices.

In this paper, we investigate wireless access selection
mechanism for end-to-end network slicing from the
perspective of optimal matching among users, BSs, and
slices. We aim to maximize Satisfaction Degree (SD) in
the system and formulate an optimization problem of end-
to-end slice selection, which is proven NP-hard. We thus
resort to genetic algorithm (GA) to solve the optimization
problem. We conduct simulation experiments to validate
the effectiveness of our proposed slice selection scheme.
Numerical results demonstrate that our proposed GA
based slice selection algorithm outperforms conventional
received signal strength (RSS) based access point selection
algorithm and greedy algorithm. It can also improve
network resource utilization while guaranteeing the users’
quality of service.

The rest of the paper is organized as follows. In Section
II, we describe the system model and introduce the concept
of Satisfaction Degree. Section III formulates the slice
selection problem and proves its NP hardness. We present
the solution to the optimal slice selection problem in
Section IV. Section V provides numerical results for the
performance comparison. Finally, Section VI concludes
the paper.

2. SYSTEM MODEL

2.1. Network model

We consider a slice based mobile network model as
shown in Fig. 1, which consists of the core network and
access networks. There are M base stations and L users
in the network. The Access and Mobility Management
Function (AMF) of the core network is responsible for the
deployment and management of network slices [9]. When
a slice covers a BS, the site communicates with the AMF
that manages the slice, for exchanging information about
radio channel conditions, available network resources,
and other necessary network states. AMF can use this
information to perform slice selection and the associated
resource allocation.

Let there be N network slices deployed based on
the substrate network. A slice may cover multiple BSs,
and corresponding transmission resources of the BSs are
allocated to individual slices. Thus, a BS may also be used
by multiple slices and provide access services for UEs with
various demands. Let Bj,k and Pj,k denote the available

2 Trans. Emerging Tel. Tech. ; 00:1–12 c� John Wiley & Sons, Ltd.
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Figure 1. Network slice-based network architecture

transmission bandwidth and transmission power allocated
to slice j at BS k respectively. We have

P
N

j=1 Bj,k  Bk

and
P

N

j=1 Pj,k  Pk, where Bk and Pk are the maximum
transmission bandwidth and transmission power available
at BS k.

2.2. Slice selection

Thus far, the basic procedure of UE association with
a slice has been described in 3GPP documents [9][21].
However, the concrete slice selection scheme is not
specified. In slice-based mobile networks, Slice Selection
Function (SSF) handles the UE’s initial Attach Request
and New Session establishment request by selecting
an appropriate slice for the UE based on the UE’s
subscription information, UE usage type, service type and
UE capabilities. When a UE is attached to the network for
the first time and has no valid slice ID, the RAN forwards
the request to the AMF, which selects an appropriate slice
for the UE based on assistance information provided by the
UE. A Slice ID is represented by an NSSAI (Network Slice
Selection Assistance Information) or S-NSSAI. As defined
in TR 23.799 [21], NSSAI includes one or more S-NSSAIs
(Single NSSAI). Each network slice is uniquely identified
by a S-NSSAI.

When multiple UEs send access requests, because
the network resources are limited, in order to satisfy
the user’s QoS requirements while optimizing resource
utilization, the system needs to make a reasonable access

decision based on the UE’s availability information. The
assistance information of the UE should include the current
UE channel states, QoS requirement and other relevant
information. The network selects an appropriate slice
which includes the RAN slice part and the CN slice part
for the UE based on the UE specified information and
CN specified information. Then the UE is assigned a Slice
ID, to support the selection of an AMF. If available, NG-
RAN uses the information for routing the NAS message
to the appropriate AMF which supports UE requested
slices. From the procedure, we can see that slice selection
is one of the key issues which affects both the network
performance and UE QoS.

2.3. Satisfaction Degree

In this paper we use Satisfaction Degree (SD) as the
optimization objective for slice selection, similar to that in
[10]. Our design target is to improve the system resource
utilization while guaranteeing the Quality of Service (QoS)
of users, through solving the SD optimization problem.

