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ABSTRACT

Hyperspectral remote sensing's ability to capture spectral information of targets in very narrow bandwidths
gives rise to many intrinsic applications. However, the major limiting disadvantage to its applicability is its
dimensionality, known as the Hughes Phenomenon. Traditional classification and image processing approaches
fail to process data along many contiguous bands due to inadequate training samples. Another challenge of
successful classification is to deal with the real world scenario of mixed pixels i.e. presence of more than one
class within a single pixel. An attempt has been made to deal with the problems of dimensionality and mixed
pixels, with an objective to improve the accuracy of class identification.

In this paper, we discuss the application of indices to cope with the disadvantage of the dimensionality
of the Airborne Prism EXperiment (APEX) hyperspectral Open Science Dataset (OSD) and to improve the
classification accuracy using the Possibilistic c–Means (PCM) algorithm. This was used for the formulation of
spectral and spatial indices to describe the information in the dataset in a lesser dimensionality. This reduced
dimensionality is used for classification, attempting to improve the accuracy of determination of specific classes.
Spectral indices are compiled from the spectral signatures of the target and spatial indices have been defined
using texture analysis over defined neighbourhoods. The classification of 20 classes of varying spatial distributions
was considered in order to evaluate the applicability of spectral and spatial indices in the extraction of specific
class information. The classification of the dataset was performed in two stages; spectral and a combination of
spectral and spatial indices individually as input for the PCM classifier. In addition to the reduction of entropy,
while considering a spectral-spatial indices approach, an overall classification accuracy of 80.50% was achieved,
against 65% (spectral indices only) and 59.50% (optimally determined principal components).

Keywords: Hyperspectral Imaging, Sub-pixel Classification, Spectral Indices, Spatial Indices, Dimensionality,
Hughes Phenomenon

1. INTRODUCTION

Acquisition of spectral information from a target without being in physical contact is referred to as remote
sensing. Broadly speaking, spectral information is acquired in two types of ’band’ arrangements – multi-spectral
and hyperspectral imaging. Multi-spectral imaging is spectral information depicted in the form of broad bands,
each covering a range of the electro-magnetic spectrum. Hyperspectral imaging on the other hand produces a
spectral definition of the target in many, contiguous bands of narrow or specific wavelengths [1,2]. Hyperspectral
imaging has an intrinsic diagnostic characteristic (biophysical characteristics of vegetation can be distinguished
at each wavelength when spectral information is collected using hyperspectral imaging as shown in Figure 1)
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of identifying specific features [3, 4] of the target of interest due to the ability of identifying minor changes in
spectral reflectance, in comparison to multi-spectral imaging.

Through the advent of imaging spectroscopy, arose the questions of efficiently handling the large amount of
data that hyperspectral imaging provides [4]. Although the contiguous bands provide a greater spectral detail
of information, hyperspectral imagery brings with it the ”curse of dimensionality”. Also known as the Hughes
Phenomenon [5], the statistical accuracy of class recognition optimises at a subset of bands and subsequently
declines due to inadequate training samples [6]. Reduction of computational load and benefits of dimensionality
reduction have been widely researched and accepted [1, 3, 7].

Figure 1. Identifiable aspects of vegetation, when spectral information is acquired in contiguous bands [8].

The current research reports the usage of an input database of spectral and spatial indices for improving the
classification accuracy, using Possibilistic c-Means (PCM), while intrinsically reducing the dimensionality of the
dataset. The Airborne Prism EXperiment (APEX) Open Science Dataset (OSD) was used in this study. To
demonstrate the improvement of classification accuracy, a baseline classification accuracy for comparison was
established using Principal Component Analysis (PCA) for dimensionality reduction and establishing entropy for
statistical quantification of uncertainty [6]. At the outset, the authors would like to mention that the classification
approach is targeted at specific class identification and not overall classification accuracy. A detailed literature
survey regarding the following topics is available in Kallepalli, A. (2014) [9].

