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Preface

This book is designed as a practical introduction to multilevel analysis (MLA). It is
borne out of a course that we have taught over the past 20 years for an international
audience of public health and health services researchers of varied statistical ability.
The practical side of the book is in the use of the data sets that are supplied with the
book. The book contains full guidance for the analysis of these real-life data sets.
The level of statistical sophistication that we expect from the readership is what we
usually found among early stage PhD researchers in the health and healthcare field: a
basic understanding of ordinary least squares and logistic regression. This is not to
say that our target audience is restricted to PhD researchers; anyone who has
discovered the need for MLA in health research with these basic statistical skills
should be able to benefit from this book.

The contents of the book are divided into four parts. The first part introduces the
theoretical, conceptual and methodological background to MLA (Chaps. 1–4). The
second part is devoted to the statistical background (Chaps. 5 and 6). Part III takes
the final step towards application as we discuss aspects of the modelling process and
pay attention to the presentation of research that uses MLA (Chaps. 7–10). With Part
IV, we move to practical applications using example data sets. This part also
introduces and discusses the use of MLwiN, the statistical package that is used
with the example data sets. We work through three example data sets and introduce
readers to the use of the software and the application of the ideas discussed in the
previous chapters (Chaps. 11–13).

Our suggested use of this book is as part of the learning process for health
researchers, whether this is through formal teaching (Chaps. 1–10 can be thought
of as a series of lectures with Chaps. 11–13 forming the basis of practical work) or
through self-training. Either way we would urge the user to work through all
chapters sequentially. Throughout the book we refer to further sources of informa-
tion, whether these relate to the methodology introduced or to substantive examples
or applications. This should further assist the users in the contextualisation of their
own research. We advise readers to download and read articles that relate to
examples that they find interesting. With this book you will be able to download
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training material comprising not just the datasets analysed in Chaps. 11–13 but also a
free training version of the multilevel modelling software MLwiN that can be used
with these datasets. (The restriction of the software is in terms of the datasets that can
be analysed and not in the analytic capabilities of the software; users are not
restricted to the analyses presented in this book but may analyse these datasets in
other ways.) The MLwiN website is at https://www.bristol.ac.uk/cmm/software/
mlwin/. The teaching version of the software is available from https://www.bristol.
ac.uk/cmm/software/mlwin/download/.

On completion of this textbook Multilevel Modelling for Public Health and
Health Services Research: Health in Context, the user will have an understanding
of the most important concepts of multilevel analysis—the relevance of different
contexts, different hierarchical data structures, the difference between variables and
levels and so on. We take the user through the formulation of hypotheses for
multilevel models to the modelling process and the presentation of results and
encourage the reader to start applying these ideas to their own data straight away.

Readers who want to explore the background of multilevel analysis in greater
depth or want to read more about more complicated models than those detailed in
this book are referred to the following books among others:

– de Leeuw J, Meijer E (eds) (2008) Handbook of multilevel analysis. Springer,
New York

– Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchi-
cal models. Cambridge University Press, Cambridge

– Goldstein H (2010) Multilevel statistical models, 4th edn. Wiley, Chichester
– Hox JJ (2002) Multilevel analysis: techniques and applications. Lawrence

Erlbaum Associates
– Leyland AH, Goldstein H (2001) Multilevel modelling of health statistics. Wiley,

Chichester
– Snijders TAB, Bosker RJ (2012) Multilevel analysis, 2nd edn. Sage, Los Angeles

Glasgow, UK Alastair H. Leyland
Utrecht, The Netherlands Peter P. Groenewegen
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Chapter 1
Introduction

Abstract In this chapter we describe in general terms what we mean by the
equivalent terms multilevel analysis (MLA) or multilevel modelling. We place
MLA in the context of public health and health services research. Most of our
readers will be working in this field, and this book is specifically written for them.
As public health and health services research is an applied research, it is strongly
oriented towards solving practical problems in health, healthcare and health policy.
Therefore we will also discuss the relationships between research on the one hand
and policy and practice on the other. We end with some conclusions on the relevance
of MLA for public health and health services research.

Keywords Multilevel analysis · Public health research · Health services research ·
Health policy · Health system organisation · Inequalities in health

The fact that we are willing to consider ‘Health in context’ means that people’s
health depends on the context in which they live. This is a basic credo of social
medicine and public health (Rosen 1993). Not only health and well-being but also
health behaviour and healthcare utilisation depend partly on people’s personal
resources and partly on shared resources and circumstances—in other words, their
context. People’s personal resources can be their personal stock of health—their
health capital in other words—as well as other more tangible resources. So if we talk
about health, we are implicitly talking about two distinct levels: people and their
context.

MLA makes it possible to handle this reality of health operating at different
levels. Although MLA is a statistical method, it would be too narrow to restrict the
teaching of multilevel modelling to statistical methods courses. Statistics is a tool to
solve problems, so the methods should not be seen to be isolated from the problems
themselves. In other words, if we want to understand MLA, we should also pay
attention to the substantive fields of public health and health services research and to
the origins of their research problems. Moreover, in sociology, a lot of attention has
been paid to the relationships between different levels, from the micro level of
individual people, via intermediate levels of families, schools and work
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organisations, to the macro social levels of cities or countries. Social science helps us
to conceptualise these different levels and to decide which levels are relevant for
certain research problems. Therefore, it is not only statistics that we will be dealing
with in this book; theoretical considerations about levels and about human behaviour
in context are equally important.We should add a third pillar to this book: study design
and methodology. Between theory and statistics stand the study design and method-
ology—the way we design our research and collect data to test our theoretical ideas.

Importance of MLA for Research in Health and Care

MLA is important for research in the fields of public health and healthcare for two
reasons. The first is substantive: many of the problems studied involve different
levels or contexts. To analyse such problems with state-of-the-art methods, MLA is
the most appropriate statistical tool. Secondly, research in the fields of public health
and healthcare increasingly uses MLA. It is therefore important that even if you do
not apply MLA yourself, you are able to understand research that uses MLA.
Nowadays it is nearly impossible to understand, appreciate and critically appraise
published articles in our field of research if you are not acquainted with MLA.

The pioneering development of MLA methodology has been in education where
researchers have been interested in studies examining how pupil outcomes (such as
examination scores) are related to both the characteristics of the pupils themselves
and those of the schools (Aitken and Longford 1986; Snijders and Bosker 2012). The
use of MLA has since been widespread in the overlapping fields of health services
research, epidemiology and public health (Diez-Roux 2000; Leyland and
Groenewegen 2003; Merlo et al. 2005a, b, c, 2006; Rice and Leyland 1996;
Subramanian et al. 2003), assisted by the development of specialist multilevel
software and the addition of multilevel capabilities to common statistical packages
(de Leeuw and Kreft 2001). The educational example may be transferred to a public
health context in several ways. For example, when studying outcomes in
hospitalised patients, interest focuses on the roles played by both hospitals and
patients. The individual and the workplace may both influence absence from work
due to sickness. Regional differences in incidence of heart disease may reflect
differences in the composition of populations and in the success of local health
promotion programmes.

The Scope of Public Health and Health Services Research

The intended readership of this book consists of researchers with an interest in public
health and health services research. We will now briefly discuss the scope of these
two areas of research and will show that they are often related. Public health research
studies the conditions in which populations can be healthy. Health at group or
population level is the focal point of interest. According to the Lalonde model
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(1974), the health of the population is influenced by social, psychological, biological
and healthcare determinants (see Fig. 1.1). In some form, this model has been at the
root of public health policy in numerous countries. Health and health inequality at a
group or population level are based on some aggregation or transformation of the
health status of the people who form the group or population. The determinants of
health can be both individual level and group or population level. Psychological
determinants of health are typically individual characteristics. However, in the form
of shared ideas and common psychological traits, they could build a collective
characteristic, such as a group mentality. Biological characteristics can be individual,
but they can also be shared characteristics of larger populations of genetically related
individuals or those exposed to the same environmental hazard. Healthcare deter-
minants are typically group or population-level characteristics determined by the
administration or government, whether this is at the local (e.g. municipality) or
national level. Social influences will also often operate through various higher
(population) levels such as family, peer group or neighbourhood.