Without loss of generality, let user i generate one service
flow with required service rate Rreq,i. Therefore, in the
following, user i and flow i are equivalent. There are L

service flows in the network which need to be carried by
individual network slices. Suppose user i is associated with
slice j on BS k, obtaining actual service rate Rk

i,j from this
slice. Based on Sigmoid function, we can define the utility
function [11]

Uk

i,j =
[⇢(Rk

i,j/Rreq,i)]
⇠

1 + [⇢(Rk

i,j
/Rreq,i)]

⇠
(1)

where ⇢ and ⇠ in (1) are constant greater than zero.
Obviously, the value of Uk

i,j increases with Rk

i,j . When the
value of Rk

i,j is much greater than Rreq,i, Uk

i,j gradually
approaches 1. Therefore, if Uk

i,j is directly used as the
objective function of slice selection problem, it cannot
reflect the performance change of the network when Rk

i,j

is much larger than Rreq,i, which may cause excessive
service for some users and unreasonable allocation of
network resources. Similar to the idea of [10][18], we
define the Satisfaction Degree (SD) function of user i

connected to slice j through BS k as

fk

i,j = (1� e
�

Uk
i,j

⇢(Rk
i,j/Rreq,i) )/� (2)
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where � is the normalization factor used to ensure the
range of the SD is [0,1], and � can be expressed as

� = 1� e
� 1

(⇠�1)1/⇠+(⇠�1)(1�⇠)/⇠ (3)
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Figure 2. Satisfaction Degree vs Rk
i,j /Rreq,i

According to (2), user’s SD as a function of the service
rate is shown in Fig.2. We can see that SD is a convex
function of Rk

i,j/Rreq,i, and there exist a maximum value
1 for SD. Parameter ⇢ determines the value of Rk

i,j/Rreq,i

corresponding to the maximum SD. As shown in Fig. 2,
when ⇢=1.3 and Rk

i,j/Rreq,i = 1, SD = 1. Therefore, in
this paper, we consider ⇢=1.3, and obtain the maximum
SD when the service rate obtained by the user is equal
to the demand rate. When Rk

i,j < Rreq,i, the service rate
obtained by the user does not meet the demand, the
SD declines; and when Rk

i,j > Rreq,i, The transmission
resources allocated to users by the system exceed their
requirements, which may cause the reduction of resource
utilization, resulting in a decrease of SD.

3. PROBLEM FORMULATION

3.1. Problem Formulation

As described in Section 2, we consider that L users access
the mobile communication network composed of M BSs
and N slices. A service flow is only allowed to access one
network slice through one BS to obtain the corresponding
transmission service. Therefore, we can define variable
↵k

i,j 2 {0, 1}. ↵k

i,j = 1 if user i accesses slice j through BS
k and ↵k

i,j = 0 otherwise. Let bki,j indicate the transmission
bandwidth obtained by user i when it accesses slice j via

BS k. Therefore, the service rate obtained by the user can
be expressed as

Rk

i,j=bki,j log2(1 + SINRk

i,j) (4)

where
P

L

i=1 ↵
k

i,jb
k

i,j  Bj,k, SINRk

i,j is the signal to
noise ratio of users. Let Gk

i be the wireless channel gain
of user i on BS k, pki,j be the transmission power assigned
to user i by network slice j on AP k. The value of the
SINRk

i,j can be expressed as

SINRk

i,j=
Gk

i · pki,j
Ik
i
+N0

(5)

where N0 is the additive Gaussian
white noise and

P
L

i=1 ↵
k

i,jp
k

i,j  Pj,k,
Iki =

P
k02M�k

P
i02L�i

P
j2N

Gk
0

i · pk
0

i0,j is the
interference generated by other BSs when user i accesses
BS k.

It should be noted that an end-to-end network slice
should cover both the access and core networks of the
mobile communication system. We assume that the total
capacity of each network slice at core network is limited to
Cj , and we thus have

XM

k=1

XL

i=1
↵k

i,jR
k

i,j  Cj (6)

According to (2) and (4), we can obtain the SD of
user i when it accesses slice j on BS k. In this paper,
in order to maximize the utilization of system resources
while satisfying the service demands of users, we consider
the overall users’ satisfaction Degree of the system as the
design objective, and we can thus formulate the optimal
slice selection problem as P1.