2. DIMENSIONALITY

The intrinsic diagnostic qualities of hyperspectral imagery stand strong in multiple applications that require
differentiation of targets like vegetation extent and health analysis, biomedical research, etc. This ability, in
comparison to multi-spectral imaging, is due to the greater spectral resolution [3] of hyperspectral imaging.
However, this spectral information is acquired at the expense of classification accuracy and high computational
requirements. Hughes [5] described this phenomenon as a statistical inadequacy of training samples in compar-
ison to number of bands of the dataset. A ’peaking phenomenon’ was said to occur with accuracy improving
for a subset of bands, and thereby reducing with every added band of information. Although this phenomenon
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was challenged to be an ’apparent’ phenomenon by researchers like Van Campenhout [10], the reduction of
hyperspectral data’s dimensionality is still considered a key step in the pre-processing. In order to avoid the
problem of dimensionality, methods like PCA [11,12], Minimum Noise Fraction (MNF) [13], usage of orthogonal
subspace projections [7], morphological transformations [14] etc. have been used for information extraction.
While methods like PCA employ linear transformations to convert the data into a reduced or ”intrinsic dimen-
sionality” [15], such transformations are not universally applicable. Harsanyi and Chang (1994) [7] attempted
to simultaneously reduce the dimensionality and classify the dataset by projecting the signals into orthogonal
subspace for eliminating the undesired signatures and improving signal-to-noise ratios. Plaza et al., 2005 [14]
formulated a sequence of morphological transformations for filtering and classifying high dimensional data.

It is important to note the difference of dimensionality reduction methods generally applied. Feature selection
methods refer to algorithms that output a subset of the original dimensionality, while methods that create
new features either by transformation or combination of input features are referred to as feature extraction
[16]. Besides reducing the computational load of the algorithm, dimensionality reduction greatly improves the
classification accuracy as it results in a comparable number of training samples against a subset of bands with
the information from the original imagery. However, the disadvantages of methods like PCA are they assume
that the dimensionality of the data can be reduced by linear transformations when data could be non-linear
in relation, and the initial components are dominated by data that shows greater variance while not (with
exceptions) maximising extracted information [11]. These disadvantages have prompted further research into
non-linear and/or knowledge-based dimensionality reduction, as is this case in this current research.

3. PIXEL-BASED SPECTRAL INDICES

Spectral indices utilise discernible features in the spectral response of the target to distinguish it from the
background. The quantification of biophysical variables from remote sensing was explored [17], introducing
colour and spectral signatures of features [18–20]. The formulation of spectral indices began with early research
into Simple Ratio (SR) [21] of bands. The contrasting spectral response (Figure 1) in infrared (800nm) and red
(675nm) regions was explored through a ratio of individual pixel values.

One of the most popular indices remains to be Normalised Difference Vegetation Index (NDVI) [22], which
is a modified version of SR index. Using a simple ratio of the reflectance values in the infrared and red bands
((RNIR−RR)/(RNIR+RR) for Landsat 1 data), Rouse et al. [23] applied NDVI for the first time to enhance the
vegetation features against the background. This index has found and remains to have numerous applications.
Although the delineation of vegetation features is done satisfactorily using NDVI, the correlation between various
vegetation parameters and influence of the underlying soil reflectance [24] impacts the results of NDVI analysis.
To address these vegetation-specific identification, many indices have been formulated for chlorophyll content
[25–27], Leaf Area Index (LAI) [28–30], etc.

Triggered by research into exploring the spectral qualities of vegetation, Huete (1988) [24] attempted to
remove the implications of soil substrate by developing the index, Soil Adjusted Vegetation Index (SAVI):

SAVI =
(RNIR −RR)

(RNIR +RR + L)
× (1 + L) (1)

where L defines the prior knowledge of the vegetation density, i.e. low vegetation (L = 1), intermediate
vegetation cover (L = 0.5) and high density vegetation cover (L = 0.25). An improvement to SAVI resulted in
Modified SAVI index (MSAVI) [31], eliminating the need for prior knowledge of vegetation density cover:

MSAVI = 0.5(2RNIR + 1−
√

(2RNIR + 1)2 − 8(RNIR −RRed)) (2)

Elvidge and Chen (1995) [32] investigated the implications of narrow band data, against broad-band data
for estimating LAI and green cover. Applying the basic understanding of chlorophyll absorption in the red and
reflectance in NIR spectrum [33], previously defined vegetation indices were explored to highlight the importance
of narrow band hyperspectral imagery. LAI and canopy chlorophyll density (CCD) were investigated using
previously defined indices [34].
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Chlorophyll Absorption in Reflectance Index (CARI) [35] was improved to Modified Chlorophyll Absorption
in Reflectance Index (MCARI) [30] by comparing the reflectance at 0.67µm to 0.55µm and 0.7µm:

MCARI = [(R0.7 −R0.67)− 0.2(R0.7 −R0.55)]× R0.7

R0.67
(3)

The diagnostic ability of spectral indices and narrow band imaging were further highlighted through improved
pigment and chlorophyll estimation [36, 37] in open-canopy tree crops [38], viticulture [39, 40] physiological
characteristics (Physiological Reflectance Index-PRI) [41], carotenoid quantification [42], etc.

