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ABSTRACT

Approaches to continual learning aim to successfully learn a set of related tasks
that arrive in an online manner. Recently, several frameworks have been developed
which enable deep learning to be deployed in this learning scenario. A key mod-
elling decision is to what extent the architecture should be shared across tasks. On
the one hand, separately modelling each task avoids catastrophic forgetting but it
does not support transfer learning and leads to large models. On the other hand,
rigidly specifying a shared component and a task-specific part enables task transfer
and limits the model size, but it is vulnerable to catastrophic forgetting and restricts
the form of task-transfer that can occur. Ideally, the network should adaptively
identify which parts of the network to share in a data driven way. Here we intro-
duce such an approach called Continual Learning with Adaptive Weights (CLAW),
which is based on probabilistic modelling and variational inference. Experiments
show that CLAW achieves state-of-the-art performance on six benchmarks in terms
of overall continual learning performance, as measured by classification accuracy,
and in terms of addressing catastrophic forgetting.

1 INTRODUCTION

Continual learning (CL), sometimes called lifelong or incremental learning, refers to an online
framework where the knowledge acquired from learning tasks in the past is kept and accumulated
so that it can be reused in the present and future. Data belonging to different tasks could potentially
be non i.i.d. (Schlimmer & Fisher, 1986; Sutton & Whitehead, 1993; Ring, 1997; Schmidhuber,
2013; Nguyen et al., 2018; Schmidhuber, 2018). A continual learner must be able to learn a new
task, crucially, without forgetting previous tasks (Ring, 1995; Srivastava et al., 2013; Schwarz et al.,
2018; Serra et al., 2018; Hu et al., 2019). In addition, CL frameworks should continually adapt to any
domain shift occurring across tasks. The learning updates must be incremental – i.e, the model is
updated at each task only using the new data and the old model, without access to all previous data
(from earlier tasks) – due to speed, security and privacy constraints. A compromise must be found
between adapting to new tasks and enforcing stability to preserve knowledge from previous tasks.
Excessive adaptation could lead to inadvertent forgetting of how to perform earlier tasks. Indeed,
catastrophic forgetting is one of the main pathologies in continual learning (McCloskey & Cohen,
1989; Ratcliff, 1990; Robins, 1993; 1995; French, 1999; Pape et al., 2011; Goodfellow et al., 2014a;
Achille et al., 2018; Kemker et al., 2018; Kemker & Kanan, 2018; Diaz-Rodriguez et al., 2018; Zeno
et al., 2018; Ahn et al., 2019; Parisi et al., 2019; Pfulb & Gepperth, 2019; Rajasegaran et al., 2019).

Many approaches to continual learning employ an architecture which is divided a priori into (i) a
slowly evolving, global part; and (ii) a quickly evolving, task-specific, local part. This is one way to
enable multi-task transfer whilst mitigating catastrophic forgetting, which has proven to be effective
(Rusu et al., 2016b; Fernando et al., 2017; Yoon et al., 2018), albeit with limitations. Specifying
a priori the shared global, and task-specific local parts in the architecture restricts flexibility. As
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more complex and heterogeneous tasks are considered, one would like a more flexible, data-driven
approach to determine the appropriate amount of sharing across tasks. Here, we aim at automating
the architecture adaptation process so that each neuron of the network can either be kept intact, i.e.
acting as global, or adapted to the new task locally. Our proposed variational inference framework is
flexible enough to learn the range within which the adaptation parameters can vary. We introduce
for each neuron one binary parameter controlling whether or not to adapt, and two parameters
to control the magnitude of adaptation. All parameters are learnt via variational inference. We
introduce our framework as an expansion of the variational continual learning algorithm (Nguyen
et al., 2018), whose variational and sequential Bayesian nature makes it convenient for our modelling
and architecture adaptation procedure. Our modelling ideas can also be applied to other continual
learning frameworks, see the Appendix for a brief discussion.

We highlight the following contributions: (1) A modelling framework which flexibly automates the
adaptation of local and global parts of the (multi-task) continual architecture. This optimizes the
tradeoff between mitigating catastrophic forgetting and improving task transfer. (2) A probabilistic
variational inference algorithm which supports incremental updates with adaptively learned param-
eters. (3) The ability to combine our modelling and inference approaches without any significant
augmentation of the architecture (no new neurons are needed). (4) State-of-the-art results in six
experiments on five datasets, which demonstrate the effectiveness of our framework in terms of
overall accuracy and reducing catastrophic forgetting.

2 BACKGROUND ON VARIATIONAL CONTINUAL LEARNING (VCL)

In this paper, we use Variational Continual Learning (VCL, Nguyen et al., 2018) as the underlying
continual learning framework. However, our methods apply to other frameworks, see Appendix
(Section A.1). VCL is a variational Bayesian framework where the posterior of the model parameters
θ is learnt and updated continually from a sequence of T datasets, {x(n)

t ,y
(n)
t }

Nt
n=1, where t =

1, 2, . . . , T and Nt is the size of the dataset associated with the t-th task. More specifically, denote
by p(y|θ,x) the probability distribution returned by a discriminative classifier with input x, output
y and parameters θ. For Dt = {y(n)

t }
Nt
n=1, we approximate the intractable posterior p(θ|D1:t) after

observing the first t datasets via a tractable variational distribution qt as:1

qt(θ) ≈
1

Zt
qt−1(θ) p(Dt|θ), (1)

where q0 is the prior p, p(Dt|θ) =
∏Nt

n=1 p(y
(n)
t |θ,x

(n)
t ), and Zt is the normalizing constant which

does not depend on θ but only on the data D. This framework allows the approximate posterior qt(θ)
to be updated incrementally from the previous approximate posterior qt−1(θ) in an online fashion.
In VCL, the approximation in (1) is performed by minimizing the following KL-divergence over a
family Q of tractable distributions:

qt(θ) = argmin
q∈Q

KL
(
q(θ) ‖ 1

Zt
qt−1(θ) p(Dt|θ)

)
. (2)

This framework can be enhanced to further mitigate catastrophic forgetting by using a coreset (Nguyen
et al., 2018), i.e. a representative set of data from previously observed tasks that can serve as memory
and can be revisited before making a decision. As discussed in the Related Work, this leads to
overhead costs of memory and optimisation (selecting most representative data points). Previous
work on VCL considered simple models without automatic architecture building or adaptation.