Compared to public health research, the scope of health services research places
more emphasis on healthcare and healthcare utilisation than on health per se
(Fig. 1.2). Health services research focuses on the relationships between demand
for care and supply of care, as influenced by the structure and institutions of the
healthcare system. It is a multidisciplinary field of scientific investigation that studies

social influences

health service
utilisation

            Health
(healthy population)

biological/
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Fig. 1.1 Influences on
population health
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healthcare utilisation (and
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how social factors, financing systems, organisational structures and processes, health
technologies and personal behaviours affect access to healthcare, the quality and cost
of healthcare and ultimately our health and well-being. Its research domains are
individuals, families, organisations, institutions, communities and populations
(AcademyHealth 2005). Quality of care is an important research area, and this can
be defined in relation to structures, processes and outcomes in the provision of health
services (Donabedian 2003).

Healthcare utilisation is traditionally the centre of attention in health services
research. It is influenced by the demand for healthcare. The demand for healthcare is
partly based on health—people with health problems tend to use health services—
but not completely. There are also social and psychological influences on healthcare
utilisation. People differ individually in the way they cope with ill health, and the
threshold at which they will visit a healthcare professional also differs. There are also
social influences, such as family or group norms as to when to invoke the help of
others. The supply of healthcare also influences healthcare utilisation. The availabil-
ity of hospital facilities, for example, influences their utilisation. And the organisa-
tion of healthcare facilities also affects utilisation; supply of and demand for
healthcare exert their influence within an institutional context. This is the way in
which the system is organised and funded. Whether or not general practitioners
(GPs) have a gatekeeping role influences the utilisation, not only of the services that
GPs provide but also of specialist services. Financial accessibility, in terms of
organisation in systems of insurance or other funding of healthcare, also influences
utilisation. Again we can say that these influences can be individual characteristics
but often they are group- or population-level characteristics. Countries differ regard-
ing the structure of their healthcare system, regions differ in the supply and mix of
services, and social groups differ in how quickly they invoke healthcare.

Figures 1.1 and 1.2 also show the relationship between public health research and
health services research. In public health research, the utilisation of health services is
one of the determinants of health whilst in health services research one of the
influences on healthcare utilisation is ill-health, and one of the outcomes of health
service utilisation is the creation of health. Both public health research that does not
take healthcare into account as an input and health services research that does not
take health into account as an outcome can exist.

This brief discussion of the scope of public health and health services research
has drawn our attention to different influences. Researchers with different educa-
tional backgrounds can study each of these influences on their own. Public health
and health services research is populated by researchers who studied medicine,
health sciences, epidemiology, psychology, sociology, statistics, human geography,
economics, political science, etc. (and we must still have forgotten some). This
diversity is the reason why we discuss rather broad substantive and theoretical issues
in the first two chapters of this book. This ensures that we have a common
understanding of the kind of research we are doing before proceeding to the
statistical approach.
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Research and Policy

Although researchers in the health and healthcare realm come from different disci-
plinary backgrounds, they typically do not derive their research problems from their
original disciplines. Public health and health services research derives the problems
from the healthcare sector. They are applied fields of research, in the sense that
researchers in these areas apply their skills to problems that have their base in the
healthcare sector and in the sense that they try to produce insights that can be used to
solve problems in that same sector. The issues we study are rooted in the problems
that practitioners and policymakers encounter in the healthcare sector. In the stan-
dard theoretical–empirical cycle of research within a specific discipline, the prob-
lems for research are generated within the discipline and are usually based on earlier
research. This refers to the right-hand side of Fig. 1.3, where the conclusions of
previous research typically feed back to new research questions. However, in public
health and health services research, the problems we study are very strongly
influenced by the current practical and policy problems in the healthcare sector
(Bensing et al. 2003). Our research is part of a broader cycle that also involves the
application of our results in health policy and practice.

To get a better feeling for this extended policy and research cycle and to illustrate
the importance of different levels in studying problems in policy and practice of
healthcare, we will spend some time on a very broad grouping of policy problems.

Governments have a responsibility for the health of their subjects. In the Neth-
erlands, for example this responsibility for protecting and improving population
health is part of the Constitution. Governments take this responsibility by designing
and implementing policies. Some of these policies are directly related to health,
whereas others are intended to improve healthcare. As the history of public health
shows, policies directed towards standards for housing quality and public services in
areas such as waste disposal and clean water supply have been very important. Often
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prac�cal or policy
problem transforma�on  research ques�on

hypotheses
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Fig. 1.3 Relationships between the societal sector of healthcare and health (services) research
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these are policies that originate outside the direct jurisdiction of ministries of health.
They require crosscutting policies and analysis of the health impacts of sector-
specific policies (Puska 2007).

The central aim of health (care) policy is to improve population health. This aim
is very general. It can be approached through policies in several important fields, and
we can see these as being instrumental in reaching the overarching aim. As an
example, the Dutch Ministry of Health published a document in 2009 with the title
‘Societal challenges for public health and health care’ (Ministry of Health 2009).
According to this document, the big societal challenges were living longer in good
health, anticipating changing care demands, quality of care and patient safety,
dealing with limits to care and governance of the system. Here we can distinguish
three instrumental aims:

• Increasing the coherence and responsiveness of the system
• Diminishing inequalities in health and in access to healthcare
• Increasing the efficiency of the system (stewardship)

We use these three aims because, basically, most social systems are concerned
with problems of coherence and responsiveness, inequalities and efficiency in one
way or another, and healthcare is no exception. For example, a country’s educational
system can be seen as trying to cope with these three basic problems: the way
different types of school are tuned in to different educational needs, geographical
and social inequalities in access to schooling and the efficiency of teachers and
educational programmes. Therefore, we might get our inspiration to develop
research in the healthcare field by looking at experiences in other sectors of society.
We might also look at more general theories of how societal systems are organised or
about the causes of inequalities. So we might use this insight in a horizontal way—
looking at other sectors—or in a vertical way—looking at more general theories. An
example of a book that does both is ‘The spirit level: why more equal societies
almost always do better’ (Wilkinson and Pickett 2009).

Going back to healthcare, the emphasis that is placed on each of these three
instrumental aims may vary over time or differ between countries (Tenbensel et al.
2012). If we look at the past few decades, we could say that in the 1970s the
emphasis was on structuring the healthcare system, by strengthening primary care
and by using planning as an instrument (Saltman and Von Otter 1992). In contrast,
efficiency and stimulation of evidence-based healthcare were much more at the
centre of policy attention during the 1990s (Sackett et al. 1996). The performance
movement in healthcare is also intended to increase the efficiency of the system but
performance indicators of healthcare in themselves, such as those developed by the
World Health Organization (WHO) for the World Health Report 2000 (WHO 2000),
try to incorporate indicators of inequality and responsiveness. Inequalities in access
to healthcare are central to a model, developed in the early 1970s in the USA, called
the Andersen–Newman model (Aday and Andersen 1974). This model looks at and
subsequently analyses the influence of the need for healthcare; predisposing vari-
ables, such as attitudes about health and healthcare; and enabling variables, such as
income or insurance status, and is still often used. Inequalities in health have featured
prominently on the political agenda over the past decades from the Black report
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(Department of Health and Social Security 1980) to more recent reviews of the state
and extent of inequalities (Commission on Social Determinants of Health 2008;
Marmot Review 2010).

These aims of health policy give us a basic classification to enable us to position
our own research problems. We can think of examples of a research problem
addressing one of these central aims of health policy. In doing so, we will see that
again different levels are involved. The central aims can be used to introduce the
relationships between macro, intermediate and micro levels, and the idea is that more
than one level is usually involved when you analyse a problem. We will briefly go
through each of the three instrumental aims.

Our research problem might concern the reasons why some people receive the
care that they need, whilst others do not get the care that they require or are given
care that they do not need. This is a well-known problem in areas such as home care
where some people, who just need some help with shopping, receive help cleaning
their house, or where people who need specialised nursing attendance receive home
help. Some of the explanation for such discrepancies might be at the intermediate
level, which could be the level of the organisation that supplies home care. Home
care might not cooperate effectively with the hospitals that discharge patients with
certain needs or with GPs who have a clear view of the exact nature of a person’s
needs. So the way the actions of different healthcare providers are tuned in to each
other might influence the outcome for individual users of home care. The extent of
cooperation with other service providers might vary between home care organisa-
tions. As a consequence, badly tuned care might be more prevalent among the clients
of some organisations than among clients of other organisations. In other words, to
some extent the outcome of whether a patient receives the appropriate care is
clustered within home care organisations. The extent of cooperation between health
and home care providers might vary between regions or health care systems. We
then come to the macro level where health system organisation may influence
cooperation at the intermediate level, for example in terms of an emphasis on
planning or the market, or in the public/private mix (Fig. 1.4).