Figure 2. Priority ordering of image elements - Basis of image analysis procedures [19]

The application of spectral indices for enhancing certain features extended beyond vegetation; to classify the
built-up area in urban areas using Normalised Difference Built-up Index (NDBI) [43] and outlining the boundary
of water bodies using Normalised Difference Water Index (NDWI) using infrared bands ((R0.86−R1.24)/(R0.86 +
R1.24), where R denotes the reflectance in the respective wavelength) [44].

As hyperspectral imaging provides much greater detail in spectral information, its application and choice of
indices’ bands depends on the property that is to be enhanced and target of interest. The primary element of
image interpretation (Figure 2) remains to be tone/colour, i.e. spectral information.

4. TEXTURE-BASED SPATIAL INDICES

Although spatial indices are interpreted in many ways [9], the current research focusses on utilising the spatial
variation of pixels and the influence of neighbourhood of pixels on distinction of imaged targets.

The primary pattern elements are considered to be spectral, textural and contextual features [9]. The
introduction of the textural features by Haralick et al., 1973 [18] identified the importance and usage of pixel
neighbourhood influences. Prior research involved understanding the coarseness of the features, along with the
edge definition. Derived textures used angular nearest neighbourhood grey-tone spatial dependence matrices
[18,45]. Estes et al., 1983 [19] supported the importance of texture in interpretation of imagery (Figure 2). The
size, shape and texture of the features, as spatial elements, assists in classification and identification of features.
Applications have expanded to interpretation of SAR imagery as well, utilising the grey-tone co-occurrence
textural matrices [46]. However, given the implications on the classification of SAR imagery, it could be noted

Proc. of SPIE Vol. 10005  100050Z-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



APEX Open
Science Data

DR approach - Principal
Component Analysis

1
Classification using

Possibilistic c -Means

Entropy based Selection

of Optimal Principal
Components database

Accuracy Assessment

Baseline Classification Approach

Determination of
Spectral Indices

Texture Analysis

(Spatial Indices)

Proposed Dimensionality
Reduction Approach

Spectral

Indices based
Database

Spectral and

Spatial Indices

based Database

Classification using

Possibilistic c -Means

Classification using

Possibilistic c -Means

Entropy and Accuracy
Assessment

Entropy and Accuracy
Assessment

Proposed Classification Approach

that using the most suitable texture analysis elements, instead of all of them collectively, might be a better choice
of analysing texture in the work-flow of the image analysis.

Texture analysis have proved to perform as quantitative discriminators along with spatial metrics [45], in
order to improve the identification of spatial information from datasets. Through the current work, the authors
look to improve the classification accuracy of datasets when using spatial and spectral information together as
input to the classifier for identification of specific classes.

5. METHODS

Majority of the existing work-flows to classify land use-land cover imagery perform dimensionality reduction
first, before employing the classifier for target identification [1, 3, 7, 12, 14,47]. A knowledge-based integration of
spectral and spatial indices for identifying targets in imagery intrinsically reduces the bands of information given
to the classifier.

The dataset and study area have been described in Kallepalli et al., (2014) [6]. Also included in the mentioned
literature is the estimation of the baseline classification model (Figure 3) and establishment of entropy being a
measure of uncertainty in the classification of the features.

Figure 3. Methodology
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The baseline classification serves as a reference to compare the proposed method of integration of spatial
and spectral indices. While using Principal Component Analysis to reduce the dimensionality, the baseline
classification is performed using Possibilistic c-means classification (soft classification approach). Subsequent
entropy quantification and accuracy assessment provide the comparison metric for the current research.

Figure 4. Airborne Prism EXperiment (APEX) Open Science Data (OSD) FCC image of Baden, Switzerland [48], along
with the considered classes

The Airborne Prism EXperiment (APEX) Open Science Data (OSD) [49] is freely available [48]. The high
spectral resolution (of 285 bands) at 1.8m spatial resolution allows spectral investigation of the multiple vegetation
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and urban targets in the study area of Baden, Switzerland (Figure 4). Comparing the spectral characteristics of
the targets, indices are drawn up in order to take advantage of the variations of spectral and spatial distribution.
The classes investigated are (1) Artificial Turf; (2) Black Roof; (3) Building; (4) Clay Soil; (5) Grass; (6) Lawn
Tennis Court; (7) Mixed Coniferous Forest; (8) Mixed Deciduous Forest; (9) Pasture; (10) Railway; (11) Red
Roof; (12) Red Synthetic Ground; (13) Road; (14) Roofs; (15) Sand; (16) Stressed Grass; (17) Synthetic Sports
Surface; (18) Vineyard; (19) Water and (20) Yellow Tartan. Spectral curves are characterised by ’keys’, i.e.
bands which, at distinctive positions, assist in identifying the classes.