3 OUR CLAW APPROACH

In earlier CL approaches, the parts of the network architecture that are shared among the learnt tasks
are designated a priori. To alleviate this rigidity and to effectively balance adaptation and stability,
we propose a multi-task, continual model in which the adaptation of the architecture is data-driven by
learning which neurons need to be adapted as well as the maximum adaptation capacity for each. All
the model parameters (including those used for adaptation) are estimated via an efficient variational

1Here we suppress the dependence on the inputs in p(θ|D1:t) and p(Dt|θ) to lighten notation.
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inference algorithm which incrementally learns from data of the successive tasks, without a need to
store (nor generate) data from previous tasks and with no expansion in the network size.

3.1 MODELLING

With model parameters θ, the overall variational objective we aim at maximising at task with index t
is equivalent to the following online marginal likelihood:

L(θ) = −KL
(
qt(θ) ‖ qt−1(θ)

)
+

Nt∑
n=1

Eqt(θ)

[
log p(y(n)|x(n),θ)

]
. (3)

We propose a framework where the architecture, whose parameters are θ, is flexibly adapted based
on the available tasks, via a learning procedure that will be described below. With each task, we
automate the adaptation of the neuron contributions. Both the adaptation decisions (i.e. whether or
not to adapt) and the maximum allowed degree of adaptation for every neuron are learnt. We refer to
the binary adaptation variable as α. There is another variable s that is learnt in a multi-task fashion to
control the maximum degree of adaptation, such that the expression b = s

1+e−a − 1 limits how far
the task-specific weights can differ from the global weights, in case the respective neuron is to be
adapted. The parameter a depicts unconstrained adaptation, as described later.2

We illustrate the proposed model to perform this adaptation by learning the probabilistic contributions
of the different neurons within the network architecture on a task-by-task basis. We follow this with
the inference details. Steps of the proposed modeling are listed as follows:

• For a task T , the classifier that we are modeling outputs:
∑NT

n=1

[
log p(y(n)|x(n),wT )

]
.

• The task-specific weights wT can be expressed in terms of their global counterparts as follows:

wT = (1 + bTαT ) ◦w. (4)

The symbol ◦ denotes an element-wise (Hadamard) multiplication.
• For each task T and each neuron j at layer i, αT

i,j is a binary variable which indicates whether
the corresponding weight is adapted (αT

i,j = 1) or unadapted (αT
i,j = 0). Initially assume that

the adaptation probability αT
i,j follows a Bernoulli distribution with probability pi,j

3, αT
i,j ∼

Bernoulli(pi,j). Since this Bernoulli is not straightforward to optimise, and to adopt a scalable
inference procedure based on continuous latent variables, we replace this Bernoulli with a Gaussian
that has an equivalent mean and variance from which we draw αT

i,j. For the sake of attaining
higher fidelity than what is granted by a standard Gaussian, we base our inference on a variational
Gaussian estimation. Though in a context different from continual learning and with different
estimators, the idea of replacing Bernoulli with an equivalent Gaussian has proven to be effective
with dropout (Srivastava et al., 2014; Kingma et al., 2015).
The approximation of the Bernoulli distribution by the corresponding Gaussian distribution is
achieved by matching the mean and variance. The mean and variance of the Bernoulli distribution
are pi,j, pi,j(1− pi,j), respectively. A Gaussian distribution with the same mean and variance is
used to fit αT

i,j.

αT
i,j ∼ N (pi,j,pi,j(1− pi,j)). (5)

• The variable bT controls the strength of the adaptation and it limits the range of adaptation via:

1 + bT =
s

1 + e−aT . (6)

So that the maximum adaptation is s. The variable aT is an unconstrained adaptation value, similar
to that in (Swietojanski & Renals, 2014). The addition of 1 is to facilitate the usage of a probability
distribution while still keeping an adaptation range allowing for the attenuation or amplification of
each neuron’s contribution.
2We learn parameters α, s and a, with corresponding b, for each neuron but we avoid using the neuron

indices here, as well as in other locations like (4), (6) and (7), for better readability.
3There can be a parameter pi per layer i instead of one pi,j for each neuron j at each layer i, but we opt for

the latter for the sake of gaining further adaptation flexibility.
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• Before facing the first dataset and learning task t = 1, the prior on the weights q0(w) = p(w) is
chosen to be a log-scale prior, which can be expressed as: p(log |w|) ∝ c, where c is a constant.
The log-scale prior can alternatively be described as:

p(|w|) ∝ 1

|w|
. (7)

At a high level, adapting neuron contributions can be seen as a generalisation of attention mechanisms
in the context of continual learning. Applying this adaptation procedure to the input leads to an
attention mechanism. However, our approach is more general since we do not apply it only to the
very bottom (i.e. input) layer, but throughout the whole network. We next show how our variational
inference mechanism enables us to learn the adaptation parameters.

3.2 INFERENCE

We describe the details related to the proposed variational inference mechanism. The adaptation
parameters are included within the variational parameters.

The (unadapted version of the) model parameters θ consist of the weight vectors w. To automate
adaptation, we perform inference on pi,j, which would have otherwise been a hyperparameter of the
prior (Louizos et al., 2017; Molchanov et al., 2017; Ghosh et al., 2018). Multiplying w by (1 + bα)
where α is distributed according to (5), then from (4) with random noise variable ε ∼ N (0, 1):

wT
i,j = γi,j

(
1 + bi,jpi,j + bi,j

√
pi,j(1− pi,j)ε

)
,

q(wi,j | γi,j) ∼ N
(
γi,j(1 + bi,jpi,j),b

2
i,j γ

2
i,jpi,j(1− pi,j)

)
. (8)

From (7) and (8), the corresponding KL-divergence between the variational posterior of w, q(w|γ)
and the prior p(w) is as follows. The subscripts are removed when q in turn is used as a subscript
for improved readability. The variational parameters are γi,j and pi,j.