Problems of inequality might be defined in terms of health, determinants of
health, access to healthcare or healthcare utilisation. In this example we consider

macro: ordering of the system

intermediate: cooperation between providers

micro: care tuned to need

Fig. 1.4 Problems of
coherence and
responsiveness
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health. We might want to explain the relationship between neighbourhood depriva-
tion, individual socioeconomic resources and health behaviour and some measures
of health. Variation in health (which is an indication of health inequalities) might be
greater in some neighbourhoods and smaller in others. This might be partly related to
individual people’s resources (such as whether or not they are unemployed) and
health behaviours (e.g. smoking). However, some of the variations might persist and
indicate differences between neighbourhoods. These might be related to
neighbourhood (as distinct from individual) deprivation. At the macro level, we
could look at the cities where these neighbourhoods are located. We could, for
example, relate the financial or social policies of different cities to neighbourhood
deprivation. Again we see that we can subsume a specific research question under
the umbrella of problems of inequality. And we can specify different levels that
contribute to the explanation of health inequalities (Fig. 1.5).

The third example relates to problems of efficiency. As we mentioned before, one
of the manifestations of a healthcare policy that is oriented to increasing the
efficiency of healthcare is evidence-based medicine. We might define appropriate
care at the micro level as being whether or not a patient receives care according to
current guidelines. Some patients might receive appropriate care and others not.
Some of the reasons for that might have to do with individual circumstances, such as
the existence of a co-morbidity which can be a reason to deviate from single
morbidity guidelines. Part of the explanation might be that the patient is treated by
a GP who is not in favour of this particular guideline or of guidelines in general, or
who is just too busy to take the time and effort to work according to the guideline.
Consequently, some of the variation in whether a patient receives appropriate care is
generated at this intermediate level of GPs. Groups of GPs might be organised within
larger practices or primary care groups or trusts. These larger groups then form a
macro context that may influence the behaviour of individual GPs by agreeing on the
use of guidelines or sanctioning their non-use (Fig. 1.6).

In these examples, we have used three different levels and named the higher two
intermediate and macro. It is important to realise that there is no ‘law of three levels’.
The number of levels in any study depends on a combination of theoretical analysis
and practical considerations of data collection or availability. What is micro or macro
depends on your point of view. Although the micro level is often the level of
individuals, we will see in Chap. 4 that the micro level or lowest level in a multilevel
analysis can also be a number of repeated observations on the same person. The

macro: distribution of financial resources

intermediate: neighbourhood deprivation 

micro: differences in individual health

Fig. 1.5 Problems of
inequality
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lowest level can also be a small area, for example when we do not have access to
individual health data for reasons of data confidentiality. In such a case we might
obtain small area data and analyse them within a higher level of regions or countries.
The macro level is also relative. In some research problems, this level might be
formed by countries, but in others by GP practices.

Conclusion

The issues we have raised in this introductory chapter relate directly to the philosophy
behind the book. Firstly, we feel that it is important to try to integrate substantive
issues, methodology and statistics. Secondly, these substantive issues relate to the field
in which we are working and our approach: application, policy and practice oriented.
Thirdly, MLA has a close correspondence with the substantive issues; health and
healthcare are context dependent. And, finally, we have to learn to think in multilevel
concepts: to develop hypotheses, conceptualise contexts and define levels.
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Chapter 2
Health in Context

Abstract Withmultilevel analysis, we canmodel the relationship between the context
in which people live or act and an outcome at the individual level. In this chapter
we discuss the relationship between the context or macro level and the individual or
micro level. Sociologists have developed ways of analysing these relationships that
may help our understanding of MLA. At the micro level, it is important to have a
theory of human behaviour that takes context into account. But what contexts are
relevant? That depends on the research question, and the phenomenonwe are studying.

Keywords Multilevel analysis · Social production function theory · Health
behaviour · Healthcare providers · Social context · League tables

Multilevel analysis enables us to analyse individual-level outcomes in relation to
independent variables at the same level and independent variables at a higher level.
This higher level is what we usually call the context or the macro level. In this
chapter we give a theoretical analysis of the relationships between individual- or
micro-level outcomes and contexts. However, the relationship between macro and
micro levels has two dimensions. Not only does the context, such as the availability
of health services in an area, influence behaviour (e.g. health service utilisation),
there is also an influence the other way around: from micro to macro level. Con-
tinuing this example, the health service utilisation of many individuals will result in a
high level of healthcare expenditure in an area. Often we are interested in both
directions. MLA is especially suited for analysis in one direction, from macro to
micro level, and less so the other way around. However, when we are analysing
‘league tables’ of hospital performance at the end of this chapter, we can use MLA to
arrive at estimates of hospital effects, taking differences in the composition of the
patient populations (case-mix differences) into account.

We start this chapter examining the relationship between macro-level context and
individual, micro-level outcomes. The other dimension, from micro level to macro
level, will be addressed at the end of this chapter. At that stage we will also briefly
introduce league tables. In between we discuss theories about behaviour (the micro
level) and the relevance of different contexts.
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Relationships Between the Macro and Micro Levels

Social context influences what people do, their behaviour and interactions, and what
people do leads to certain outcomes in which we are interested such as their health or
the decision to consult a healthcare provider. These outcomes are the results of
decisions people make. To clarify this statement, people usually do not choose to be
unhealthy, but this outcome is partly the consequence of their behavioural choices
and partly the outcome of circumstances that influence either their choices or the
outcomes directly. We will discuss three heuristic models of the relationships
between macro and micro levels that maybe helpful in conceptualising your own
research (Raub et al. 2011). Heuristic means that these models are not conceived as
descriptions of reality, but as a means of helping you to understand phenomena, to
conceptualise your own research, and arrive at hypotheses (Groenewegen 1997).

The first heuristic approach brings the relationship between two phenomena at the
macro level to centre stage. For example, consider the relationship between mean
income level and income inequality on the one hand and the standardised mortality
rate of states on the other hand. The explanation of a relationship like this requires
the specification of a mechanism that connects the macro contexts (mean income and
income inequality) with individuals at the micro level (Hedström and Swedberg
1998). The outcome at the micro level is whether individuals of a specified age and
sex die. The mechanism might be partly behavioural, such as health damaging
habits, partly social, such as comparison to other people, and partly biological,
such as the effect of exposure to dangerous substances. Based on the individual
deaths at the micro level and additional information about the populations involved,
standardised mortality ratios can be calculated. Figure 2.1 shows the basic scheme as
developed by (Coleman 1986, 1990).

Van Beek et al. (2013) applied Coleman’s diagram to establish and explain a
relationship between social networks of staff in nursing home wards (A) and treat-
ment of residents by ward staff (D). The explanation runs via organisational iden-
tification (B) and motivation (C) of nursing staff. Figure 2.2 illustrates this.

In ecological analyses, we only analyse the relationships at the macro level (the
arrow from A to D). We run the danger of attributing these macro relationships to
relations at the individual level (a phenomenon known as the ecological fallacy,
described in Chap. 3). In behavioural research, we analyse the relationship at the
micro level (the arrow from B to C). We then run the opposite risk to the ecological

Macro A D

Micro B C

Fig. 2.1 Coleman’s
diagram of relations
between macro and micro
level
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fallacy—that of the atomistic fallacy. In instances of an atomistic fallacy, the
analysis is carried out at the micro (individual) level, but inference is made at the
macro (group) level (Diez-Roux 1998).

Sometimes the relationship at the micro level is analysed, using information about
the context as a distributed variable at the individual level. That is, every single
individual in the same context is assigned the same value for a contextual variable. In
this case we would run into a statistical problem. The observations on individuals
that share the same context or macro variable are not independent. This violates an
important assumption in standard regression analysis. Moreover, standard statistical
techniques would misestimate the precision of the coefficients of the distributed
variables. They would not distinguish between the (usually much smaller) number of
contexts and the number of individual observations. However, when using MLA we
are able to analyse macro and micro levels—the contexts and the individuals—in a
statistically appropriate way. In Chap. 3 we will elaborate on this further.

Figure 2.1 shows that ecological research and behavioural research are not
mutually exclusive approaches. The two complement each other, and there is a
clear relationship between them; to explain an ecological relationship, you need to
go into the micro-level mechanisms. MLA helps us to analyse part of the diagram:
the arrows from A to B to C. In other words, MLA provides us with the tools to
examine how aspects of the context in which people live (A), together with their
personal characteristics and resources (B), influence some outcomes at the individual
level (C).