In problem P1, constraints (7-2) and (7-3) ensure that
the total bandwidth and power allocated to UEs by NS j via
BS k does not exceed the amount of available resources of
NS j deployed on BS k. Constraint (7-4) indicates that the
total amount of traffic for the slice service cannot exceed
its capacity. Constraints (7-5) and (7-6) indicate that the
transmission resources allocated to all slices at each BS
cannot exceed the available resources of the BS, while
constraint (7-7) indicates that each UE can only access to
one NS via one BS as a time. According to the definition
of variable ↵k

i,j 2 {0, 1}, P1 is a complex 0-1 integer

4 Trans. Emerging Tel. Tech. ; 00:1–12 c� John Wiley & Sons, Ltd.
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programming problem.

P1 : max
XL

i=1

XN

j=1

XM

k=1
ak

i,jf
k

i,j (7-1)

s.t.
XL

i=1
ak

i,jb
k

i,j  Bj,k (7-2)
XL

i=1
ak

i,jp
k

i,j  Pj,k (7-3)
XM

k=1

XL

i=1
ak

i,jR
k

i,j  Cj (7-4)
XN

j=1
Bj,k  Bk (7-5)

XN

j=1
Pj,k  Pk (7-6)

XM

k=1

XN

j=1
ak

i,j = 1 (7-7)

3.2. Problem Complexity

For proving the NP-hardness of P1, we consider a special
case, in which we assume that a slice in the network can
only be associated with one BS. In this case, the slice is
selected to determine the corresponding BS. Therefore, the
variable ↵k

i,j can be expressed as

↵k

i,j = ↵i,j↵j,k (8)

where ↵i,j 2 {0, 1}, ↵i,j=1 indicates that user i

accesses slice j and ↵i,j= 0 otherwise. Obviously, we
have

P
N

j=1 ↵i,j = 1. Similarly, we define ↵j,k 2 {0, 1}.
↵j,k=1 indicates that slice j is associated with BS k and
↵k

i,j = 0 otherwise. In general, after NS is deployed, the
association of its BS will not be changed in a short time.
Therefore, ↵j,k in (8) is a constant and

P
M

k=1 ↵j,k = 1.
Using (8), we can rewrite (7-1) as

XL

i=1

XN

j=1

XM

k=1
↵k

i,jf
k

i,j

=
XL

i=1

XN

j=1

XM

k=1
↵i,j↵j,kf

k

i,j

=
XL

i=1

XN

j=1
↵i,j

XM

k=1
↵j,kf

k

i,j

=
XL

i=1

XN

j=1
↵i,jgi,j

(9)

where gi,j indicates the SD of user i accessing slice j and
gi,j =

P
M

k=1 ↵j,kf
k

i,j . We can also rewrite (7-4) as

XL

i=1

XM

k=1
↵k

i,jR
k

i,j

=
XL

i=1

XM

k=1
↵i,j↵j,kR

k

i,j

=
XL

i=1
↵i,j

XM

k=1
↵j,kR

k

i,j

=
XL

i=1
↵i,jri,j  Cj

(10)

where ri,j=
P

M

k=1 ↵j,kR
k

i,j denotes the service rate
obtained by user i accessing slice j.

We note that a slice can only be associated with one
BS, and the available bandwidth and power resources are
assigned to the corresponding slice by the BS when the
slice is deployed and remain unchanged. Therefore, (7-2)
and (7-3) can be simplified as

XL

i=1
↵i,jbi,j  Bj ,

XL

i=1
↵i,jpi,j  Pj (11)

where Bj and Pj are the available transmission bandwidth
and power resources of slice j. bi,j and pi,j are the
transmission bandwidth and power obtained by user i

accessing slice j.
Considering that the inequalities (7-5) and (7-6) are

constant on both sides, we can ignore them. From (8)-(11),
we can simplify problem P1 as

P2 : max
XL

i=1

XN

j=1
↵i,jgi,j (12-1)

s.t.
XL

i=1
↵i,jri,j  Cj (12-2)

XL

i=1
↵i,jbi,j  Bj (12-3)

XL

i=1
↵i,jpi,j  Pj (12-4)

XN

j=1
↵i,j = 1 (12-5)

In [8], the authors have proved that if gi,j , ri,j , bi,j
and pi,j are constant, the optimization problem of P2 is
a Multiple-Choice Multidimensional Knapsack problem
(MMKP), which is typical NP-hard[12][17]. And when
gi,j , ri,j ,bi,j and pi,j are all variables, P2 is a dynamic
Multiple-Choice Multidimensional Knapsack problem
(DMMKP). If DMMKP has solution in polynomial time,
its corresponding MMKP should also have solution in
polynomial time, so P2 is NP-hard. Because P2 is a
simplified form of P1 in a special case, it is easy to obtain
that P1 is also NP-hard

