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ABSTRACT: 

 

Hyperspectral data finds applications in the domain of remote sensing. However, with the increase in amounts of information and 

advantages associated, come the „curse‟ of dimensionality and additional computational load. The question most often remains as to 

which subset of the data best represents the information in the imagery. The present work is an attempt to establish entropy, a 

statistical measure for quantifying uncertainty, as a formidable measure for determining the optimal number of principal components 

(PCs) for improved identification of land cover classes. Feature extraction from the Airborne Prism EXperiment (APEX) data was 

achieved utilizing Principal Component Analysis (PCA). However, determination of optimal number of PCs is vital as addition of 

computational load to the classification algorithm with no significant improvement in accuracy can be avoided. Considering the soft 

classification approach applied in this work, entropy results are to be analyzed. Comparison of these entropy measures with 

traditional accuracy assessment of the corresponding „hardened‟ outputs showed results in the affirmative of the objective. The 

present work concentrates on entropy being utilized for optimal feature extraction for pre-processing before further analysis, rather 

than the analysis of accuracy obtained from principal component analysis and possibilistic c-means classification. Results show that 

7 PCs of the APEX dataset would be the optimal choice, as they show lower entropy and higher accuracy, along with better 

identification compared to other combinations while utilizing the APEX dataset.  

 

 

                                                                 
*  Corresponding author.  This is useful to know for communication  

with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

“Remote sensing is the science and art of obtaining information 

about an object, area, or phenomenon through the analysis of 

data acquired by a device that is not in contact with the object, 

area, or phenomenon under investigation” (Lillesand, Kiefer, 

and Chipman). Of the many types of remote sensing, 

hyperspectral remote sensing has emerged as one of the most 

active areas of research (Qian and Chen 2007). A distinctive 

advantage of imaging spectroscopy is data acquisition across 

contiguous spectral bands, which in turn allows a focussed 

analysis of objects (and specific properties) on the ground.  

 

Hyperspectral remote sensing (or imaging) enables analysis of 

greater spectral detail and variations of targets (da Silva, 

Centeno, and Aranha 2008) as compared to multi-spectral data. 

But with higher spectral detail, the problem of dimensionality 

and increase in computational load is commonly associated. The 

dimensionality problem affects the classification of raw 

hyperspectral data and is known as “Hughes Phenomenon” 

(Hughes 1968). Hughes describes this “peaking paradox” as the 

achieving of a optimal value of statistical recognition accuracy 

with a subset of bands and subsequent declination due to 

inadequate training samples. Evidence of reduction in 

computational load was also found when dimensionality of the 

data was reduced (da Silva, Centeno, and Aranha 2008). 

Successful studies have been carried out to reduce 

dimensionality of hyperspectral data (Qian and Chen 2007; 

Harsanyi and Chang 1994; Plaza et al. 2005), before further 

processing and analysis of hyperspectral data.  

 

Remote sensing is essentially completed in three steps; (i) data 

acquisition; (ii) image processing and (iii) interpretation process 

(Dehghan and Ghassemian 2006). All the techniques in the 

mentioned stages are prone to uncertainty (Giles M. Foody and 

Atkinson 2002; Dehghan and Ghassemian 2006). Entropy 

provides a method to study and understand the variation of 

uncertainty in classification outputs. The measure of degree of 

uncertainty of classification results assist in evaluating the 

classifier performance, thereby indirectly providing a measure 

of how accurately a pixel of a certain class is assigned to the 

corresponding label (Dehghan and Ghassemian 2006; Kumar 

and Dadhwal 2010).   

 

The primary objective of this work is to understand the 

dimensionality of hyperspectral datasets, and post classification 

of principal component databases, to establish entropy as an 

acceptable measure for choice of optimal principal components 

from the dataset.  

 

2. LITERATURE BACKGROUND 

Vane and Goetz (1988) (Vane and Goetz 1988) published a 

comprehensive analysis of imaging spectroscopy, emerging as a 

new approach of Earth remote sensing. A review of multi- and 

hyperspectral imaging was given by Govender et al., 2007 

(Govender, Chetty, and Bulcock 2007), with focus on 

hyperspectral imagery applications.  A multitude of applications 

have been widely researched. The goal of hyperspectral image 

processing is to detect and classify every pixel in the scene and 
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reduce the dimensionality without loss of critical information 

(Harsanyi and Chang 1994). Most linear transformations like 

Principal Component Analysis (PCA) (Rodarmel and Shan 

2002), etc. have been used to counter the „curse‟ of 

dimensionality (Hughes 1968).  