Coleman’s heuristic shows the basic structure of the explanation of macro-level
relations. It is, however, more easily applied to static situations than to problems
involving social change. Boudon (1979) explicitly designed a heuristic to analyse
processes of social change. He distinguishes between the Environment, which
includes the social and institutional structure, the Interaction System, which includes
the relevant actors and the choices they make, and the Outcomes, which form a
distribution of the choices of many actors, such as the percentage of people who
choose to behave in a certain way. These elements correspond to Coleman’s A, B

Fig. 2.2 Application of Coleman’s diagram to explain the relationship between social networks of
nursing staff and treatment of residents. (Reproduced with permission from Elsevier, Social
Networks)
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and C, and D, respectively: ‘environment’ influences ‘interaction system’, which
produces certain collective ‘outcomes’. However, Boudon’s next step makes the
system a dynamic one. ‘Outcomes’ might feed back to the processes in the ‘inter-
action system’ or to the ‘environment’.

Boudon distinguishes three processes of social change (see Fig. 2.3). In the first,
called reproduction, there is no feedback and outcomes stay the same. In the second,
there is feedback from outcomes to the interaction system, causing a process of
accumulation or the gradual change of a distribution. Finally, if there is also
feedback to the environment, then a process of transformation occurs.

As an example of these processes of social change, one could look at the system
of care around childbirth (Schuller 1995). As outcomes we are interested in the
changing distribution of the place where women give birth to their children. By the
end of the nineteenth century and the beginning of the twentieth century in Western
countries, most children were born at home with the assistance of a midwife. With
the single exception of the Netherlands, where, at the beginning of this century,
approximately 30% of children were stillborn at home, in Western countries child-
birth had become a hospital affair. How did this change come about? The interaction
system consists of childbearing women and their direct social relations, midwives
and physicians. The environment consists of the broader healthcare and hospital
system, both in the structural sense of accessibility and supply and in the institutional
sense of the regulation of the professions involved, and developments in medicine
and medical technology.

Until the early twentieth century, the system was in equilibrium and could be
characterised as a reproduction process: there was not much choice, and nearly all
women delivered their babies at home, attended by a midwife. However, with the
development of the modern hospital, improved hygiene and new medical technol-
ogy, the outcome of hospital deliveries in terms of the health of child and mother
became as good and under some conditions better than the outcome of home
deliveries. From that time on there was a choice, and physicians developed an
interest in hospital obstetrics, the safety arguments appealed to expectant mothers,
and midwives were not in a position to counteract.

These good and sometimes better results of hospital births fed back to the
interaction system and influenced the decision-making process regarding the place

Reproduction: social context behaviour/interaction outcomes

Accumulation: social context behaviour/interaction outcomes

Transformation:social context behaviour/interaction outcomes

Fig. 2.3 Boudon’s diagram of social change
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of birth, especially in the case of a first child or following an earlier difficult delivery.
The decrease of family size during the twentieth century resulted in a higher
proportion of births being first children. Combined with the changing decision
regarding place of birth, this resulted in a rapid increase of the share of hospital
births—a process of accumulation. In most European countries, at some point in the
1960s, the number of home births reached such a low point that the possibility of a
home delivery virtually disappeared as an alternative. Market shares became too low
for self-employed community midwives, and physicians undertaking home deliver-
ies would be scandalised within their profession. So eventually even the environ-
ment was affected, and again there was no choice whatsoever; hospital birth became
not just the norm but the rule. Among Western industrialised countries, the Nether-
lands was the only exception to this process, probably due among other reasons to a
stronger position of midwives in terms of their legal position, the reimbursement
rules of public insurance and their professional education (De Vries 2005).

Generally, in this heuristic the interaction system is the micro-level process. The
environment is the macro-level and determines the range of options available to the
actors within the interaction system, and the outcome is the macro-level result of
interaction. Again, using MLA we can statistically analyse the relationships between
the environment, the micro-level conditions of the actors that influence the choices
of pregnant women, and the choice of women to have a home or hospital birth as the
dependent variable. The macro-level outcomes (the percentage of home deliveries)
and the feedback steps are best explored using approaches beyond the scope of this
book, such as complex systems theory (Diez-Roux 2011) and specific techniques,
e.g. structural equation modelling (Bentler and Stein 1992).

The third heuristic that we will briefly discuss relates to the transformation of
individual behaviour to macro-level outcomes. Often these outcomes are the
unintended consequences of individual behaviour. Students flock to studies that
educate them for occupational fields with high-income potential due to current
shortages, only to find out that so many did the same that the shortage turns into
over-supply and decreasing wages.

Unintended consequences are part and parcel of processes of social change. For
example, as we have seen, decreasing family size has the unintended consequence of
speeding up the accumulation process of the share of hospital deliveries. Such
unintended consequences of behaviour are of primary interest to many social
scientists (Boudon 1982; Popper 1963; Wippler 1981). If, as a first approximation,
human behaviour is seen as being goal-directed, the question arises as to why people
do not always achieve their goals. Part of the answer is in the transformation from
micro to macro level. Two important sources of unintended consequences are the
interdependencies of individual behaviour and incorrect anticipation of the reactions
of others. An example of interdependencies leading to unintended consequences can
be found in what has been called fee inflation. This occurs when there is a macro
budget for specialist care, for example, and when individual specialists are paid on a
fee-for-service basis. If they bill for too many services, the budget is exceeded and
fees are adapted downwards. If individual physicians want to maintain their income,
then they have to increase the number of services they undertake, and, since all other
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physicians are doing the same, the unintended consequence is that they all have to
work harder to achieve the same income (Delnoij 1994).

Health policy struggles with unintended consequences due to the incorrect
anticipation of the reactions of policy subjects. One example is of the reaction of
health insurers within the field of healthcare to the announcement of the basic ideas
for health system reform in the Netherlands in the second half of the 1980s. The aim
of the intended reforms was to improve the performance of the system by introduc-
ing market elements and competition in healthcare. Health insurance organisations
anticipated this policy by undertaking a huge chain of mergers. This in its turn made
it very difficult to realise the original aims of the policy when competition was
actually introduced because of the reduced number of competitors (Groenewegen
1994).

We have briefly discussed three heuristics that connect the micro and macro
levels. Macro-level structures and institutions influence individual behaviour and the
interaction between individuals, and individual behaviours form macro-level out-
comes, both intended and unintended. In the following sections, we will first discuss
some aspects of behavioural theory at the micro level. Following this we will discuss
the transformations from macro to micro level and vice versa.

Micro Level: Behaviour of Patients and Providers

An important element in the analysis of macro-level phenomena is a behavioural
theory at the micro level. The point of departure is that people act in a goal-directed
manner and are sensitive to incentives. They act rationally in a restricted sense, set
against the background of their knowledge and ideas about goals and their means to
reach them (Boudon 1979). The extent to which people achieve their goals will be
determined by the constraints imposed upon them as well as by the resources at their
disposal. In as far as constraints and resources are structurally or institutionally
determined, they are the way to bridge the gap between the macro and micro levels
(Wippler and Lindenberg 1987).

If we apply the theory of goal-oriented behaviour as part of the explanation, we
need to know the background against which people weigh up their alternatives—in
other words, what their goals are. A systematic approach to this is given in social
production function theory (Lindenberg 1996). The assumption here is that people
have a limited number of ultimate goals, namely physical and social well-being. The
theory proposes that people produce their physical and social well-being through
their activities and use of resources (Fig. 2.4).

How and through which activities people achieve their ultimate goals depend on
individual circumstances and resources and on macro-level social, structural and
institutional conditions. This theory has been successfully applied to explain the loss
of quality of life among the elderly (Gerritsen 2004; Ormel et al. 1997). It was also
the basis of the empirical material we use in the tutorial on multilevel logistic
regression in Chap. 12.
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The Behaviour of Healthcare Providers

We assume that healthcare providers strive to achieve the same general goals of
physical and social well-being as everyone else. An important instrumental goal for
producing social well-being specific to health workers is the promotion of the health
of their patients or clients. The importance of this goal is firmly established through a
long period of socialisation in medical school and internships and during postgrad-
uate specialisation. The patient’s health is usually the first and dominant element in
determining the physician’s definition of a decision situation. This also underlines
the mutual dependence of health workers’ and patients’ goals.

The fact that health workers also have other instrumental goals makes it under-
standable that they are not necessarily perfect agents for their patients (Domenighetti
et al. 1993; Mooney and Ryan 1993). Their actions towards the improvement of their
patients’ health have consequences for their other goals; they take time, generate
income, and obtain approval or disapproval from colleagues. Structural conditions,
at the system level, for example, might influence the ability to achieve an optimal
mix of income and leisure time. Fee-for-service payment makes it attractive to
perform more services, because that increases income, as was hypothesised by
Westert (1992). Physicians that work in single-handed practices depend more on
their patients to gain social approval, whilst those in group practices have a greater
dependency on their colleagues to achieve the same goal (Freidson 1970, 1975).