4. SLICE SELECTION ALGORITHM

4.1. Genetic Algorithm Flow Design

In Section III, we have proved that problem P1 is NP-
hard, and it is difficult to obtain the optimal solution in
polynomial time. Thus, we exploit genetic algorithm to
solve the problem.
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In problem P1, an optimal access matrix A =
�
↵k

i,j

 
L⇥N⇥M

of the user service needs to be obtained
by solving an optimization model. Correspondingly, in
the genetic algorithm, we model the individual in the
population as the user service access matrix A in the
network, where A is a three-dimensional matrix. For a
given value of i, only one element in the j-k plane has a
value of 1, and the rest are all zero. A large number of
”0” elements occupy a lot of storage space and increase
the complexity of the problem. Therefore, we first simplify
the analysis by reducing the three-dimensional matrix
A =

�
↵k

i,j

 
L⇥N⇥M

to a two-dimensional matrix Am =

{↵i,j}L⇥(N+M). According to the definition of A =
�
↵k

i,j

 
L⇥N⇥M

, it can be known that for the i-th row of
Am, only one of the first N elements has a value of 1 and
others have a value of 0, i. e.

P
N

j=1 ↵i,j  1; Similarly,
only one of the (N+1)-th to (N+M)-th elements has a value
of 1 and the others are 0, i. e.

P
N+M

j=N+1 ↵i,j  1. Thus,
the individual in the genetic algorithm are two-dimensional
matrices, and the matrix elements are called chromosomes
or genes. The flow chart of the genetic algorithm is shown
in Fig. 3, and we will next elaborate each step of the
algorithm.

4.1.1. Population Initialization and Individual
Fitness

First, the number of individuals in the population are
set to H, which remains constant at all times during
the operation of the genetic algorithm. The population
size will affect the complexity and performance of the
algorithm. Therefore, in practical applications, we need to
select an appropriate H value, and make a good tradeoff
between the computational complexity and performance of
the genetic algorithm. Let � denote the generation of the
population, which increases by one after each generation
undergoes an evolution iteration, and let the initial stage
�=0. Therefore, Q� =

�
A1,�

m , A2,�
m , ..., AH,�

m

 
can be

used to represent the ��th generation of the population.
Furthermore, according to the constraint of ↵i,j , the initial
values are randomly selected for chromosomes in each
individual in the initial population Q0 .

In the genetic algorithm, fitness is used to measure
the merits of different individuals. In P1, the optimization
objective is the overall satisfaction degree of the network.
Therefore, we use the overall satisfaction degree of the
network, whose access method corresponds to the access

matrix Ah,�

m , as the fitness of the h-th individual in the
��th generation, which is given by

⌘(Ah,�

m ) =
XL

i=1

XN

j=1

XM

k=1
(↵h,�)

k

i,jf
k

i,j (13)

where (↵h,�)
k

i,j is the corresponding matrix element after
the two-dimensional matrix Ah,�

m =
�
(↵h,�)i,j

 
L⇥(N+M)

is restored to the three-dimensional access matrix Ah,� =

{(↵h,�)
k

i,j}L⇥N⇥M .

4.1.2. Selection and Reproduction
After the initialization and individual fitness calcula-

tions, the survival of the fittest in the genetic process can
be simulated by selection and reproduction. To this end,
we combine probability selection and elite selection. For
population Q�, probability selection is first performed, that
is, an individual is selected from Q� for reproduction with
a certain probability which is taken as an element that
makes up population Q0

�. This process is repeated H times,
and the resulting Q0

� has equal population size with Q�. In
each selection, the probability of selecting an element in
Q� follows the principle of roulette. In other words, the
probability of selecting individual Ah,�

m is proportional to
its fitness, i.e.

P (Ah,�

m ) =
⌘(Ah,�

m )
P

H

h=1 ⌘(A
h,�

m )
(14)

After probability selection, the elite selection is applied
to improving the population Q0

�. Specifically, the largest
individual fitness ⌘0

�,max in population Q0
� is first

calculated. Then all the individuals in Q� whose individual
fitness is greater than ⌘0

�,max are found. Replacing the
same number of individuals in Q0

� randomly with these
individuals results in an improved population Q0

�.