Figure 5. Spectral response of Mixed Deciduous and Mixed Coniferous forests

Figure 6. Spectral response of Soil, Grass, Stressed grass and Vineyards

The spectral response of the two types of forests is very similar (Figure 5), varying only in intensity, but not in
trend. Attributed to the physical structure of the leaf, deciduous forests provide higher reflectance in comparison
to coniferous forests. Similar observations are made when comparing the classes in Figure 6. The most significant
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of observations is the comparison between healthy and stressed grass. Considered to be physically similar, the
biological variation of health of grass contributes to the lack of higher reflectance in the case of healthy Grass in
the infrared region. The red edge (Figure 1) is known to signify the absorption by leaf pigments and reflectance
based on cell structure. Stressed grass’s deficiency of leaf pigments contributes to the poorly developed red edge.

Similarly, when comparing the sports surfaces (Figure 7), distinguishable characteristics of Red Sports Surface
exist around 0.8µm when the spectral curve (shown in red) shows reflectance while the other two surfaces show
absorption.

Figure 7. Spectral response of Synthetic, Turf and Red sports surfaces

Utilising the knowledge from the data acquiring agency and SwissTopo portal [50], an interpretation of the
image was performed and a training and testing dataset was developed and denoted in Figure 4.

Stressed grass, while following a similar spectral trend, has a much lesser intensity as compared to the Grass
(Figure 6). The position of the red edge for both the features is an indicator for variation of health of the
vegetation. A shift in the red edge position towards red wavelengths is indicative of reduced absorption due to
chlorophyll. The identification of the REP is done by using the first derivative of the spectral curve [51], as a
function of y axis, i.e. the reflectance. It provides a peak to identify the specific band number of the red edge.
The spectral curve of Stressed grass illustrates a poorly defined red edge (Figure 8) with the first derivative of
the spectral curve indicating a shift of red edge position (Figure 9) when compared to well defined red edge for
Grass (Figure 10) and the position of the red edge peak at the 64th band (Figure 11).

Figure 8. Reflectance curve for Stressed Grass
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Figure 9. Red Edge Position from the first derivative of the reflectance curve of the Stressed Grass

Figure 10. Reflectance curve for Grass

Figure 11. Red Edge Position from the first derivative of the reflectance curve of Grass

5.1 Classification Approach

Fuzzy (or soft) classification approaches are chosen for mixed pixel classification and exhaustive definition of
object classes, as in this case of using high spectral resolution data. When investigating Fuzzy c-means (FCM)
and Possibilistic c-means (PCM) for the classification approaches, it was noted that FCM classifier achieved
more accuracy but failed when all the classes were not exhaustively defined. Due to the lack of a membership
function constraint, PCM is investigated. The membership function, in the case of PCM, of each class is defined
using the following constraints [52,53]:
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Spectral Profiles (Artificial Turf vs. Roof)

Artificial Turf

Wavelengths (µm)

uij ∈ [0, 1] for all i and j (4)

0 <

n∑
j=1

uij ≤ N for all i (5)

maxi uij > 0for all j (6)

uij is the membership value of pixel xi belonging to a class βi; N is the number of pixels (or feature points).

The only constraint placed on the usage of the membership value is that it must lie between 0 and 1. The
total of all membership values is not constrained to 1, as is the case while using the FCM classifier. This allows
the classifier to bypass the undefined classes and classify pixels only on the basis of their signature and trained
classes [53]. The PCM classifier has been used throughout this research; while defining the baseline classification
and application with the spectral and spatial indices databases.

5.2 Spectral Indices

After the baseline classification has been established using PCA and Entropy [6], the spectral properties and
their significance were investigated. The spectral investigation of the classes begins with identification of ’keys’
or specific bands that allow the classifier to distinguish between the targets. These keys are contrasting spectral
behaviour of absorption and reflection (troughs and peaks) in the spectral curve. A similar comparison of spectral
properties was done for all the identified classes. Illustrated in Table 1 are the relevant properties and their
respective wavelength regions for the vegetation features. Note that simultaneous reduction of dimensionality
(feature selection, in this case) is knowledge-based, i.e. utilising the spectral information and comparison for
input to the classifier.