The Behaviour of Patients

Models of patients’ behaviour have been elaborated mainly from a social psycho-
logical point of view. A common model is the Health Belief Model (Janz and Becker

Universal goals physical wellbeing social wellbeing

Instrumental goals   comfort activation status    affection    confirmation

Activities (examples) eating sports        job intimate ties   compliance
                    with norms

Resources (ex.) money skills        education   spouse      social skills

Fig. 2.4 Outline of the social production function theory. (Adapted from Ormel et al. (1997))
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1984) based on attitude theory. A more sociologically oriented model is the so-called
Andersen–Newman model (Andersen and Newman 1973; Andersen 1995) that
evaluates healthcare utilisation from three groups of influences: predisposing vari-
ables (attitudes, patterned by age and gender); enabling variables (or constraints),
such as insurance status or the availability of health services; and needs variables,
such as the experience of symptoms of ill health. These models lack a theory of
preferences, such as social production function theory. They either take the goals of
patients for granted (as in the Anderson–Newman model) or just ask people for their
preferences (as in the Health Belief Model). Within health economics, the Grossman
model (Grossman 1972; Van Doorslaer 1987) assumes that healthcare utilisation is
one of several instrumental goals that people use to create health. The basic idea is
that people invest in maintaining their ‘stock of health capital’ by their lifestyle,
preventive actions and use of healthcare. Apart from maintaining or regaining health,
people also have other instrumental goals such as reducing anxiety or uncertainty
(Ben Sira 1986) or have quick or slow solutions to their problems (depending on
sickness benefits, for example).

Patient–Provider Interaction

Utilisation of health services, the meeting point of supply and demand, is determined
in the interaction between healthcare providers and patients—usually the consultation.
A typical feature of this interaction is its asymmetry. Firstly, asymmetry exists in the
importance of the consultation. For a particular patient, there is only one problem and
that is his or her problem, whilst for the health worker there are many patients with
many problems (Gillon 1988). Secondly, there is asymmetry in information. Providers
have information that patients do not have, and the former use that information to
reach a diagnosis or to advise therapy. Finally, healthcare providers sometimes govern
access to scarce resources, such as drugs that are only available on prescription or
sickness certificates that entitle the patients to certain benefits (Stone 1979).

Given these asymmetries, one would hypothesise that the expectations of health
workers and providers would often diverge from those of patients (Persoon 1975). In
addition, both parties have instrumental goals other than regaining or maintaining
health. In situations in which expectations diverge, patients have different alternative
courses of action, for example:

• To negotiate or enter into conflict with the health worker: the alternative of the
knowledgeable patient

• To find another healthcare provider: the alternative of ‘doctor shopping’ or
consulting complementary healers

• To act as if they accept the situation, but neglect the advice dispensed: the
alternative of non-compliance.

Both the occurrence of diverging expectations and the alternatives that are
subsequently chosen depend on constraints and resources.
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From Macro to Micro Level

The gap between macro and micro levels is bridged by assumptions about structural
and institutional constraints that influence the way people can realise their goals.
These constraints are located at different levels. Basically, the organisation of the
phenomenon under study determines what the relevant levels are and where they are
located. In the case of health services research, three levels might be relevant: the
level of the healthcare system, the level of the practice or organisation (hospital) in
which providers work or the social context of the patient and the level of the actual
consultation between provider and patient. The upper half of Fig. 2.5 shows these
levels.

The structure and institutions of the healthcare system influence both healthcare
providers and patients. The result of the interaction between patient and provider, in

Levels of constraint:

system: structure and institutions
of the health care system

intermediate: practice/organisation
of providers

social context
of patients

micro: patient provider interaction

Levels of outcome:

micro: outcome of the interaction

intermediate: patterns of patterns of
utilisation

medical practice

system: differences between health
care systems

Fig. 2.5 Context at
different levels and
outcomes at different levels
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terms of alternative modes of action distinguished above, is influenced at the system
level by the extent to which consultations are embedded in an existing patient–
provider relationship. This is notably the case when patients are on the list of a
specific healthcare provider. In such circumstances, what happens in the current
consultation may be influenced both by the common past of the patient and the
provider and by the expectation of a common future. Moreover, in some systems, it
is more difficult to change your doctor than in others (Thomas et al. 1995). If
providers are paid on a fee-for-service basis, patients and providers are usually not
institutionally tied to each other or, if they are, then this tends to be only for a
restricted time period. In such a case, one would expect patients to negotiate when
expectations diverge. If providers are paid on a capitation basis, patients and pro-
viders are tied to each other and usually there are administrative barriers to changing
your doctor. The reaction to diverging expectations in this case is more likely to be
non-compliance. If providers are in salaried service, patients are usually tied to a
group of providers but not to an individual doctor. In this case, we would expect to
find a higher incidence of doctor shopping.

The second, intermediate level at which constraints operate is at the level of the
practice or organisation of the provider and the social context of the patient. Doctors
in single-handed practices are more dependent on their patients to gain social
approval, whilst doctors who work in larger practices depend more on each other
to gain this good (Freidson 1970). As a consequence, the former might be more
willing to negotiate with their patients. From the viewpoint of patients, the tendency
to negotiate might be influenced by their ability to communicate their goals to
healthcare providers, which is probably related to their educational level, and by
the need to communicate their goals (such as the time or money costs of the proposed
treatment), which may be related to their economic position (Westert et al. 1991).

Finally, there are constraints at the level of the consultation. The more urgent that
a healthcare problem is, the less important any alternative goals of the patient will be
and the greater the inclination of patients will be to follow professional advice. If the
health problem is less urgent, goals will coincide to a lesser extent. If, in such a case,
the freedom of the doctor to make an individual decision has been reduced as a
consequence of professional guidelines or protocols, patients might be more inclined
to go doctor shopping, for example by seeking a second opinion.

What Contexts Are Relevant?

Contexts are important because they define the action space of individuals and the
alternatives they have. Many problems in health and healthcare are related to
people’s behaviour. People behave within the social and institutional context of
their community or workplace, for example. These contexts influence the resources
and the range of options (opportunities and constraints) that actors have.

The question ‘Which contexts are relevant?’ is answered by analysing the
research problem and asking: ‘What kind of opportunities and constraints determine
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people’s behaviour, and across which units are these opportunities and constraints
patterned?’ This abstract notion can be illustrated with an example as follows.

If you are trying to explain neighbourhood differences in health, different con-
texts might be relevant, each related to a different mechanism. And each of these
contexts has different requirements regarding the kind of geographical unit you
would prefer to use.

1. People live in social units, and these offer opportunities and constraints that
influence their health and health behaviour. Neighbourhoods differ in terms of
how close the relationships between people are within those neighbourhoods and
the availability of support networks. Social integration and social support are
known to influence people’s health. A relevant context would comprise small-
scale, socially homogeneous units. The relevance of small homogeneous areas
has been discussed from a theoretical and methodological point of view in
criminology by Oberwittler and Wikström (2009) in their chapter ‘Why small
is better’.

2. People also live in administrative and planning areas which are used to plan and
organise healthcare facilities, including community health centres and hospitals,
and to organise public health activities, such as the delivery of smoking cessation
services or vaccination campaigns. Here the opportunities and constraints are
more institutional. A relevant context would be administrative areas.

3. People’s health is also influenced by exposure to the physical environment. Areas
differ in exposure to factors including noise and air pollution. When analysing
such physical influences, sometimes very small units are used, especially in urban
areas.

Different constraints related to several higher levels could influence health at the
same time, either separately or jointly. Different levels may work in conjunction; for
example, municipalities may have certain policies, and the effectiveness of these
policies may depend on the characteristics of neighbourhoods (such as deprivation,
remoteness or rurality) within these municipalities.

In conclusion, examples of higher level units relevant in public health and health
services research are administrative areas, such as municipalities; social units, such
as groups of neighbours or peers; service areas of healthcare institutions, such as
hospitals; places of work, such as schools or different departments of a large
enterprise; and exposure areas to physical agents.