KL
(
q(wi,j|γi,j) ‖ p(wi,j)

)
= Eq(w|γ) log[q(wi,j|γi,j)/p(wi,j)] =

Eq(w|γ) logq(wi,j|γi,j)− Eq(w|γ) logp(wi,j) = −H(q(wi,j|γi,j))− Eq(w|γ) logp(wi,j) (9)

=−0.5
(
1+log(2π)+log(b2

i,jpi,j(1− pi,j))
)
− Eq(w|γ) log

1

|ε|
(10)

=−logbi,j −0.5 logpi,j −0.5 log(1− pi,j) +c+ Eq(w|γ) log |ε|, (11)

where the switch from (9) to (10) is due to the entropy computation (Bernardo & Smith, 2000) of
the Gaussian q(wi,j|γi,j) defined in (8). The switch from (10) to (11) is due to using a log-scale
prior, similar to Appendix C in (Kingma et al., 2015) and to Section 4.2 in (Molchanov et al., 2017).
Eq(w|γ) log |ε| is computed via an accurate approximation similar to equation (14) in (Molchanov
et al., 2017), with slightly different values of k1, k2 and k3. This is a very close approximation via
numerically pre-computing Eq(w|γ) log |ε| using a third degree polynomial (Kingma et al., 2015;
Molchanov et al., 2017).

This is the form of the KL-divergence between the approximate posterior after the first task and the
prior. Afterwards, it is straightforward to see how this KL-divergence applies for the subsequent tasks
in a manner similar to (2), but while taking into account the new posterior form and original prior.

The KL-divergence expression derived in (11) is to be minimised. By minimising (11) with respect
to pi,j and then using samples from the respective distributions to assign values to αi,j, adapted
contributions of each neuron j at each layer i of the network are learnt per task. Values of pi,j are
constrained between 0 and 1 during training via projected gradient descent.
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Algorithm 1 Continual Learning with Adaptive Weights (CLAW)

Input: A sequence of T datasets, {x(n)
t ,y

(n)
t }

Nt
n=1, where t = 1, 2, . . . , T and Nt is the size of the

dataset associated with the t-th task.
Output: qt(θ), where θ are the model parameters.

Initialise all p(|wi,j|) with a log-scale prior, as in (7).
for t = 1 . . . T do

Disclose the dataset {x(n)
t ,y

(n)
t }

Nt
n=1 for the current task t.

for i = 1 . . .# layers do
for j = 1 . . .# neurons at layer i do

Compute pi,j using stochastic gradient descent on (11).
Compute si,j,t using (13).
Update the corresponding general value si,j using (14).

end for
end for

end for

3.2.1 LEARNING THE MAXIMUM ADAPTATION VALUES

Using (6) to express the value of bi,j, and neglecting the constant term therein since it does not affect
the optimisation, the KL-divergence in (11) is equivalent to:

KL
(
q(wi,j|γi,j) ‖ p(wi,j)

)
≈

−log si,j + log(1 + e−ai,j)−0.5 logpi,j −0.5 log(1− pi,j) +c+ Eq(w|γ) log |ε|. (12)

Values of ai,j are learnt by minimising (12) with respect to ai,j. This subsection explains how to learn
the maximum adaptation variable si,j. Values of the maximum si,j of the logistic function defined
in (6) are learnt from multiple tasks. For each neuron j at layer i, there is a general value si,j and
another value that is specific for each task t, referred to as si,j,t. This is similar to the meta-learning
procedure proposed in (Finn et al., 2017). The following procedure to learn s is performed for each
task t such that: (i) the optimisation performed to learn a task-specific value si,j,t benefits from the
warm initialisation with the general value si,j rather than a random initial condition; and then (ii) the
new information obtained from the current task t is reflected back to update the general value si,j.

• First divide the sample Nt into two halves. For the first half, depart from the general value of
si,j as an initial condition, and use the assigned data examples from task t to learn the task-
specific values si,j,t for the current task t. For neuron j at layer i, refer to the second term in (3),∑Nt

n=1 Eqt(θ)

[
log p(y(n)|x(n),θ)

]
as ft(x,y, si,j). The set of parameters θ contains s as well as

other parameters, but we focus here on s in the f notation since the following procedure is developed
to optimise s. Also, refer to the loss of the (classification) function f as Err(f) = CE(f(x, θ)‖y),
where CE stands for the cross-entropy:

si,j,t = si,j −
2ω1

Nt
∇si,j

Nt/2∑
d=1

Err(ft(xd,yd, si,j)). (13)

• Now use the second half of the data from task t to update the general learnt value si,j:

si,j = si,j −
2ω2

Nt
∇si,j

Nt∑
d=1+Nt/2

Err(ft(xd,yd, si,j,t)). (14)

Where ω1 and ω2 are step-size parameters.

When testing on samples from task t after having faced future tasks t+ 1, t+ 2, . . ., the value of si,j
used is the learnt si,j,t. There is only one value per neuron, so the overhead resulting from storing
such values is negligible. The key steps of the algorithm are listed in Algorithm 1.

At task t, the algorithmic complexity of a single joint update of the parameters θ based on the
additive terms in (12) is O(MELD2), where L is the number of layers in the network, D is the
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(largest) number of neurons within a single layer, E is the number of samples taken from the random
noise variable ε, and M is the minibatch size. Each α is obtained by taking one sample from the
corresponding p, so that does not result in an overhead in terms of the complexity.

4 EXPERIMENTS

Our experiments mainly aim at evaluating the following: (i) the overall performance of the introduced
CLAW, depicted by the average classification accuracy over all the tasks; (ii) the extent to which
catastrophic forgetting can be mitigated when deploying CLAW; and (iii) the achieved degree of
positive forward transfer. The experiments demonstrate the effectiveness of CLAW in achieving
state-of-the-art continual learning results measured by classification accuracy and by the achieved
reduction in catastrophic forgetting. We also perform ablations in Section D in the Appendix which
exhibit the relevance of each of the proposed adaptation parameters.