 

Although the approach by Hughes, to define the curse of 

dimensionality, was criticised and stated as an „apparent 

paradox‟ by researchers like Van Campenhout (Van 

Campenhout 1978), the curse of dimensionality stands as a 

complication of high spectral resolution. Considered in this 

study is a highly accepted method of dimensionality reduction, 

i.e. PCA (Jolliffe 2002). Detailed explanations of the data 

transformations associated with this method of feature 

extraction are given by Rodarmel and Shan  (Rodarmel and 

Shan 2002). PCA calculates orthogonal projections that 

maximize variance in data, yielding data in a new uncorrelated 

coordinate system (Plaza et al. 2005). Reduction in 

computational duration and increase in accuracy assessment 

provides adequate proof that PCA is an effective pre-processing 

step for hyperspectral data analysis.  

 

Traditional methods of remote sensing supervised classification, 

training information and results are depicted in the one-pixel-

one-class method (Wang 1990). As class mixing cannot be 

taken into consideration while training „hard‟ classifiers, this 

limitation has reduced classification accuracy. The work by 

Wang (1990) supports the applicability of fuzzy based 

classification techniques against conventional “one-pixel-one-

class” methods. The fundamental drawback of all such 

classification techniques is that most spectral information is lost 

in the process of transforming the remotely sensed data to 

generate a thematic map (Foody et al. 1992). Foody (2004) 

(Giles M. Foody 2004) details the many sub-pixel methods in 

remote sensing. Considering that data is obtained in varying 

spectral and temporal resolutions, many accurate methods of 

classification have been researched and published. However, 

this doesn‟t change the fact that, in practice, absolute accurate 

classification of land cover is a difficult task (Townshend 

1992). It is important to note that use of fine spatial resolution 

data does not necessarily eliminate the problem of mixed pixels, 

as the class‟s constituent parts may carry importance and fine 

resolution data over large regions is impractical. In the case of 

soft classification approaches, pixels are not „forced‟ to show 

full membership (or belonging) to a single class. Thus, the 

contribution of classes to a single pixel is measured in terms of 

membership values that define the degree of the pixel belonging 

to a specific class. Outputs of soft classification are also derived 

similar to linear unmixing, i.e. a fraction image corresponding 

to each class (Kumar and Dadhwal 2010). Of the many sub-

pixel classification approaches, in the present context, 

Possibilistic c-means algorithm is considered as the membership 

values derived are “measures of the absolute strength of class 

membership” (R. Krishnapuram and Keller 1993; Raghuram 

Krishnapuram and Keller 1996; Giles M. Foody 2004) and not 

influenced by presence of untrained classes, making in feasible 

in cases where the classes may not be exhaustively defined.    

 

Entropy provides a method to study and understand the 

variation of uncertainty in classification outputs. 

Mathematically, entropy expresses the amount of statistical 

information of a system described by N discrete levels (Maselli, 

Conese, and Petkov 1994). Entropy is evaluated from the 

membership vector of a pixel. The membership vector (µ (P/x)) 

of a pixel is the membership value of a pixel in each of the 

classes‟ fraction outputs.  

 

 (1) 

 

Where µ (P/x) is the membership vector; of class “k” for pixel 

“x” for “C” classes.  

 

Entropy is a criterion that summarizes the classification 

uncertainty in a single number, per pixel, per class or per image 

(Dehghan and Ghassemian 2006). It calculated, while utilizing 

the PCM algorithm, using Eq. 2: 

 

         (2) 

  

Maselli et al., 1994 (Maselli, Conese, and Petkov 1994) 

discusses the applicability of entropy for estimation of accuracy 

of soft ML classification. The ML classifier using non-

parametric priors yielded a high accuracy, supported by low 

entropy values. There is a requirement of fuzzy ground data as 

compared to the traditionally used hard ground truth data to 

assess the accuracy of fuzzy classification (Giles M. Foody 

1995). 

 

3. DATASET AND STUDY AREA 

The need for a flexible hyperspectral mission against competing 

systems like CASI (Compact Airborne Spectrographic Imager), 

GERIS (Geophysical Environment Research Imaging 

Spectrometer) and DAIS (Digital Airborne Imaging 

Spectrometer) (Itten et al. 2008) prompted the Airborne Prism 

EXperiment (APEX) project. Co-funded by Switzerland and 

Belgium, the APEX instrument operates between 380 and 2500 

nm in 313 freely configurable bands (Itten et al. 2008; Jehle et 

al. 2010). Detailed information regarding the ESA-APEX 

program, sensor characteristics and other information can be 

found in (Schlapfer et al. 2000; Itten et al. 2008) and (Hueni et 

al. 2009). The APEX Open Science Dataset (OSD) (Itten et al. 