Ideally, the choice of higher level units should not depend on what routinely
collected administrative data are available but on a substantive analysis of the
research problem. However, for practical reasons, one often has to compromise
and use data based on administrative units, even though the preference might be
for data based on small areas with different levels of exposure. In such suboptimal
cases, it is important, when interpreting results, to be aware that the units of interest
may not coincide exactly with those that have been analysed.
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From Micro to Macro Level

Usually the aim of health services research is not to explain the individual choices
made by healthcare providers or patients. From the viewpoint of the providers, the
main focus is on patterns of medical practice rather than the individual choice of a
therapy. In the same way, from the patient’s viewpoint, the main interest is in patterns
of healthcare utilisation. The behaviour of individual providers and patients, there-
fore, has to be transformed to higher levels (see the lower half of Fig. 2.5). Just as we
distinguished different levels at which constraints operate, we can also distinguish
different levels of results: from the results of the interaction of provider and patient in
particular consultations to intermediate-level results in terms of practice patterns and
utilisation patterns, to differences between health systems at a system level.

The transformation of micro level to macro level can have a number of different
forms. We can distinguish four such forms.

• Aggregation: in this case, individual behaviour is transformed through the appli-
cation of a mathematical function. An example is the rate of Caesarean sections in
a region, which is the count of the individual decisions by gynaecologists to
perform a section divided by the total number of births in certain time period.

• Partial definition (or definition by convention): when the incidence of an individ-
ual outcome reaches a certain level, a collective outcome is supposed to exist by
definition. An example is the existence of an epidemic. One might use the partial
definition that if a certain percentage of the population at risk is infected, it is
called an epidemic.

• The application of institutional rules: in this case the transformation is not made
through a more or less arbitrary definition, but is based on an institutional rule. An
example is the process of creating consensus statements or protocols for medical
treatment. In a process like this, implicitly or explicitly, a majority rule is used as a
necessary step in transforming individual expert opinion into a consensus document.

• Game theory and simulation: the analogy of a game can be used to predict the
collective outcomes of joint individual actions. Game theory can, for example, be
applied to the analysis of fee inflation. When formal, mathematical solutions
cannot be reached, simulation can be used to transform individual effects to
collective outcomes.

The Use of “League Tables”

In the wake of the performance indicator movement, governments increasingly want
to monitor the success of public and semi-public organisations, such as hospitals.
Moreover, knowledgeable healthcare consumers want information on which to base
their choice of healthcare provider. League tables order organisations from high to
low performing on a given criterion. The English NHS, for example, publishes
league tables for GP practices, based on the Quality and Outcomes Framework, on
its website.
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Such performance indicators are usually aggregated from individual outcomes.
Examples include patient deaths, complications, and readmissions within a given
time period, and patient satisfaction. A big problem with league tables is how we can
make a fair comparison between organisations that may have very different patient
populations. Specialised hospitals differ from general hospitals in the composition of
the patient population in terms of severity of conditions, and this in turn might affect
outcomes that are used to construct league tables (Jacobson et al. 2003; Leyland and
Boddy 1998). MLA can be used to adjust the differences in outcomes between
organisations for case-mix differences. Importantly, however, it also ensures that
adjustments are made based on the assumption that there may be an institutional
effect (Goldstein and Spiegelhalter 1996).

Organisations also differ in size and, as a consequence, the confidence intervals
for estimates of the average outcomes differ. With MLA we can estimate these
confidence intervals. A further discussion of this and related issues will follow in
Chaps. 5 and 8. Figure 2.6 gives an example from a comparison of 78 hospitals in the
Netherlands. The measured effect shown here relates to people’s experience of how
clean sanitary facilities were.

Conclusion

In this chapter we have put health and healthcare in a micro to macro context. This
provides the readers with heuristic tools to analyse their own research problems.
Characteristics of macro-level contexts define people’s action space and thus influ-
ence their behaviour. The outcome of people’s individual behaviour aggregates to
collective outcomes, and these in turn might influence future behaviour. Different

Fig. 2.6 Hospital performance scores (and confidence intervals) on the patients’ experience of their
room and stay (78 hospitals; 22,000 patients). (Source: Sixma et al. (2009))
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heuristics and models of (health) behaviour may be helpful when defining your own
research and when developing hypotheses. The individual research problem deter-
mines which contexts are relevant. We come back to this in the next chapter when we
ask the question: ‘What is a level in multilevel research?’
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Chapter 3
What Is Multilevel Modelling?

Abstract In this chapter, we will introduce the basic methodological background to
multilevel modelling in verbal form. The underlying graphs and algebra are not
covered until Chap. 5. There are two principal reasons for the increasing popularity
of multilevel analysis. Firstly, it is more efficient and uses more of the available
information than the alternative approaches of distributing contextual information to
all individual observations or of aggregating all individual observations to the
contextual level. Secondly, multilevel analysis enables the testing of more interest-
ing hypotheses, especially those referring specifically to variation in outcomes or
concerning the interactions between characteristics of the context and of individuals.
This chapter also covers the idea of what constitutes a level in multilevel research.

Keywords Multilevel analysis · Random intercepts · Fixed effects · Random
slopes · Cross-level interaction · Multilevel hypotheses

In public health, we are often interested in discovering what factors are associated
with certain outcomes or what the strength of the relationship is between a variable
and an outcome. Such relationships are commonly explored using regression anal-
ysis, but standard regression analysis makes certain assumptions that are untenable.
Most pertinent among these is the assumption that the outcomes are independent of
each other for all of the individuals in our study. We have seen from the previous
chapter that the behaviour of individuals often cannot be isolated from the macro
context in which they operate: the neighbourhood in which people live or the
practice in which physicians work, for example. The influence of the context
means that outcomes are unlikely to be independent, violating the assumption on
which the standard regression model is based. Our solution is to use MLA to take the
different levels into account in our analysis.
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Methodological Background

We use multilevel modelling when we are analysing data that are drawn from a
number of different levels and when our outcome is measured at the lowest level.
Such a situation arises, for example, when we analyse the self-rated health of
individuals, and we want to relate this both to individual characteristics, such as
age and social class, and to contextual characteristics, such as the population density
of the neighbourhood. If we had only one observation for each neighbourhood—that
is, if we had sampled and interviewed just one person in each neighbourhood—and
sufficient observations in total, then we would just conduct an ordinary single-level
regression analysis. Our observations would be independent of each other; although
there may be an influence of the neighbourhood context, our observation of this
would differ for each individual in our sample as though it were an individual
characteristic. Alternatively, if our entire sample were taken from the same
neighbourhood, then we would again be able to treat the observations as though
they were independent; although there may be a contextual effect, the identical effect
would apply to everyone in our sample.

However, the above sampling designs of one person per neighbourhood or of a
sample from a single neighbourhood are unusual ones; more commonly, we will
have a number of individuals living in each of a number of neighbourhoods. If the
place in which people live influences their health, then the observations are no longer
independent. Two individuals living in the same neighbourhood have a common
context influencing their self-rated health; as a result, some contribution to self-rated
health is common for all individuals living in the same neighbourhood that is not
shared by those from other neighbourhoods. The ways in which the environmental
contexts in which individuals live or work may influence or constrain behaviour
were explored in Chap. 2; an example might be that health behaviours are shared
within social networks meaning that there is a common influence on self-rated
health.

The average level of self-rated health in any particular neighbourhood may be
higher or lower than the average for all neighbourhoods, all other factors being
equal. Then within that neighbourhood, some individuals will have self-rated health
above the neighbourhood average and some below average. So the overall difference
between an individual’s self-rated health and the population average will be partly
attributable to the differences between neighbourhoods and partly due to the differ-
ences between individuals within neighbourhoods. When we look at the differences
between individuals in our sample, we use the variance as a summary measure of the
total variation. The first important feature enabled by multilevel analysis is the ability
to split up or partition this variation into that part which is attributable to the
neighbourhood and that which is attributable to the individual. The neighbourhood
part of the variation consists of the variation of the average self-rated health of
each neighbourhood around the overall average. In multilevel analysis, the
neighbourhood averages are assumed to be sampled from a distribution of all
neighbourhood averages; this is similar to a random effects analysis of variance
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(Gelman and Hill 2007). In regression terms we can think of the neighbourhood
average as a regression intercept since this then generalises to the introduction of
independent or explanatory variables; the fact that these neighbourhood intercepts
are assumed to be drawn from a statistical distribution of all possible intercepts gives
rise to the term random intercepts model.

Earlier we considered two studies in which we would not need MLA. In the first
we sampled one person from each of a number of neighbourhoods. In such a
situation, we have no variability within neighbourhoods; the average score in each
neighbourhood cannot be distinguished from the score of the single person sampled.
In the second example, we took our entire sample from a single neighbourhood; this
time there is no variability between neighbourhoods, as the population (sample)
mean is equal to the mean observed in that neighbourhood. Neither design enables us
to distinguish between the levels of individual and area, and so neither is a true
multilevel design.