We perform six experiments on five datasets. The datasets in use are: MNIST (LeCun et al., 1998),
notMNIST (Butalov, 2011), Fashion-MNIST (Xiao et al., 2017), Omniglot (Lake et al., 2011) and
CIFAR-100 (Krizhevsky & Hinton, 2009). We compare the results obtained by CLAW to six different
state-of-the-art continual learning algorithms: the VCL algorithm (Nguyen et al., 2018) (original
form and one with a coreset), the elastic weight consolidation (EWC) algorithm (Kirkpatrick et al.,
2017), the progress and compress (P&C) algorithm (Schwarz et al., 2018), the reinforced continual
learning (RCL) algorithm (Xu & Zhu, 2018), the one referred to as functional regularisation for
continual learning (FRCL) using Gaussian processes (Titsias et al., 2019) and the learn-to-grow
(LTG) algorithm (Li et al., 2019b).

4.1 OVERALL CLASSIFICATION ACCURACY

Our main metric is the all-important classification accuracy. We consider six continual learning
experiments, based on the MNIST, notMNIST, Fashion-MNIST, Omniglot and CIFAR-100 datasets.
The introduced CLAW is compared to two VCL versions: VCL with no coreset and VCL with a
200-point coreset assembled by the K-center method (Nguyen et al., 2018), EWC, P&C, RCL,
FRCL (its TR version) and LTG4. All the reported classification accuracy values reflect the average
classification accuracy over all tasks the learner has trained on so far. More specifically, assume that
the continual learner has just finished training on a task t, then the reported classification accuracy at
time t is the average accuracy value obtained from testing on equally sized sets each belonging to one
of the tasks 1, 2, . . . , t. For all the classification experiments, statistics reported are averages of ten
repetitions. Statistical significance and standard error of the average classification accuracy obtained
after completing the last two tasks of each experiment are displayed in Section E in the Appendix.

As can be seen in Figure 1, CLAW achieves state-of-the-art classification accuracy in all the six
experiments. The minibatch size is 128 for Split MNIST and 256 for all the other experiments. More
detailed descriptions of the results of every experiment are given next:

Permuted MNIST Using MNIST, Permuted MNIST is a standard continual learning benchmark
(Goodfellow et al., 2014a; Kirkpatrick et al., 2017; Zenke et al., 2017). For each task t, the correspond-
ing dataset is formed by performing a fixed random permutation process on labeled MNIST images.
This random permutation is unique per task, i.e. it differs for each task. For the hyperparameter
λ of EWC, which controls the overall contribution from previous data, we experimented with two
values, λ = 1 and λ = 100. We report the latter since it has always outperformed EWC with λ = 1
in this experiment. EWC with λ = 100 has also previously produced the best EWC classification
results (Nguyen et al., 2018). In this experiment, fully connected single-head networks with two
hidden layers are used. There are 100 hidden units in each layer, with ReLU activations. Adam
(Kingma & Ba, 2015) is the optimiser used in the 6 experiments with η = 0.001, β1 = 0.9 and
β2 = 0.999. Further experimental details are given in Section C in the Appendix. Results of the
accumulated classification accuracy, averaged over tasks, on a test set are displayed in Figure 1a.
After 10 tasks, CLAW achieves significantly (check the Appendix) higher classification results than
all the competitors.

4Whenever there is no validation process performed to indicate the hyperparameter values of competitors or
characteristics of neural network architectures, this is done for the sake of comparing on common ground with
the best settings, as specified in the respective papers.
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Split MNIST In this MNIST based experiment, five binary classification tasks are processed in the
following sequence: 0/1, 2/3, 4/5, 6/7, and 8/9 (Zenke et al., 2017). The architecture used consists of
fully connected multi-head networks with two hidden layers, each consisting of 256 hidden units with
ReLU activations. As can be seen in Figure 1b, CLAW achieves the highest classification accuracy.

Split notMNIST It contains 400,000 training images, and the classes are 10 characters, from A
to J. Each image consists of one character, and there are different font styles. The five binary
classification tasks are: A/F, B/G, C/H, D/I, and E/J. The networks used here contain four hidden
layers, each containing 150 hidden units with ReLU activations. CLAW achieves a clear improvement
in classification accuracy over competitors (Figure 1c).

Split Fashion-MNIST Fashion-MNIST is a dataset whose size is the same as MNIST but it is
based on different (and more challenging) 10 classes. The five binary classification tasks here are:
T-shirt/Trouser, Pullover/Dress, Coat/Sandals, Shirt/Sneaker, and Bag/Ankle boots. The architecture
used is the same as in Split notMNIST. In most of the continual learning tasks (including the more
significant, later ones) CLAW achieves a clear classification improvement (Figure 1d).

Omniglot This is a sequential learning task of handwritten characters of 50 alphabets (a total of over
1,600 characters with 20 examples each) belonging to the Omniglot dataset (Lake et al., 2011). We
follow the same way via which this task has been used in continual learning before (Schwarz et al.,
2018; Titsias et al., 2019); handwritten characters from each alphabet constitute a separate task. We
thus have 50 tasks, which also allows to evaluate the scalability of the frameworks in comparison.
The model used is a CNN. To deal with the convolutions in CLAW, we used the idea proposed and
referred to as the local reparameterisation trick by Kingma et al. (2014; 2015), where a single global
parameter is employed per neuron activation in the variational distribution, rather than employing
parameters for every constituent weight element5. Further details about the CNN used are given in
Section C. The automatically adaptable CLAW achieves better classification accuracy (Figure 1e).

CIFAR-100 This dataset consists of 60,000 colour images of size 32 × 32. It contains 100 classes,
with 600 images per class. We use a split version CIFAR-100. Similar to Lopez-Paz & Ranzato
(2017), we perform a 20-task experiment with a disjoint subset of five classes per task. CLAW achieves
significantly higher classification accuracy (Figure 1f) -also higher than the previous state of the art
on CIFAR-100 by Kemker & Kanan (2018). Details of the used CNN are in Section C.

A conclusion that can be taken from Figure 1(a-f) is that CLAW consistently achieves state-of-the-art
results (in all the 6 experiments). It can also be seen that CLAW scales well. For instance, the
difference between CLAW and the best competitor is more significant with Split notMNIST than it is
with the first two experiments, which are based on the smaller and less challenging MNIST. Also,
CLAW achieves good results with Omniglot and CIFAR-100.