2008; Jehle et al. 2010) was acquired in June 2011. After 

extensive calibration and pre-processing of the raw data to 

Level1 processed data (“APEX Open Science Data Set Leaflet” 

2011), the dataset is made available on the website, 

http://www.apex-esa.org/content/free-data-cubes (“APEX” 

2013), as Open Science Dataset with a spectral resolution of 

285 bands and spatial resolution of 1.8 meters, in RAW 

(imaging geometry), ENVI cube format.  

 

Although the focus is on the dataset in this study, it is important 

to understand the diversified land cover classes in the image. 

These classes range from roads, roofs and other urban features 

to a multitude of vegetation classes like grass and forest. 

Ground truth information and class sites are vital for (i) 

Training the classifier; (ii) Entropy calculations; and (iii) 

Testing the classification results.  

 

The classes were identified from interpretations from 

SwissTopo web portal (“SwissTopo Web Portal” 2014). 

Regions of Interest (ROIs) were collected, verified with the data 

providers and used for classification and accuracy analysis.  
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Figure 1 - True Colour Composite of APEX Open Science 

Dataset 

  

4. METHODOLOGY 

The data is interpreted in terms of classes constituted in the 

study area and identification of vital training and testing data 

sites. Due to the high spectral resolution of the hyperspectral 

dataset, a very detailed spectral response curve analysis can be 

made of the classes (or object classes) on the ground. Besides 

the high spectral resolution (of 285 bands), the dataset has a 

fine spatial resolution of 1.8 meters. The adopted methodology 

is illustrated in Figure 3.  

The object classes identified in the study area are: 

1. Artificial Turf  

2. Black Roof 

3. Building 

4. Clay Soil  

5. Grass 

6. Lawn Tennis Court 

7. Mixed Coniferous Forest  

8. Mixed Deciduous Forest  

9. Pasture 

10. Railway 

11. Red Roof 

12. Red Synthetic Ground  

13. Road 

14. Roofs 

15. Sand 

16. Stressed Grass  

17. Synthetic Sports Surface  

18. Vineyard  

19. Water  

20. Yellow Tartan 

 

Feature extraction algorithms create new features based on 

transformations of the original feature set (Jain and Zongker 

1997). Principal Component Analysis (PCA) is one the most 

important and widely used method of reducing the 

dimensionality of data. It produces new attributes/features 

through linear combinations of the original feature set, 

orthogonal to each other and quantifies the variation in the data 

(Janecek and Gansterer 2008). These new features are called 

Principal Components (PCs). The four main properties/ 

advantages of PCA are: 

1. The features have 0 covariance; 

2. Output features are ordered in descending order with 

respect to variance or amount of data; 

3. First output feature contains the maximum amount of 

information (maximum variance of data); 

4. Each successive feature captures as much variance of 

data as possible (information).  

 

The principal components are generated, displaying the 

respective Eigen values and percentages of information 

contained in the respective components (Figure 2). Depending 

on the amount of information and lack of gain of variance in the 

increasing PCs, the initial intrinsic dimensionality is reduced to 

8 components.  

 
Figure 2 - Percentage depiction of gain in variance with 

increase in PCs 

 

However, the optimal components were determined from the 

results of the corresponding classifications. The combination of 

optimal number of PCs is achieved using entropy, and verified 

in comparison with accuracy assessment through traditional 

methods. The inputs to the classifier considered are (PC1), 

(PC1 and PC2), (PC1, PC2 and PC3)..., (PC1, PC2 ... PC8). 

The result of adding one PC at a time to the input helps 

understand which combination of PCs is an optimal choice.  

 

Considering the fact that the classification approach remains the 

same for each of the inputs, the assessment of Entropy (as a 

measure of degree of uncertainty) and Accuracy assessment (as 

a measure of degree of correctness) would be an interpretation 

of the influence of the input database of PCs. The outputs of the 

classification process are individual, grey-scale class soft 

outputs. The successful classification of an object class was 

assessed by a method of mean difference calculations (Figure 

4).  