As discussed earlier, the assumption that our observations are independent is
violated if our data are hierarchically structured, and we believe that the context may
influence the outcomes; the shared context introduces a correlation between two
individuals from the same neighbourhood. This has consequences both for the
estimation of regression coefficients—measures of the relationships between indi-
vidual or contextual characteristics and outcomes—and for the standard errors of
these estimates (our measures of precision, which determines the extent to which we
find a relationship to be statistically significant). Failing to take into account the
correlation between individuals within their contexts leads to the phenomenon
known as misestimated precision (Aitken et al. 1981); ignoring the clustering of
individuals within higher level units leads to an overestimation of the effective
sample size and hence the tendency to find more relationships significant at a
given significance level than the data can actually support.

The random intercepts regression model is based on the assumption that, whilst
the intercept or average outcome for individuals with a given set of characteristics
varies between higher level units, the relationship between the dependent and
independent variables is consistent across all contexts. Returning to the example
of how self-rated health varies across neighbourhoods, we might find a relationship
with income such that those with higher incomes tend to enjoy better health. A linear
relationship would suggest that for every unit increase in individual income, we can
expect to see a fixed increase in self-rated health. The use of a random intercepts
model would be based on the assumption that such a relationship between income
and self-rated health holds in all neighbourhoods despite health on average being
higher or lower in some neighbourhoods. A random slopes or random coefficients
model allows us to relax this assumption and to let the relationship between self-
rated health and income vary across contexts; in some neighbourhoods, the health
gain associated with a fixed increase in income may be larger than in others. As with
the intercepts, the slopes—the relationship between health and income in each
neighbourhood—are assumed to come from a distribution of all possible slopes.
Moreover, we can examine the relationship between the intercepts and slopes to see
whether, for example, the health gain associated with a fixed increase in income is
larger or smaller among neighbourhoods in which the average health rating is lower.
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Why Use Multilevel Modelling?

We can think of a number of alternatives to multilevel analysis. The most common of
these are:

• Aggregate or ecological analysis: ignore the level of the individual and restrict the
analysis to the relationship between contexts

• Individual analysis: ignore the effect of context on our estimates of relationships
and their associated precision

• Separate individual analyses within each higher level unit
• Individual level analysis with the inclusion of dummy variables to estimate the

effect of each higher level unit

As we mentioned in Chap. 2, these alternative approaches may easily lead to
inferences at the wrong level, the ecological and atomistic fallacies (Diez-Roux
1998).

Aggregate Analysis

Imagine that we are interested in examining the relationship between the time spent
undertaking recreational physical exercise each week and certain individual charac-
teristics (including age, sex, education and income) and environmental characteris-
tics (including area deprivation and the availability of green spaces). The aggregate
analysis would involve averaging the time spent exercising by individuals in each
neighbourhood and regressing these means on averages of the individual variables
(average age, proportion of males, average education and average income) as well as
the contextual variables. Such an analysis involves considerable loss of power since
the number of observations in our data set is reduced from the total number of
individuals to the total number of neighbourhoods in our study. But, more impor-
tantly, the analysis may be misleading; the average income in a neighbourhood may
reflect opportunities available to everybody in the area (Diez-Roux 1998) and as
such may exhibit a different relationship from that seen with individual income. We
return to this issue in our discussion of context and composition in Chap. 7 and
provide an example of the way in which aggregated individual variables can take on
a different meaning in the practical work in Chap. 13.

Individual Analysis

As we have discussed above, conducting the analysis at the individual level when the
context is important, and outcomes are therefore correlated, causes problems with
misestimated precision (Liang and Zeger 1993). This can be illustrated most easily for
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(although is not restricted to) contextual variables; that is, variables that have been
observed, measured or created at the higher level. Whereas in the above example we
have measures of education and income for every participant in the study, the
contextual variables—area deprivation and the availability of green spaces—are
measured at the area level. The number of observations available on each is therefore
limited to the number of neighbourhoods in the study and not the number of individ-
uals. Yet in an individual analysis, we would behave as if we had taken a measure of
area deprivation for every study participant, resulting in artificially small standard
errors and confidence intervals around those regression coefficients. We show the
potential effect of even a small degree of clustering on sample size calculations when
we consider the importance of variation at different levels in Chap. 6.

Separate Individual Analyses Within Each Higher Level Unit

If the analysis is conducted separately for every high level unit, then this is fine as far
as it goes. We can overcome the effects of the clustering of individuals within
contexts by making each analysis context-specific. But there are severe limitations
to such an analysis. Firstly, we are unable to share relevant information across
contexts. So if, for example, the gender effect—the difference between the mean
time spent exercising each week for men and women—does not differ significantly
between areas, then the separation of the analysis into specific blocks means that we
have lost the ability to estimate a single shared regression coefficient. In general we
will estimate a complete set of regression coefficients for each neighbourhood. So a
regression on four independent variables—plus an average or intercept term—will
be undefined without a minimum of five observations in each area. (In practice we
would probably want considerably more than five observations if we were to
estimate five parameters; a rough guide is to have ten observations per parameter
being estimated, meaning that a more realistic minimum might be 50 observations
per area.) But secondly, and more importantly, we have lost the ability to estimate
contextual effects. Our contextual variables do not vary between individuals within
neighbourhoods and so we are unable to estimate directly the effect that area
deprivation or the availability of green space has on recreational exercise. A
two-stage “slopes-as-outcomes” approach was developed to enable the combination
of such separate regression coefficients, and even to permit the introduction of
contextual effects to explain variation in regression parameters between context,
but such an approach has several notable limitations (Raudenbush and Bryk 1986).

Individual-Level Analysis with Dummy Variables

Our final alternative to fitting a multilevel model is to fit a fixed effect—a dummy or
indicator variable—for every higher level unit in our model. This is rather inefficient
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in that it can require a large number of dummy variables. Fitting a dummy variable to
model the intercept in each neighbourhood may not stretch modern computational
capability; however, if a dummy variable were required for every household in a
study of individuals nested within households, then the large number of single-
person households would result in a large proportion of the total available degrees of
freedom being used up in a very unparsimonious model. This would effectively
remove the characteristics of individuals living in single person households from our
model. The equivalent of a random slopes model would require a further dummy
variable to estimate the regression coefficient for each neighbourhood. But once
again the biggest problem with this approach is the inability to estimate the relation-
ship between a contextual variable and the individual outcome. The inclusion of
(n � 1) dummy variables to model the intercepts for n neighbourhoods means that
there are no remaining degrees of freedom at the neighbourhood level. It is for this
reason that these “fixed effects” models (as opposed to random effects or multilevel
models) can only be used to adjust for the potentially confounding influences of
contexts on individual-level relationships rather than to explore contextual influ-
ences per se. Fixed effects models may also change the interpretation of regression
parameters in subtle but important ways, particularly regarding the analysis of panel
(repeated measures) data (Leyland 2010).

What Is a Multilevel Model?

By now it should be clear that a multilevel model is a form of regression model that
is appropriate when the data have some form of a hierarchical structure. We have
also covered what a multilevel model is not, including the fixed effects model that
uses dummy variables to remove the effects of higher level units. But how do
multilevel models work? The key is in the distributional assumption made about
the higher level units. Rather than estimate a mean for each higher level unit, as is
necessary when using a fixed effects model, a multilevel model summarises the
distribution of the higher level units using a population mean for all contexts and a
variance. A single-level regression model already estimates the mean (or intercept),
so the additional requirement of a two-level multilevel model is just one parameter—
the variance—regardless of the number of higher level units. When we turn a
random intercepts model into a random slopes model, rather than including an
additional parameter (the dummy variable modelling the slope) for each of (n � 1)
neighbourhoods, we need to add just two parameters—the variance of the slopes and
the covariance between the intercepts and slopes. This reduction in the number of
parameters required means that multilevel models provide a more efficient approach
to data analysis.