4.2 CATASTROPHIC FORGETTING

To assess catastrophic forgetting, we show how the accuracy on the initial task varies over the
course of the training procedure on the remaining tasks (Schwarz et al., 2018). Since Omniglot (and
CIFAR-100) contain a larger number of tasks: 50 (20) tasks, i.e. 49 (19) remaining tasks after the
initial task, this setting is more relevant for Omniglot and CIFAR-100. We nonetheless display the
results for Split MNIST, Split notMNIST, Split Fashion-MNIST, Omniglot and CIFAR-100. As can
be seen in Figure 2, CLAW (at times jointly) achieves state-of-the-art performance retention degrees.
Among the competitors, P&C and LTG also achieve high performance retention degrees.

An empirical conclusion that can be made out of this and the previous experiment, is that CLAW
achieves better overall continual learning results, partially thanks to the way it addresses catastrophic
forgetting. The idea of adapting the architecture by adapting the contributions of neurons of each
layer also seems to be working well with datasets like Omniglot and CIFAR-100, giving directions
for imminent future work where CLAW can be extended for other application areas based on CNNs.

4.3 POSITIVE FORWARD TRANSFER

The purpose of this experiment is to assess the impact of learning previous tasks on the current task.
In other words, we want to evaluate whether an algorithm avoids negative transfer, by evaluating the

5For more details, see Section 2.3 in (Kingma et al., 2015).
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(d) Split Fashion-MNIST.
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Figure 1: Average test classification accuracy vs. the number of observed tasks in 6 experiments.
CLAW achieves significantly higher classification results than the competing continual learning
frameworks. Statistical significance values are presented in Section E in the Appendix. The value of
λ for EWC is 10,000 in (c), and 100 in the other experiments. Best viewed in colour.

relative performance achieved on a unique task after learning a varying number of previous tasks
(Schwarz et al., 2018). From Figure 3, we can see that CLAW achieves state-of-the-art results in 4 out
of the 5 experiments (at par in the fifth) in terms of avoiding negative transfer.
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Figure 2: Evaluating catastrophic forgetting by measuring performance retention. Classification
accuracy of the initial task is monitored along with the progression of tasks. Results are displayed for
five datasets. CLAW is the least forgetful algorithm since performance levels achieved on the initial
task do not degrade as much as in the other methods after facing new tasks. The legend and λ values
for EWC are the same as in Figure 1. Best viewed in colour.
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Figure 3: Evaluating Forward transfer, or to what extent a continual learning framework can avoid
negative transfer. The impact of learning previous tasks on a specific task (the last task) is inspected
and used as a proxy for evaluating forward transfer. This is performed by evaluating the relative
performance achieved on a unique task after learning a varying number of previous tasks. This means
that the value at x-axis = 1 refers to the learning accuracy of the last task after having learnt solely
one task (only itself), the value at 2 refers to the learning accuracy of the last task after having learnt
two tasks (an additional previous task), etc. Overall, CLAW achieves state-of-the-art results in 4 out of
the 5 experiments (at par in the fifth) in terms of avoiding negative transfer. Best viewed in colour.

5 RELATED WORK

We briefly discuss three related approaches to continual learning: (a) regularisation-based, (b)
architecture-based and (c) memory-based. We provide more details of related work in Section A
in the Appendix. (a) A complementary approach to CLAW is the regularisation-based approach to
balance adaptability with catastrophic forgetting: a level of stability is kept via protecting parameters
that greatly influence the prediction against radical changes, while allowing the rest of the parameters
to change without restriction (Li & Hoiem, 2016; Lee et al., 2017; Zenke et al., 2017; Chaudhry
et al., 2018; Kim et al., 2018; Nguyen et al., 2018; Srivastava et al., 2013; Schwarz et al., 2018;
Vuorio et al., 2018; Aljundi et al., 2019c). The elastic weight consolidation (EWC) algorithm by
Kirkpatrick et al. (2017) is a seminal example, where a quadratic penalty is imposed on the difference
between parameter values of the old and new tasks. One limitation is the high level of hand tuning
required. (b) The architecture-based approach aims to deal with stability and adaptation issues by a
fixed division of the architecture into global and local parts (Rusu et al., 2016b; Fernando et al., 2017;
Shin et al., 2017; Kaplanis et al., 2018; Xu & Zhu, 2018; Yoon et al., 2018; Li et al., 2019b). (c)
The memory-based approach relies on episodic memory to store data (or pseudo-data) from previous
tasks (Ratcliff, 1990; Robins, 1993; 1995; Thrun, 1996; Schmidhuber, 2013; Hattori, 2014; Mocanu
et al., 2016; Rebuffi et al., 2017; Kamra et al., 2017; Shin et al., 2017; Rolnick et al., 2018; van de
Ven & Tolias, 2018; Wu et al., 2018; Titsias et al., 2019). Limitations include overheads for tasks
such as data storage, replay, and optimisation to select (or generate) the points. CLAW can as well be
seen as a combination of a regularisation-based approach (the variational inference mechanism) and
a modelling approach which automates the architecture building process in a data-driven manner,
avoiding the overhead resulting from either storing or generating data points from previous tasks.
CLAW is also orthogonal to (and simple to combine with, if needed) memory-based methods.

6 CONCLUSION

We introduced a continual learning framework which learns how to adapt its architecture from the
tasks and data at hand, based on variational inference. Rather than rigidly dividing the architecture

9



Published as a conference paper at ICLR 2020

into shared and task-specific parts, our approach adapts the contributions of each neuron. We achieve
that without having to expand the architecture with new layers or new neurons. Results of six
different experiments on five datasets demonstrate the strong empirical performance of the introduced
framework, in terms of the average overall continual learning accuracy and forward transfer, and also
in terms of effectively alleviating catastrophic forgetting.
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APPENDIX

We begin by briefly summarising the contents of the Appendix below:

• Related works are described in Section A, followed by a brief discussion on the potential
applicability of CLAW to another continual learning (CL) framework in Section A.1.

• In Section E, we provide the statistical significance and standard error of the average classi-
fication accuracy results obtained after completing the last two tasks from each experiment.