 

Very small gain of 

information 
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Figure 3 - Methodology 

 

The illustration depicts a choice of random pixels in known 

class locations and calculating the difference in pixel value. If 

the difference is significant, it implies that the class is separable 

after classification. If a certain class has been successfully 

classified, entropy measures and accuracy assessment are 

attempted to quantify their accuracy of identification. 

Generalizing, the particular class shows a better contrast in the 

output with reference to other classes.  

 

 
Figure 4 - Illustration of class differentiation from soft outputs 

 

Entropy calculations define the degree of certainty with which 

the classifier assigns a class label to a certain pixel. However, 

measures of entropy should be supported with accuracy 

assessment for acceptable interpretations (Giles M. Foody 

1995). The entropy measures of the classes are established 

using 50-75 membership vectors, depending on the spatial 

extent of the classes. Defuzzification of the 20 soft outputs was 

done by a simple maximum value approach. The algorithm 

reads the membership values along the pixel vector and assigns 

the class with the maximum membership to the pixel. The 

combination of 20 soft outputs, each corresponding to its 

respective class, is “hardened” to a single output, containing 

classification results that can be evaluated by traditional 

methods of accuracy assessment (user‟s and producer‟s 

accuracy), using a combination of user-defined and randomly 

generated test sites. 

 

5. RESULTS AND DISCUSSIONS 

PCA has been used a pre-processing step to classification 

wherein the algorithm transforms the data into orthogonal 

projections that maximize variance using linear transformations. 

The choice of optimal PCs is based on three aspects: 

1. Amount of information contained in the principal 

components; 

2. Number of classes successfully identified in the 

classification output; 

3. Minimal entropy (degree of uncertainty).  

 

Figure 2 illustrates the amount of information gained with 

addition of each principal component. As observed, the amount 

of information gained beyond the 8th component becomes 

highly trivial. With a gain of 0.04%, adding dimensions 

becomes questionable. Therefore, combinations using 8 PCs 

were considered for further analysis. Each of the PCs is 

individually added to 1 PC, thereby making the inputs (1PC), 

(1PC, 2PC), (1PC, 2PC, 3PC)... (1PC, 2 PC ... 8PC). An 

optimal PCs input would show the maximum number of 

successful classes identified and comparatively minimal 

entropy. The corresponding accuracy of the PCs will serve as a 

supporting factor for entropy.  

  

Figure 5 provides a graphical illustration of classes identified 

(X axis) with their corresponding entropy values (Y axis). Note 

that the classes are in the order of identification with respect to 

increasing PCs input. Therefore, for example, “Lawn Tennis 

Court” and “Buildings” classes were identified after adding 7 

and 8PCs respectively to the input principal components 

database. “Clay Soil” was successfully identified from the initial 

considered 3 PCs. An input of the first or first two PCs was not 

considered as the 2-dimensional signature vector could not 

distinguish most of the classes, resulting in uninterpretable 

outputs. Even in the absence of considering the maximum 

number of classified classes, the entropy values show 

significantly higher values for classes like “Mixed Coniferous 

Forest (MCF)” while considering lesser PC inputs.  

 

With reference to previously defined criteria for choice of 

optimal PCs, maximum number of classes (9) were successfully 

classified (Figure 5) while considering an input of 7PCs and 

8PCs. Considering the individual soft outputs and thresholds of 

membership values were used to analyze the conflicting classes. 
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A comparative analysis of entropy values for 7PCs and 8PCs 

(Figure 6) was approached to determine the optimal PCs. 

Similar or lesser entropy can be associated with 7PCs input 

when compared to 8PCs (Figure 6). Therefore, the optimal PCs 

input is decided to be 7PCs as there is no significant variation 

in entropy measures with increasing dimensionality of the 

principal components input. A combination of amount of 

information in components, number of classes determined and 

entropy values are, therefore, used to determine the 7PCs as the 

optimal choice from the initial PCA output. 

 

 
 

 

Also supporting this assessment is the defuzzified evaluation of 

8PCs classification output, wherein an accuracy of 57.50% was 

obtained against 59.50% of 7PCs. This defuzzification and 

eventual output was achieved in the method detailed previously.  

 

In conclusion, entropy is thus established as a dependable 

measure for deciding on the optimal number of principal 

components from the initial PCA analysis. This greatly assists 

in reducing the hyperspectral datasets for further analysis and 

reduces the computational load for further processing, as is the 

motive with any dimensionality reduction approach. It is 

important to note that the focus of this work is on the 

significance of entropy measures, and not an analysis of PCA or 

the classification approach.  
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