4.1.3. Crossover
Furthermore, crossover operation is used to simulate

the process of genetic recombination during natural
evolution. In this paper, we perform crossover operation by
exchanging rows of individual matrices. For the population
Q0

� obtained after the selection and reproduction, all
individuals in Q0

� are randomly paired. Let Ah,�

m and Al,�

m

be paired so that all corresponding rows of Ah,�

m and Al,�

m

will be exchanged with probability Pe, where Pe is a fixed
constant. After all the paired individuals in Q0

� complete
the exchange of rows, a new population Q00

� is formed.
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Figure 3. The flow chart of the Genetic algorithm

4.1.4. Mutation Operation
After the crossover operation, mutation operations

will be performed to simulate genetic mutations in the
genetic process. Similar to [13], we consider that the
individual’s mutation probability is determined based on
the individual’s fitness in the population Q00

�. Therefore,
the mutation probability of the individual Ah,�

m in Q00
� is

set to

Ph,�

c =

8
<

:

⌘
00
�,max�⌘

00(Ah,�
m )

⌘00
�,max�⌘00

�,min
⌘00 �Ah,�

m

�
< ⌘00

�

Pc ⌘00 �Ah,�

m

�
� ⌘00

�

(15)
where ⌘00

�,max and ⌘00
�,min are the maximum individual

fitness and the minimum individual fitness in the
population Q00

� respectively. And ⌘00
�

is the mean of the
fitness of all individuals in the population Q00

�. From (15),
we can see that when the individual’s fitness is greater than
the average value in the population, the individual mutates
with a small fixed probability Pc.

It should be noted that for Ah,�

m =
�
(↵h,�)i,j

 
L⇥(N+M)

,
the chromosome of the i-th row needs to satisfy the con-
straints

P
N

j=1 (↵h,�)i,j  1 and
P

N+M

j=1+N
(↵h,�)i,j  1.

Therefore, in the mutation operation, the mutation is per-
formed on the row. The mutated individuals will randomly
select a row of chromosomes to mutate. Specifically, the j-

th element is first selected at random in the first N elements
of the row, and set to 1, and the other N-1 elements are
set to 0. Then, from the (N+1)-th to (N+M)-th elements,
one element is randomly selected to be set to 1 and the
remaining elements are set to 0. After performing the
mutation operation on each individual in Q00

�, the (�+1)th
generation population Q�+1 can be obtained.

4.1.5. Termination Rule
In genetic algorithm, the commonly used termination

rule is a given maximum number of iterations T, and

the algorithm terminates when the number of iterations
reaches T.

4.2. Slice Selection Algorithm

According to the genetic algorithm flow described in
Section 4.1, we propose a heuristic algorithm for slice
selection based on genetic algorithm, as shown in
Algorithm 1.

In Algorithm 1, we need to calculate the indi-
vidual fitness ⌘(Ah,�

m ) of Ah,�

m . Moreover, accord-
ing to (2) and (13), it is necessary to know the
actual service rate obtained by each user correspond-
ing to the access matrix Ah,�

m . Let the two-dimensional
matrix Ah,�

m =
�
(↵h,�)i,j

 
L⇥(N+M)

restore to the three-
dimensional access matrix Ah,�=

�
(↵h,�)

k

i,j

 
L⇥N⇥M

.
Furthermore, we propose Algorithm 2 to calculate the
service rate obtained by the user corresponding to the
access matrix Ah,�.

In Algorithm 2, for each user i, BS k and slice j can be
determined according to access matrix Ah,�. We consider
that each slice distributes its current available power,
bandwidth, and other transmission resources equally to the
admitted users. Therefore, in the current scenario for user
i, the maximum wireless rate rki,j and the service rate ci,j

of the core network of slice can be calculated. Then we
can get the maximum service rate currently available to the
user Ri = min{rki,j , ci,j}(line 3 to line 7). If Ri � Rreq,i,
let Rk

i,j = Rreq,i. If Ri < Rreq,i, it is difficult for the user
to obtain a rate to meet the service requirements at this
time, then user i is placed in set ⌦j in which users are to
be admitted to accessing to slice j (line 13).