• Further experimental details are given in Section C.

• In Section D and Figures 4a- 4e, we display the results of performed ablations which
manifest the relevance of each adaptation parameter.

A MORE RELATED WORK

A complementary approach to CLAW, which could be combined with it, is the regularisation-based
approach to balance adaptability with catastrophic forgetting: a level of stability is kept via protecting
parameters that greatly influence the prediction against radical changes, while allowing the rest of
the parameters to change without restriction (Li & Hoiem, 2016; Vuorio et al., 2018). In (Zenke
et al., 2017), the regulariser is based on synapses where an importance measure is locally computed
at each synapse during training, based on their respective contributions to the change in the global
loss. During a task change, the less important synapses are given the freedom to change whereas
catastrophic forgetting is avoided by preventing the important synapses from changing (Zenke et al.,
2017). The elastic weight consolidation (EWC) algorithm, introduced by Kirkpatrick et al. (2017), is
a seminal example of this approach where a quadratic penalty is imposed on the difference between
parameter values of the old and new tasks. One limitation of EWC, which is rather alleviated by
using minibatch or stochastic estimates, appears when the output space is not low-dimensional, since
the diagonal of the Fisher information matrix over parameters of the old task must be computed,
which requires a summation over all possible output labels (Kirkpatrick et al., 2017; Zenke et al.,
2017; Schwarz et al., 2018). In addition, the regularisation term involves a sum over all previous
tasks with a term from each and a hand-tuned hyperparameter that alters the weight given to it. The
accumulation of this leads to a lot of hand-tuning. The work in (Chaudhry et al., 2018) is based on
penalising confident fitting to the uncertain knowledge by a maximum entropy regulariser.

Another seminal algorithm based on regularisation, which can be applied to any model, is variational
continual learning (VCL) (Nguyen et al., 2018) which formulates CL as a sequential approximate
(variational) inference problem. However, VCL has only been applied to simple architectures,
not involving any automatic model building or adaptation. The framework in (Lee et al., 2017)
incrementally matches the moments of the posterior of a Bayesian neural network that has been
trained on the first and then the second task, and so on. Other algorithms pursue regularisation
approaches based on sparsity (Srivastava et al., 2013; Kim et al., 2018). For example, the work
in (Aljundi et al., 2019c) encourages sparsity on the neuron activations to alleviate catastrophic
forgetting. The l2 distance between the top hidden activations of the old and new tasks is used for
regularisation in (Jung et al., 2016). This approach has achieved good results, but is computationally
expensive due to the necessity of computing at least a forward pass for every new data point through
the network representing the old task (Zenke et al., 2017). Other regularisation-based continual
learning algorithms include (Ebrahimi et al., 2019; Park et al., 2019).

Another approach is the architecture-based one where the principal aim is to administer both the
stability and adaptation issues via dividing the architecture into reusable parts that are less prone
to changes, and other parts especially devoted to individual tasks (Rusu et al., 2016b; Fernando
et al., 2017; Yoon et al., 2018; Du et al., 2019; He et al., 2019; Li et al., 2019a; Xu et al., 2019).
To learn a new task in the work by Rusu et al. (2016a), the whole network from the previous task
is first copied then augmented with a new part of the architecture. Although this is effective in
eradicating catastrophic forgetting, there is a clear scalability issue since the architecture growth can
be prohibitively high, especially with an increasing number of tasks. The work introduced in (Li
et al., 2019b) bases its continual learning on neural architecture search, whereas the representation
in (Javed & White, 2019) is optimised such that online updates minimize the error on all samples
while limiting forgetting. The framework proposed by Xu & Zhu (2018) interestingly aims at solving
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this neural architecture structure learning problem, while balancing the tradeoff between adaptation
and stability, via designed reinforcement learning (RL) strategies. When facing a new task, the
optimal number of neurons and filters to add to each layer is cast as a combinatorial optimisation
problem solved by an RL strategy whose reward signal is a function of validation accuracy and
network complexity. Another RL based framework is the one presented by Kaplanis et al. (2018)
where catastrophic forgetting is mitigated at multiple time scales via RL agents with a synaptic
model inspired by neuroscience. Bottom layers (those near the input) are generally shared among the
different tasks, while layers near the output are task-specific. Since the model structure is usually
divided a priori and no automatic architecture learning nor adaptation takes place, alteration on the
shared layers can still cause performance loss on earlier tasks due to forgetting (Shin et al., 2017).
A clipped version of maxout networks (Goodfellow et al., 2013) is developed in (Lin et al., 2018)
where parameters are partially shared among examples. The method in (Ostapenko et al., 2019) is
based a dynamic network expansion accomplished by a generative adversarial network.

The memory-based approach, which is the third influential approach to address the adaptation-
catastrophic forgetting tradeoff, relies on episodic memory to store data (or pseudodata) from previous
tasks (Ratcliff, 1990; Robins, 1993; 1995; Hattori, 2014; Rolnick et al., 2018; Teng & Dasgupta,
2019). A major limitation of the memory-based approach is that data from previous tasks may not
be available in all real-world problems (Shin et al., 2017; Choi et al., 2019). Another limitation
is the overhead resulting from the memory requirements, e.g. storage, replay, etc. In addition, the
optimisation required to select the best observation to replay for future tasks is a source of further
overhead (Titsias et al., 2019). In addition to the explicit replay form, some works have been based
on generative replay (Thrun, 1996; Schmidhuber, 2013; Mocanu et al., 2016; Rebuffi et al., 2017;
Kamra et al., 2017; Shin et al., 2017; van de Ven & Tolias, 2018; Wu et al., 2018). Notably, Shin et al.
(2017) train a deep generative model based on generative adversarial networks (GANs, Goodfellow
et al., 2014b; Goodfellow, 2016) to mimic past data. This mitigates the aforementioned problem,
albeit at the added cost of the training of the generative model (Schwarz et al., 2018) and sharing
its parameters. Alleviating catastrophic forgetting via replay mechanisms has also been adopted in
reinforcement learning, e.g. (Isele & Cosgun, 2018; Rolnick et al., 2018). A similar approach was
introduced by Lopez-Paz & Ranzato (2017) where gradients of the previous task (rather than data
examples) are stored so that a trust region consisting of gradients of all previous tasks can be formed
to reduce forgetting. Other algorithms based on replay mechanisms include (Aljundi et al., 2019a;b).