Figure 12. Spectral Curve comparison of Artificial Turfs and Roofs

After extensive spectral investigation, the identified spectral indices and band combinations were determined
(Table 2). However, it is important to note that every index does not uniquely identify a specific class. One such
example is discussed while comparing the spectral curves of Artificial Turfs and Roofs (Figure 12), the circled
region indicative of similar spectral behaviour. The keys identified to classify Artificial Turf class (Table 2) are
due the increase in the reflectance. However, in this region, a similar increase is seen for the Roofs class as well,
resulting in the index highlighting both classes. A comparison amongst all the 20 classes in the study identifies
such conflicts amongst classes (Table 3).
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Wavelength
Portion Name

Wavelength
(),) in um

Band Description and Significance

Sensitive to loss of chlorophyll, browning, ripening senescing and
soil background effects. Also sensitive to Carotenoid pigments

Green 1 032
Maximum "positive change in reflectance per unit variation in
wavelength" of visible spectrum is seen around this green
wavelength and is sensitive to pigment content.

Green 2 055
Green peak in the visible spectrum; strongly related to chlorophyll
content

Green 3 0.575

Maximum "negative change in reflectance per unit variation in
wavelength" of visible spectrum is seen around this green
wavelength and is sensitive to pigment content.

Red 1 0.66 Chlorophyll absorption pre - maxima (reflectance minima - 1)

Red 2 0.675
Chlorophyll absorption maxima. Greatest soil - crop contrast seen at
this wavelength.

Red edge - 1 0.7

Chlorophyll absorption post -maxima (reflectance minima 2). This
point marks the change of maximum red -absorption to dramatic
increase in red reflectance along the red edge. This has been found
to be sensitive to stress levels in vegetation.

Red edge -2 0.72
Critical point on the red edge where the "maximum change of slope
reflectance spectra per unit change in wavelength" occurs. Sensitive
to temporal changes in crop growth, stress, etc.

NIR 0.345 Centre of the "NIR shoulder". Strongly correlated to chlorophyll.

NIR peak -1 0.905

Peak of the NIR spectrum. Sensitive to stress or growth stages of
some crops, where there is significant change in reflectance along the
NIR shoulder. Useful for calculating crop moisture sensitive index.

NIR peak -2 _.. i C Peak of the NIR spectrum.

NIR - Moisture
Sensitive

Centre of moisture sensitive portion of NIR. Various measures of
plant moisture can be made from this wavelength's reflectance.

Table 1. Wavelength and Physical Significance in Vegetation (54–56)
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Object Class
Index

Formulated /Applied
APEX Band Combination

Artificial Turf Band Ratio 95, 76 (0.8752µm, 0.7716µm)

Black Roof Band Ratio 160,149 (1.45µm, 1.343 µm)

Buildings NDBI 160,145 (1.45µm, 1.304µm)

Clay Soil Band Ratio 236, 225 (2.09µm, 2.007µm)

Mixed Coniferous
Forest

Band Ratio 85, 53 (0.8167µm, 0.6816µm)

Mixed Deciduous
Forest

MTVI1 81, 17, 52 (0.7958µm, 0.5567,um, 0.6784µm)

Red Synthetic Ground Band Ratio 197,192 (1.782µm, 1.74µm)

Stressed Grass Band Ratio 234, 226 (2.074µm, 2.015µm)

Vineyard Modified NDVI (devised
from spectral curve behavior
in SWIR)

236, 225 (2.09µm, 2.007µm)

Water NDWI 183,146 (1.662µm, 1.314µm)

Roof Band Ratio 142,122 (1.275µm, 1.082 µm)

Basic Vegetation Index MSAVI 85, 53 (0.8167µm, 0.6816µm)

Object Class Specific Indeti Additional Class Identified through Indeti

Artificial Turf Roof

Black Roof Water

Buildings Multiple Classes

Clay Soil Artificial Turf, Vineyards

Mixed Coniferous Forest -

Mixed Deciduous Forest Grass

Red Synthetic Ground Multiple Classes

Stressed Grass Clay Soil, Vineyard

Vineyard Clay Soil, Stressed Grass

Water -

Roof -

Basic Vegetation Index All vegetation in the study area

Table 2. Spectral indices database chosen for classification input. Band numbers correspond to APEX OSD data

Table 3. Conflicting classes from identified spectral keys
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Source Spectral Index Texture Window Size (Neighborhood)

Black Roof Entropy 3x3 window

Clay Soil Mean 3x3 window

Mixed Coniferous Forest Second Moment 3x3 window

MSAVI Vegetation Index Second Moment 5x5 window

Roof Mean 3x3 window

5.3 Spatial Indices from Texture Analysis

The spectral characteristics of high resolution APEX data have been investigated and class specific information
has been obtained through feature selection (key/band identification) and extraction (spectral indices). When
dealing with classes that have similar spectral behaviour (like forests and grass), spatial distribution could be a
distinguishing factor, as spectral indices will identify both classes. Texture analysis (neighbourhood distribution)
has been considered in this literature for the purpose of exploiting the spatial information of the classes.