For each set ⌦j 6= ;, and for each user h 2 ⌦j , it is
also considered to evenly distribute the current remaining
available transmission resources of slice j to all users to
be admitted. By obtaining the maximum available wireless
rate rkh,j and service rate ci,j of the core network, we can
obtain the currently available maximum service rate Rh =
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Algorithm 1 Slice Selection Algorithm

Input: i) Number of users L, number of slices N, number
of BSs M.
ii) BS transmission resource limitations Bk and Pk,
Slice resource limitations Bj,k, Pj,k and Cj , 1  j 
N , 1  k M .
iii) User’s required rate Rreq,i, 1  i  L, Channel
gain Gk

i , 1  k M .
Output: Optimal access matrix Abest.

1: Initialization:
i) Set population size H, Crossover probability
Pe, Mutation probability Pc, Maximum number of
iterations T.
ii) Set �=0, t=0 (Number of iterations), initialize
population Q0.

2: Calculate individual fitness ⌘(Ah,0
m ) in Q0, 1  h 

L. Find the maximum individual fitness ⌘0,max. Let
⌘best=⌘0,max, and record the corresponding optimal
individual Abest.

3: repeat

4: Selection and Reproduction:
i) Select individuals from Q� and reproduce them

with probability P (Ah,�

m ), and repeat H times to get
the population Q0

�.
ii) Use the elite selection mechanism to improve

Q0
�.

5: Crossover:
Pairs all individuals in Q0

� and exchange their
rows with probability Pe to obtain population Q00

�.
6: Mutation Operation:

Perform mutation operation to all individuals
Ah,�

m in Q00
� with probability Ph,�

c and obtain
population Q�+1.

7: Calculate individual fitness ⌘(Ah,�+1
m ) in Q�+1,

1  h  L. Find the maximum individual fitness
⌘�+1,max and its corresponding optimal individual
A�+1

best . If ⌘�+1,max > ⌘best, let ⌘best = ⌘�+1,max

and Abest  A�+1
best .

8: � = �+ 1, t = t+ 1.
9: until t � T

10: Output optimal solution Abest.

min{rkh,j , ch,j}(line 19 to line 21). If Rh > Rreq,h,
Rk

h,j = Rreq,h. If Rth  Rh < Rreq,h, let Rk

h,j = Rh,
where Rth denotes the access threshold and Rth = k ·
Rreq,h, k 2 [0, 1]. After user h accesses the network, h is
removed from ⌦j and the transmission resources allocated
to user h are removed from the available resources of
slice j (line 22 to line 30). If Rth > Rh, the available
transmission rate is less than the threshold and user
h remains in ⌦j . After completing the calculation and
judgment of each h 2 ⌦j , if ⌦j 6= ;, the access request of

Algorithm 2 Computation of Rk

i,j

1: Initialize N sets ⌦j = ;, 1  j  N .
2: for all i do

3: Get slice j and BS k accessed by user i according to
Ah,�.

4: Calculate the number of users accessing the network
through the BS k and slice j Lj,k=

P
L

i=1 ↵
k

i,j .
5: rki,j =

Bj,k

Lj,k
log2(1 + SINRk

i,j),

SINRk

i,j=
G

k
i ·Pj,k/Lj,k

I
k
i +N0

.

6: ci,j =
CjPK

k=1 Lj,k
.

7: Ri = min{rki,j , ci,j}.
8: if Ri � Rreq,i then

9: Rk

i,j = Rreq,i.
10: Cj=Cj �Rreq,i.

Bj,k = Bj,k �Rreq,i/ log2(1 + SINRk

i,j).
11: Pj,k=Pj,k � Pj,k/Lj,k, Lj,k= Lj,k-1.
12: else

13: ⌦j  ⌦j [ {i}.
14: end if

15: end for

16: for each set ⌦j do

17: repeat

18: for h 2 ⌦j do

19: rkh,j =
Bj,k

Lj,k
log2(1 + SINRk

h,j),

SINRk

h,j=
G

k
h·Pj,k/Lj,k

I
k
h+N0

.

20: ch,j =
CjPK

k=1 Lj,k
.

21: Rh = min{rkh,j , ch,j}.
22: if Ri � Rreq,i then

23: Rk

h,j = Rreq,h.
24: Cj=Cj �Rk

h,j .
Bj,k = Bj,k �Rk

h,j/ log2(1 +

SINRk

h,j).
25: Pj,k=Pj,k � Pj,k/Lj,k, Lj,k= Lj,k-1.