Equivalent tradeoffs to the one between adaptation and stability can be found in the literature since
the work in (Carpenter & Grossberg, 1987), in which a balance was needed to resolve the stability-
plasticity dilemma, where the latter refers to the ability to rapidly adapt to new tasks. The works
introduced in (Chaudhry et al., 2018; Kim et al., 2019) shed light on the tradeoff between adaptation
and stability, where they explore measures of intransigence and forgetting. The former refers to the
inability to adapt to new tasks and data, whereas an increase in the latter clearly signifies an instability
problem. Other recent works tackling the same tradeoff include (Riemer et al., 2019) where the
transfer-interference (interference is catastrophic forgetting) tradeoff is optimised for the sake of
maximising transfer and minimising interference by an algorithm based on experience replay and
meta-learning. Other recent algorithms include the ORACLE algorithm by Yoon et al. (2019), which
addresses the sensitivity of a continual learner to the order of tasks it encounters by establishing
an order robust learner that represents the parameters of each task as a sum of task-shared and
task-specific parameters. The algorithm in (Titsias et al., 2019) achieves functional regularisation
by performing approximate inference over the function (instead of parameter) space. They use a
Gaussian process obtained by assuming the weights of the last neural network layer to be Gaussian
distributed. Our model is also related to the multi-task learning approach (Caruana, 1997; Heskes,
2000; Bakker & Heskes, 2003; Adel et al., 2017; Zhao et al., 2019a; Stickland & Murray, 2019; Zhao
et al., 2019b).

A.1 APPLICABILITY OF CLAW TO OTHER CL FRAMEWORKS

As mentioned in the main document, ideas of the proposed CLAW can be applied to continual learning
frameworks other than VCL. The latter is more relevant for the inference part of CLAW since both
are based on variational inference. As per the modeling ideas, e.g. the binary adaptation parameter
depicting whether or not to adapt, and the maximum allowed adaptation, these can be integrated
within other continual learning frameworks. For example, the algorithm in Xu & Zhu (2018) utilises
reinforcement learning to adaptively expand the network. The optimal number of nodes and filters to
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be added is cast as a combinatorial optimisation problem. In CLAW, we do not expand the network.
As such, an extension of the work in (Xu & Zhu, 2018) can be inspired by CLAW where not only the
number of nodes and filters to be added is decided for each task, but also a soft and more general
version where an adaptation based on the same network size is performed such that the network
expansion needed in (Xu & Zhu, 2018) can be further moderated.

B STATISTICAL SIGNIFICANCE AND STANDARD ERROR

In this section, we provide information about the statistical significance and standard error of CLAW
and the competing continual learning frameworks. In Table 1, we list the average accuracy values
(Figure 1 in the main document) obtained after completing the last two tasks from each of the six
experiments. A bold entry in Table 1 denotes that the classification accuracy of an algorithm is
significantly higher than its competitors. Significance results are identified using a paired t-test with
p = 0.05. Each average accuracy value is followed by the corresponding standard error. Average
classification accuracy resulting from CLAW is significantly higher than its competitors on the 6
experiments.

Table 1: Average test classification accuracy of the last two tasks in each of the six experiments:
Permuted MNIST, Split MNIST, Split notMNIST, Split Fashion-MNIST, Omniglot and CIFAR-100,
followed by the corresponding standard error. A bold entry denotes that the classification accuracy
of an algorithm is significantly higher than its competitors. Significance results are identified using
a paired t-test with p = 0.05. Average classification accuracy resulting from CLAW is significantly
higher than its competitors on the 6 experiments.

Classification Accuracy CLAW VCL VCL + Coreset EWC

Permuted MNIST (task 9) 99.2 ± 0.2 % 93.5 ± 0.3 % 95.5 ± 0.3 % 92.1 ± 0.4 %
Permuted MNIST (task 10) 99.2 ± 0.1 % 92.1 ± 0.3 % 95 ± 0.5 % 90.2 ± 0.4 %
Split MNIST (task 4) 99.2 ± 0.2 % 98.6 ± 0.3 % 98.7 ± 0.2 % 94.9 ± 0.4 %
Split MNIST (task 5) 99.1 ± 0.2 % 97.0 ± 0.4 % 98.4 ± 0.3 % 94.2 ± 0.5 %
Split notMNIST (task 4) 98.7 ± 0.3 % 95.8 ± 0.4 % 96.9 ± 0.5 % 92.9 ± 0.4 %
Split notMNIST (task 5) 98.4 ± 0.2 % 92.1 ± 0.3 % 96.0 ± 0.3 % 92.3 ± 0.4 %
Split Fashion-MNIST (task 4) 93.2 ± 0.2 % 90.0 ± 0.3 % 90.7 ± 0.2 % 89.4 ± 0.4 %
Split Fashion-MNIST (task 5) 92.5 ± 0.2 % 88.0 ± 0.2 % 88.5 ± 0.4 % 87.6 ± 0.3 %
Omniglot (task 49) 84.5 ± 0.2 % 81.1 ± 0.3 % 81.8 ± 0.3 % 78.2 ± 0.3 %
Omniglot (task 50) 84.6 ± 0.3 % 80.7 ± 0.3 % 81.1 ± 0.4 % 77.3 ± 0.3 %
CIFAR-100 (task 19) 95.6 ± 0.3 % 78.7 ± 0.4 % 80.8 ± 0.3 % 63.1 ± 0.5 %
CIFAR-100 (task 20) 95.6 ± 0.3 % 77.2 ± 0.4 % 79.9 ± 0.4 % 62.4 ± 0.4 %