Haralick et al., 1973 [18] provides a detailed explanation of the Gray-Level Co-occurrence Matrix (GLCM)
texture analysis. The method employed involves a selection of a neighbourhood of pixels and assessing the
variation of gray-level to identify the most appropriate textural feature. The analysis is performed on the
spectral indices output, in order to distinguish between spectrally similar targets. The utilised texture measures
are:

Mean (µi) =

N−1∑
i,j=0

i (Pi,j) ; Mean (µj) =

N−1∑
i,j=0

j (Pi,j) (7)

Entropy =
N−1∑
i,j=0

Pi,j (−ln Pi,j) (8)

Second Moment =

N−1∑
i,j=0

(Pi,j)
2 (9)

where Pi,j is the (i, j)th entry in the gray tone spatial dependence matrix; N is the number of gray levels in the
quantised image.

Texture analysis is performed on the spectral indices, in order to improve the input database to the classifier.
Five spatial indices (Table 4) were added to the spectral indices database to improve the classification accuracy.

Table 4. Selected texture measures (spatial indices) for input to the classifier

Second moment generates high results when there exist a few pixels of high magnitude in the neighbourhood
window. This texture is applicable to vegetation classes which are highly distributed classes. Entropy generates
high output values when measured on neighbourhoods that have a continuous and consistent pixel values. The
texture measure derives the desired output when applied to features like Black Roof, which have a consistent
distribution of pixel values. The mean distribution of pixel values highlights pixels of high value and increases
the separability of classes like Roof and Clay Soil classes. The spectral indices input database, followed by the
combined spectral and spatial indices database was evaluated for classification accuracy with the PCM classifier
and the results were compared for identifying the applicability of the method. The primary objective is to
understand the implications of using the spectral and spatial information for the classification of the dataset,
understood after entropy analysis and accuracy assessment (after defuzzification [6]). The accuracy assessment
includes:
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Class
No. Class PC Input Database (7

features)
Indices Input Database

(12 features)

Entropy UA PA Entropy UA PA
1 Artificial Turf 20 100 1.94 100 100

2 Black Roof 62.5
83.3

55.56 100

3 Building 1.35 100 50 100 42.86

4 Clay Soil 1.334 88.89 80 90 100

5 Grass 40
44.4

40 57.14

6 Lawn Tennis Court 1.26 70 100 40 100

7

Mixed Coniferous
Forest

k
1.3 60 40 1.62 80 57.14

8
Mixed Deciduous
Forest

29.6
3

1.6 90 50

9 Pasture 30 100 1.46 55.56 100

10 Railway 28.57 100 30 50

11 Red Roof I 1.1 100 25 66.67 54.55

12 Red Synthetic Ground ` 1.1 60
85.7

60 100

13 Road 1 0.86 90 473 70 23.34

14 Roof 40 50 0.6 S 100 66.67

15 Sand ' 1.23 50 100 10 100

16 Stressed Grass 40 40 1.49 70 70

17
Synthetic Sports
Surface 100 100 ' 44.45 100

18 Vineyard 1.0- 1 30 50 1.49 66.67 75

19 Water 100 90.9 2.06 100 90.91

20 Yellow Tartan 33.34 100 0.6 30 100

Overall
Classification
Accuracy

59.50% 65%

1. User’s Accuracy (UA) which is the reliability or probability that a pixel class on the image represents the
same on the ground.

2. Producer’s Accuracy (PA) which represents how well a certain area has has been classified

3. Overall Accuracy (OA) which represents the number of pixels correctly classified when compared with
ground truth and knowledge information.

6. RESULTS

The results were analysed in combinations of spectral and spatial indices. The available spectral and spatial
input bands are 12 and 5 respectively. The presentation of results would be in the order of baseline classification,
consideration of spectral indices (only), followed by combination of texture features added to the input database.
Entropy measures were not calculated for classes that were not identified using PCM, and therefore depicted in
red in the Results tables.