⌦j = ⌦j � {h}.
26: else if Rreq,h > Rh � Rth then

27: Rk

h,j = Rh.
28: Cj=Cj �Rk

h,j .
Bj,k = Bj,k �Rk

h,j/ log2(1 +

SINRk

h,j).
29: Pj,k=Pj,k � Pj,k/Lj,k, Lj,k= Lj,k-1.

⌦j = ⌦j � {h}.
30: end if

31: end for

32: if ⌦j 6= ; then

33: Reject the access request of the user a with the
largest Rreq,a in ⌦j .

34: ⌦j = ⌦j � {a}, Lj,k= Lj,k-1.
35: end if

36: until ⌦j=;
37: end for
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user a with the largest required rate in ⌦j is rejected (line
32 to line 34). This procedure is repeated until all ⌦j=;.

5. PERFORMANCE EVALUATION

We validate the advantages of our proposed GA based slice
selection algorithm by comparing it with the following
access slice selection algorithms:

(1) Greedy algorithm based on SD (greedy-SD): a user
selects to access the slice which can provide the maximum
SD based on greedy algorithm.

(2) Greedy algorithm based on rate (greedy-rate): a user
selects to access the slice which can provide the maximum
rate based on greedy algorithm.

(3) RSS based on SD (RSS-SD): a user first selects the
BS with highest RSS, and then selects the slice which can
provide the maximum SD on this BS.

(4) RSS based on rate (RSS-rate): a user first selects the
BS with highest RSS, and then selects the slice which can
provide the maximum rate on this BS.

5.1. System Parameters

Table I. SIMULATION PARAMETERS

Parameter Value
Number of BSs 4
Number of slices 5
Required rate Rreq,i (Mbps) U[5,10]
BS transmit power Pmax

k (dBm) 47
Cell radius (m) 1060
BS wireless channel bandwidth(MHz) 20
Bandwidth of slice deployed on BS(MHz) U[0,20]
Slice capacity(Mbps) U[0,40]
Thermal noise (dBm/Hz) -174
Path loss L(d)=34+40log(d)

Table II. GENETIC ALGORITHM PARAMETERS

Parameter Value
Maximum number of iterations T 500
Population size 50
Crossover probability 0.6
Initial mutation probability 0.01

We consider a network scenario shown in Fig. 1.
Four BSs are randomly distributed in an area of 1060⇥
1060m2. Five end-to-end network slices are deployed
in the network. The system parameters listed in Table
1 are similar to those used in [8]. Furthermore, the

capacity Cj of the core network part of the slice j is
randomly set from [10Mbps, 40Mbps]. BS k randomly
allocates its available transmission bandwidth to all slices
deployed and meets constraint

P5
j=1 Bj,k  20Mbps. It

is assumed that the users are randomly distributed within
the simulation range, and the required rate Rreq,i of
the user is randomly generated within [5Mbps, 10Mbps].
Other relevant parameters of the genetic algorithm as listed
in Table 2, are according to [14]. In this paper, we assume
that users have the greatest SD when the service rate they
receive is equal to their required rate. Therefore, let ⇠=5,
⇢= 1.3 in (1)-(3) [10].

5.2. Numerical Results

We first compare the performance of GA algorithm with
other algorithms by using simulation experiments. Fig. 4
shows the system SD vs. the number of flows (users) in
the network. As shown in the figure, we can find that
GA algorithm always achieves the highest SD. When the
number of users is less than 10, the network resources are
sufficient, and the performance of all algorithms is close.
Greedy-rate and RSS-rate, which aim at maximizing the
rate, may obtain a lower satisfaction than other algorithms.
This is due to the fact that the service rate is much greater
than the required rate. As the number of flows increases,
the proposed GA algorithm can reasonably select the slice
and allocate transmission resources for users, and thus
obtain higher SD than other algorithms. We can also
observe that the SD of greedy-SD algorithm and RSS-
SD algorithm with the optimization objective of SD is
always better than the greedy-rate and RSS-rate algorithm
respectively.