Classification Accuracy P&C RCL FRCL LTG

Permuted MNIST (task 9) 94.4 ± 0.3 % 96.4 ± 0.5 % 98.4 ± 0.4 % 98.7 ± 0.3 %
Permuted MNIST (task 10) 94.1± 0.6 % 96.3 ± 0.3 % 98.4± 0.5 % 98.7 ± 0.3 %
Split MNIST (task 4) 97.3 ± 0.5 % 97.8 ± 0.7 % 98.2 ± 0.3 % 98.7 ± 0.2 %
Split MNIST (task 5) 96.4 ± 0.4 % 97.5 ± 0.6 % 98.1 ± 0.2 % 98.3 ± 0.3 %
Split notMNIST (task 4) 97.8 ± 0.4 % 97.7 ± 0.2 % 96.1 ± 0.6 % 97.8 ± 0.3 %
Split notMNIST (task 5) 96.9 ± 0.5 % 97.3 ± 0.5 % 95.2 ± 0.7 % 97.4 ± 0.3 %
Split Fashion-MNIST (task 4) 91.4 ± 0.3 % 91.1 ± 0.3 % 90.4 ± 0.2 % 92.5 ± 0.4 %
Split Fashion-MNIST (task 5) 90.8 ± 0.2 % 89.7 ± 0.4 % 87.7 ± 0.4 % 91.1 ± 0.3 %
Omniglot (task 49) 82.8 ± 0.2 % 80.1 ± 0.4 % 79.9 ± 0.3 % 83.6 ± 0.3 %
Omniglot (task 50) 82.7 ± 0.3 % 80.2 ± 0.4 % 79.8 ± 0.5 % 83.5 ± 0.3 %
CIFAR-100 (task 19) 68.3 ± 0.6 % 63.7 ± 0.6 % 77.4 ± 0.7 % 86.2 ± 0.4 %
CIFAR-100 (task 20) 65.5 ± 0.6 % 60.4 ± 0.6 % 76.8 ± 0.6 % 85.6 ± 0.5 %

C OTHER EXPERIMENTAL DETAILS

Here are some additional details about the datasets in use:
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The MNIST dataset is used in both the Permuted MNIST and Split MNIST experiments. The MNIST
(Mixed National Institute of Standards and Technology) dataset (LeCun et al., 1998) is a handwritten
digit dataset. Each MNIST image consists of 28 × 28 pixels, which is also the pixel size of the
notMNIST and Fashion-MNIST datasets. The MNIST dataset contains a training set of 60,000
instances and a test set of 10,000 instances.

As mentioned in the main document, each experiment is repeated ten times. Data is randomly split
into three partitions, training, validation and test. A portion of 60% of the data is reserved for training,
20% for validation and 20% for testing. Statistics reported are the averages of these ten repetitions.

Number of epochs required per task to reach a saturation level for CLAW (and the bulk of the methods
in comparison) was 10 epochs for all experiments except for Omniglot and CIFAR-100 (15 epochs).
Used values of ω1 and ω2 are 0.05 and 0.02, respectively.

For Omniglot, we used a network similar to the one used in (Schwarz et al., 2018), which consists of
4 blocks of 3× 3 convolutions with 64 filters, followed by a ReLU and a 2× 2 max-pooling. The
same CNN is used for CIFAR-100. CLAW achieves clearly higher classification accuracy on both
Omniglot and CIFAR-100 (Figures 1e and 1f).

D ABLATIONS

The plots displayed in this section empirically demonstrate how important the main adaptation
parameters are in achieving the classification performance levels reached by CLAW. In each of the
Figures 4a- 4f, the classification performance of CLAW is compared to the following three cases: 1)
when the parameter controlling the maximum degree of adaptation is not learnt in a multi-task fashion,
i.e. when the respective general value si,j is used instead of si,j,t. 2) when adaptation always happens,
i.e. the binary variable denoting the adaptation decision is always activated. 3) when adaptation never
takes place. The differences in classification accuracy between CLAW and each of the other three
plots in Figures 4a- 4f empirically demonstrate the relevance of each adaptation parameter.

E RUN-TIME

In Table 2, we report the wall-clock run time (in seconds) after finishing training in each of the six
experiments: Permuted MNIST, Split MNIST, Split notMNIST, Split Fashion-MNIST, Omniglot and
CIFAR-100. VCL and CLAW converge (i.e. reach the accuracy levels reported earlier) more quickly
than the other methods. CLAW was the fastest in 3 out of the 6 experiments, whereas VCL was the
fastest in the other 3, but their training run-time values have always been close to each other. As
reported in the earlier sections, there is a significant difference in classification accuracy in favour of
CLAW. This has been achieved within reasonably acceptable run-time levels thanks to the proposed
design where the whole data-driven adaptation procedure is kept as part of an amortised variational
inference algorithm. RCL is the slowest since it is based on reinforcement learning, where a large
number of trials are typically required. This has also been acknowledged and reported therein (Xu &
Zhu, 2018).

Table 2: Wall-clock run time (in seconds) after finishing training in each of the six experiments:
Permuted MNIST, Split MNIST, Split notMNIST, Split Fashion-MNIST, Omniglot and CIFAR-100.
As mentioned earlier, the statistics reported are averages of ten repetitions.

Training Time (in seconds) CLAW VCL VCL + Coreset EWC P&C RCL FRCL LTG

Permuted MNIST (after 10 tasks) 667 682 724 1117 1355 32575 919 705
Split MNIST (after 5 tasks) 649 637 708 1054 1312 31110 891 648
Split notMNIST (after 5 tasks) 722 714 792 1210 1407 34123 898 781
Split Fashion-MNIST (after 5 tasks) 829 818 901 1284 1498 35086 972 915
Omniglot (after 50 tasks) 1126 1241 1513 1637 1714 37247 1620 1312
CIFAR-100 (after 20 tasks) 792 810 914 802 1322 6102 1016 896
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(a) Ablations for Permuted MNIST.
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(b) Ablations for Split MNIST.

1 2 3 4 5
Tasks

92

93

94

95

96

97

98

99

100

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

 (%
)

Split notMNIST
CLAW
No adapt. (p = 0)
Always adapt. (p = 1)
Always general s, no ML

(c) Ablations for Split notMNIST.
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(d) Ablations for Split Fashion-MNIST.
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(e) Ablations for Omniglot.
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(f) Ablations for CIFAR-100.

Figure 4: Ablation studies on different datasets.
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