Table 5. Principal Components and Spectral Indices input database - Entropy and Accuracy Assessment Comparison
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Class
No. Class- Indices and Textures

Database (17 features)

Indices and Textures
Database (without MSAVI-
based texture) (16 features)

Entropy UA PA Entropy UA PA

1 Artificial Turf 1.146 80 80 1.274 100 100

2 Black Roof 37.5 75 12.5 100

3 Building 0.63 60 31.58 0.44 100 63.63

4 Clay Soil 1.212 80 100 1.2 100 100

5 Grass 1.004 60 85.71 1.25 90 90

6 Lawn Tennis Court 0.64 80 66.67 0.5 88.89 100

Mixed Coniferous
Forest

0.956 100 71.43 1.34 100 83.33

8
Mixed Deciduous
Forest 1.02 80 61.54 1.35 100 76.92

9 Pasture 0.966 71.43 83.34 1.25 44.44 100

10 Railway 10 33.34 25 100

11 Red Roof 20 100 0.46 100 91.67

12 Red Synthetic Ground 0.65 81.82 90 0.55 42.86 100

13 Road 50 15.625 0.44 88.89 24.24

14 Roof 30 27.27 71.43 75

15 Sand 20 33.34 14.29 100

16 Stressed Grass 1.126 80 80 1.3 87.5 100

17
Synthetic Sports
Surface

0.65 50 100 0.55 87.5 100

18 Vineyard 0.94 80 88.89 1.1 90.91 83.34

19 Water 1.44 100 76.92 1.85 90 75

20 Yellow Tartan 10 100 0.5 33.33 100

Overall
Classification
Accuracy

62.50% 80.50%

The first input to the classifier are the principal components from PCA. The appropriate number of principal
components are determined from entropy analysis [6], and when classified using the PCM classifier yield an
overall accuracy of 59.50%. The following input to the classifier was the spectral indices database (12 features;
Table 2). In addition to the improvement of the overall classification accuracy (Table 5), the indices input
database has resulted in the classification of 7 classes previously unidentified when using the PC input. Entropy
measures were calculated for an average of 50 membership vectors per class.

When comparing the indices input (Table 5) and all the spectral-spatial indices (Table 6) for classification,
there is a drop in Entropy measures for the majority of the classes, inferring a reduction of uncertainty in
determination of class labels to the pixels. Although entropy has reduced, the accuracy assessment of the
defuzzified outputs shows a reduced classification accuracy of 62.50%. Significant improvement in classification
was obtained for vegetation classes, like Vineyard (Table 6).

Table 6. Spectral-Spatial Indices input database - Entropy and Accuracy Assessment Comparison (1)
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Class
No. Class

Indices and Textures Database
(without MSAVI -based and Black

Roof Entropy textures) (15 features)
i

Entropy LA PA

1 Artificial Turf 1.296 100 100

2 Black Roof 30 100

3 Building 0.399 100 70.59

4 Clay Soil 1.14 100 100

5 Grass 1.17 80 80

6 Lawn Tennis Court 0.46 75 100

7 Mixed Coniferous Forest 1.18 100 83.33

8 Mixed Deciduous Forest 1.2 90 81.82

9 Pasture 1.19 70 100

10 Railway 12.5 33.33

11 Red Roof 0.44 63.64 70

12 Red Synthetic Ground 0.52 75 85.71

13 Road 0.41 73.33 28.95

14 Roof 72.73 66.67

15 Sand 0 0

16 Stressed Grass 1.16 100 63.64

17 Synthetic Sports Surface 0.54 75 100

18 Vineyard 1.1 50 100

19 Water 1.138 100 83.33

20 Yellow Tartan 0.5 3 11.12 100

Overall Classification
Accuracy 72%

Although addition of spatial indices improves the individual classification accuracy for specific classes (like
Synthetic Sports Surface, Pastures), the overall classification accuracy drops below the 65% achieved when using
only spectral indices. Therefore, choice of the spatial classes is investigated while using a total of 16 (without
MSAVI-based texture) and 15 (without MSAVI-based and Black Roof Entropy textures) while including all
spectral indices (Table 2). While using the combination of 16 indices, the highest accuracy (Table 6) of 80.50%
was achieved with better individual accuracies and reduced degrees of uncertainty for classification.

Although a few classes were not identified by the Possibilistic c-means classifier, their results were mea-
sured after defuzzification of the classification output because defuzzification assigns the class label with highest
membership value to the pixel.

Table 7. Spectral-Spatial Indices input database - Entropy and Accuracy Assessment Comparison (2)

7. DISCUSSIONS

The results illustrate that using the spectral-spatial indices do indeed improve the accuracy of the classification.
However, a key inference from the results is that not all spatial indices added valuable information to the
database. Removal of MSAVI-based texture (Table 6) improved the overall classification accuracy of the dataset.
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This combination of knowledge-based feature selection and extraction for classification improves classification
accuracy for specific classes, while intrinsically reducing the dimensionality of the hyperspectral dataset.