Furthermore, Fig. 5 shows the average Satisfaction
Degree of the system. As shown in the figure, we can find
that GA algorithm always achieves the best performance.
As mentioned earlier, since there are sufficient network
resources when the number of users is small, the greedy-
rate and RSS-rate algorithm obtain service rates that are
often higher than the demand rate, which results in lower
Satisfaction Degree. As the number of users increases,
the average rate of each user gets lower, and some users
obtain a service rate close to the demand rate, so the
SD increases. However, as the number of users further
increases, the average rate of users decreases, resulting
in a gradual decline in SD. Besides, when the network
resources are sufficient, the other three algorithms with the
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optimization objective of SD obtain a service rate equals
to the demand rate. As the number of users increases, the
average rate of users decreases, resulting in a decrease in
average Satisfaction Degree.
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Figure 4. Satisfaction Degree of the system
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Figure 5. Average Satisfaction Degree
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Figure 6. Throughput

Fig. 6 and Fig. 7 show the achieved throughput
and average data rate versus the number of flows
respectively. In GA, greedy-SD and RSS-SD algorithms
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Figure 7. Average data rate

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Number of access requests

N
um

be
r o

f a
dm

itt
ed

 re
qu

es
ts

 

 

GA
greedy-SD
greedy-rate
RSS-SD
RSS-rate

Figure 8. Number of admitted requests
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Figure 9. Convergence speed

whose optimization objective is maximizing SD, in order
to obtain higher satisfaction, the service rate assigned to
the users are close or equal to their demand rate when
the number of flows is small and the bandwidth resources
are relatively abundant. However, Greedy-rate and RSS-
rate algorithms are designed to optimize the rate, and the
service rate of users exceeds the demand rate. Therefore,
when the number of flows is small, the system throughput
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of the Greedy-rate and RSS-rate algorithms is higher than
that of the GA, Greedy-SD, and RSS-SD algorithms. As
the number of flows continues increasing, the average
rate of the Greedy-rate and RSS-rate algorithms gradually
decreases because the available transmission resources in
the network are limited. When the number of flows is
large, the network tends to be saturated and the throughput
of the Greedy-rate and RSS-rate algorithms can gradually
approach the results of the other three algorithms.

In slice access, when the user’s actual rate is lower than
the access threshold Rth = k ·Rreq,h, the access request
will be blocked. Due to the limited network resources,
blocking occurs when a slice becomes saturation. Fig. 8
compares the number of admitted slice access requests. We
set the amount of transmission resource to be 4 times of
that in Table 1, and set k=0.8. From the figure, we can see
that the number of admitted users in GA is always higher
than the other four algorithms. When the number of access
requests reaches 50, the network tends to be saturated.
As the GA algorithm can reasonably select the slice and
allocate transmission resources for users, its advantages
become more obvious. We also notice that the performance
of RSS based algorithms is worse than that based on
greedy when the number of access requests is small, and
higher when the number is large. This is because when
the number of access requests is small, the RSS-based
algorithm only considers wireless channel conditions and
does not consider the capacity limitation of the core
network. Although BSs with better channel conditions can
provide users with a higher service rate, some users may be
blocked due to the limited capacity of the core network and
the fact that the same core network resources are shared by
the same slice at several different BSs. When the number
of access requests is large, the transmission resources of
the wireless are insufficient, and the service rate obtained
by the users are generally smaller than the demanded
rate. Compared with the greedy-based algorithm, the RSS-
based algorithm always selects BSs with the best channel
condition, and obtains the same wireless transmission rate
using less transmission resources, so it can support more
users.

Figure 9 shows the convergence speed of the GA
algorithm as the number of iterations increases. When
there are 15 users in the network, only about 50 iterations
are needed, and the algorithm can converge. As the number

of users in the network increases, the convergence time will
be slightly longer.

6. CONCLUSIONS

In this paper, we have studied the wireless access
selection mechanism for end-to-end network slicing from
the perspective of optimal matching of users, BSs, and
slices. We aim to maximize Satisfaction Degree (SD)
in the system and establish a theoretical optimization
model of slice selection. Through theoretical analysis, we
have proved that it is NP-hard. Furthermore, we have
used genetic algorithm (GA) to solve the optimization
problem, and designed the corresponding slice selection
optimization algorithm. On this basis, the validity of
GA algorithm is verified by simulation experiment. The
numerical results show that compared with the typical
access selection algorithm based on the RSS or greedy
algorithm in the traditional network, the GA algorithm
can enable users to obtain better access and transmission
performance.
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