The baseline classification follows a traditional dimensionality reduction method performing Principal Com-
ponent Analysis to reduce the hyperspectral data to its intrinsic dimensionality of 7 PCs. The achieved accuracy
of 59.50% resulted in the least number of classes successfully identified. The usage of spectral indices (Table
2), irrespective of the arising conflicts of classes (Table 3) improves the classification accuracy for the dataset.
The knowledge-based choice of spectral information and reduction of dimensionality allows the classifier to iden-
tify and classify the pixels with greater accuracy. As spectral information is utilised, vegetation classes (Mixed
Coniferous, Deciduous forests, Pastures and Stressed Grass) see an improvement in classification. Marginal im-
provement in classification of Clay Soil and Artificial Turf classes is seen when using the spectral index. However,
at this stage, there are classes like Black Roof, Grass and Synthetic Sports Surface that remain unidentified. The
Railway class remains unclassified through all the spectral-spatial indices inputs. It is considered to be a more
spatial information based feature, and thus the suggestion (Section 8) to explore Object Oriented classification
approaches in future work.

The identification of classes improves when using spectral and spatial features as the input database. Although
the overall accuracy has reduced in comparison to spectral indices input, the accuracy of classifying Grass
and forest classes is improved. The entropy measure is much reduced in this case, in agreement with better
classification results and lower degree of uncertainty while assigning class labels. Identification of which spatial
features add most value against dimensionality requires further investigation, thereby formulating the next input
database of 12 spectral and 4 spatial indices (excluding the MSAVI-based texture). In comparison with the
database of 17 input features (Table 6), entropy measures for classes like Buildings, Clay Soil, Lawn Tennis
Court, Red Synthetic Ground and Synthetic Sports Surface is lower than the input database of 17 features.
For the same classes, there is also an improvement in classification accuracy (UA). The Road class is identified
when reducing the input features from 17 to 16, also with a low entropy and high (UA) accuracy. Some of the
classes (Vineyard and Mixed Forest classes) saw an increase in entropy, but also an increase in classification
accuracy; conversely the Water class showed an increase in entropy and decrease in classification accuracy. The
MSAVI-based texture index formulated from the MSAVI spectral index was initially added to the input database
to distinguish between vegetation classes. However, the overall classification accuracy is the best of the many
combinations of inputs to the classifier, thereby signifying that value of the remaining texture indices (Table
4). Using the spatial index of Second Moment, derived from Mixed Coniferous Forest based spectral index
is considered to provide distinguishable amount of information to identify Grass and Forest classes apart and
improve their classification accuracy at the same time. It is noted that only 4 classes could not be identified
using PCM and the 16 feature input database, and overall improvement of accuracy is achieved.

In order to test the significance of the remaining 4 spatial indices, various combinations of usage were tested.
The only significant result obtained was when using 15 features (excluding MSAVI-based Second Moment and
Black Roof-based Entropy texture measures) which achieved an overall classification accuracy of 72%.

8. CONCLUSIONS

The results illustrate the applicability of the method of using spectral and spatial indices for classification. The
usage of spectral and spatial information to the classifier improves the accuracy, but the input dataset must be
evaluated to find the best possible combination of indices database. The authors insist at this stage that every
dataset is characteristic in its own unique way, and assessment of knowledge-based dimensionality reduction
intrinsically requires an understanding of the specific class that needs to be identified.

For the purpose of future research, possible directions could be:

1. Evaluating the application of Object Oriented classification as it accommodates for both spectral and
spatial information.

2. A few of the classes were not classified in all the combinations of inputs for the classifier. Although
this has been attributed to the relative smaller spatial distribution of pixels. The classes’ contribution
to this classification approach could be evaluated by considering a different study area that has a higher
distribution of such classes.
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3. The optimal choice of hyperspectral bands is an ongoing domain of research in itself. For specific classes,
an automated method of identifying bands could be investigated. Literature encourages the investigation,
as the process of determining optimal bands for agricultural crop characteristics is being done by using
field-collected biophysical variables [54].
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[37] Peñuelas, J., Gamon, J., Fredeen, A., Merino, J., and Field, C., “Reflectance indices associated with phys-
iological changes in nitrogen-and water-limited sunflower leaves,” Remote Sensing of Environment 48(2),
135–146 (1994).

Proc. of SPIE Vol. 10005  100050Z-19
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[38] Zarco-Tejada, P. J., Miller, J., Morales, A., Berjón, A., and Agüera, J., “Hyperspectral indices and model
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