But how much information is there in a variance? Is this sufficient for our needs?
Often we require estimates of the effects or residuals at higher levels in our model; an
example would be for models of institutional performance or the “league tables”
discussed in Chap. 2. If we are not estimating the effect of each hospital, we can still
use multilevel modelling to make inferences about the performance of contexts, such
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as hospitals. The distributional assumption that we make about the higher level
units—usually that they are normally distributed—means that the estimated effect
for each unit is shrunk towards the mean for all units. The extent to which the
estimated effect for a particular hospital is shrunk towards the overall mean depends
on two factors: the extent of clustering in our data and how much information we
have about that hospital. The extent of the clustering can be summarised in a simple
fashion by the intraclass or intraunit correlation coefficient—the proportion of the
total variance that is attributable to the higher level units. Returning to our earlier
example, this is the proportion of the variance between individuals in the time spent
exercising that is attributable to neighbourhoods. The intraclass correlation coeffi-
cient, sometimes referred to as the variance partition coefficient (Goldstein et al.
2002), is also a measure of the correlation in outcomes between two individuals in
the same higher level unit, ranging between 0 (no correlation—time spent exercising
is completely independent of the neighbourhood of residence) and 1 (perfect corre-
lation—all individuals from the same neighbourhood spend exactly the same time
exercising, given their individual characteristics). The estimated effect for each
higher level unit is then a weighted average of what the data for that particular
unit tell us and the population average; with less information about a given
neighbourhood, we have little evidence that the effect is different from the average
and hence the greater the shrinkage towards the mean. Small units about which we
have little information are said to “borrow strength” from the rest of the sample
(Ghosh et al. 1998). Of course the amount of information that we have about each
unit is reflected in the (un)certainty around any estimate; confidence intervals will be
smaller for neighbourhoods for which we have a lot of information. See for example
Fig. 2.6 in Chap. 2.

There are numerous published examples comparing multilevel analyses with
alternative methods that illustrate how different the results can be and how the
results and conclusions that can be drawn from the studies are dependent on the
method of analysis employed. We briefly describe three such studies below.

The first example concerns a training programme in diabetes care for GPs. When
the data were analysed at the level of the individual patients, the conclusion was that
the training programme had a positive influence on diabetes outcomes. However,
because the training programme targeted GPs and not patients and because the
patients are nested within the GPs, a multilevel analysis was also performed. In
this analysis, the training programme was no longer significant (Renders et al. 2001).

Our second example concerns the impact of an indoor dichlorodiphenyltrichl
oroethane (DDT) house-spraying programme, introduced at the village level, on
individual malaria parasitaemia in Central Highland Madagascar (Mauny et al.
2004). As well as showing that the standard errors (and hence confidence interval
s) of estimates were somewhat larger for the multilevel analysis, the authors showed
how the population size of the village appeared to be strongly associated with the
presence of parasites when using a conventional logistic regression model, but that
this relationship was not significant when a multilevel analysis was conducted.

Finally, Moerbeek et al. (2003) considered the analysis of multicentre interven-
tion studies based on the analysis of data collected on children clustered within
classes and schools from the Television School and Family Smoking Prevention and
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Cessation Project (TVSFP) (Flay et al. 1988). They showed that not only did
ordinary (least squares) and fixed effects regression approaches tend to underestimate
the standard error of the treatment effect on the post-intervention Tobacco and
Health Knowledge Scale (THKS), these two approaches also provided incorrect
estimates of the treatment effect.

What Is a Level?

In the first two chapters, we have given a number of examples of contexts that are
relevant for people’s health and for healthcare utilisation. When dealing with
multilevel analysis, these contexts are called levels. We define a level as a sample
(or a total population if the number is too small to use a sample or if all of the data are
available) of contexts; moreover, we may have one or more characteristics
(or variables) that vary between contexts.

Earlier in this chapter we introduced an example in which we focused on the time
spent undertaking recreational exercise. We used information about individuals: the
length of time spent exercising each week and information about individual demo-
graphic and socio-economic factors that might influence the time spent exercising.
We also had information about the context in which these individuals live: the
neighbourhood. Now we have two levels: individuals and neighbourhoods. The
average of the time spent by individuals within each neighbourhood on recreational
exercise varies between neighbourhoods, and a random intercepts model assumes
that the neighbourhood means are sampled from some hypothetical distribution of all
neighbourhood means. Such an exercise assumes that the higher level consists of
units that can be meaningfully sampled. In this case, that would be a sample of
neighbourhoods from a population of neighbourhoods. In practice we often work
with all neighbourhoods rather than a sample; in such a situation, these can still be
considered a sample for the generalisability of results. The data for each
neighbourhood form a sample of data that could possibly have been collected at
different times (if the sample had been drawn and interviews conducted a week
earlier or a month later, the results would have differed) and allow us to make
inferences about those neighbourhoods and neighbourhoods in general.

To summarise, levels comprise units that can be observed, sampled and analysed.
These units have characteristics that can either be directly observed and measured,
such as the availability of green spaces in a neighbourhood, or aggregated from
individual characteristics, such as average income.

The distinction between a level and its characteristics is important. A character-
istic, such as the degree of urbanisation of regions, is not a level. Degree of
urbanisation may have a number of values; for example, it may be categorised in
six classes from highly urban to sparsely populated countryside. (Some statistical
software refers to these classes as levels, but these are clearly quite different from the
levels that we are talking about in MLA.) We can sample regions from each of the
classes of degree of urbanisation to form a stratified sample, but that does not make
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degree of urbanisation the level. Categories of urbanisation are not something that
we would usually sample. We do, however, sample neighbourhoods or municipal-
ities and then categorise them according to urbanisation, or we may stratify the
sampling frame by urbanisation and draw a sample of neighbourhoods from each
stratum to ensure that all strata are represented. Urbanisation is a variable, and
neighbourhoods are units that, among other things, can be characterised by their
degree of urbanisation.

In survey research urbanisation can be used at both the individual and munici-
pality level depending on the sampling design. In health interviews among a random
population sample, people are asked questions about health-related behaviour and
subjective health. Characteristics of the place where people live may also be
requested or recorded. The dataset comprises details about the individuals
interviewed and a variable concerning the place where they live. It is possible to
study the relationship between degree of urbanisation and, for example, mental
health. All units are still at the individual level; there is no sampling of municipalities
and the identity of the municipality of residence is not recorded just the nature or
characteristic of the local area. Such a design might be employed to ensure confi-
dentiality using a random dial telephone survey. Alternatively, the sample design of
the same health interview survey could be two-stage such that, firstly, a number of
municipalities is sampled, and, within each of the sampled municipalities, a sample
of interviewees is drawn. The dataset now contains individual data and the identity
of the municipality. Characteristics of the municipality can be added from other
sources or constructed by aggregating individual variables. The result is a database
with sampled units at two levels. (Multistage sampling designs are covered, along
with other multilevel data structures, in Chap. 4.)

In survey practice, a simple random sample is often not considered for pragmatic
reasons—consider the costs of conducting face-to-face interviews with people
dispersed over a large area, such as a country. In such circumstances a staged sample
is used. To take this data structure into account, often simple adjustments are made to
the standard errors of parameter estimates. With the diffusion of MLA in health-
related research, there are now tools enabling us to treat a multistage sample in an
appropriate way, and it has become more common to theorise about the way context
affects people’s health, health-related behaviour, and health service utilisation.

As long as we only see the pragmatic reason of not having to send interviewers to
a large number of different places as the rationale for using a two-stage sample
design, the higher level in the data structure is just a nuisance. It is important to take
the two-stage nature of the sample into account in statistical analysis, because the
outcomes for individuals clustered within the same higher level sampling unit may
not be independent. However, if we think of the higher level units as a context for
human behaviour, they become interesting in themselves.

In intervention studies, to use another example, the intervention can be made at
the individual level or at a higher level related to the provider of the intervention,
such as a physician, health centre or community. If the intervention is a new drug,
and patients are recruited from one site or the administration of the drug is strictly
controlled and independent of where the patients get it, we again have a traditional
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single level analysis. One of the variables, the marker of the intervention, is whether
the patients were given the new drug or a placebo. More complicated interventions
often require healthcare providers to follow a protocol when treating eligible patients
after randomisation. In this case the sampling design might be that physicians or
centres are sampled and then patients are recruited among the eligible population that
visit these physicians or centres. In such a case there might be differences in the way
the intervention is administered, and it is important to take this into account. Often
researchers are only interested in the effect of the intervention, in which case they
tend to see the higher level as no more than a nuisance. For example, in a discussion
of the advantages of MLA over single-level regression when analysing the relation-
ship between patients’ age and blood cholesterol levels, Twisk (2006) states “. . . the
medical doctor variable was only added to the regression analysis to be corrected for,
and there is no real interest in the different cholesterol values for each of the separate
doctors” (p. 9).

How Many Units Do We Need at Each Level?

This question is usually more pressing for the higher level units than for the lower
level units. Starting with the number of higher level units we need, we can say that it
is not an easy question to answer, and there are no clear rules to follow. We will only
give a number of considerations.

First of all, the number needs to be sufficient to estimate a mean and a variance.
So the question is: with what number of units would we be confident that we can do
that? With somewhere around ten higher level units, it would make sense to do
so. With a smaller number it is perhaps better to do a single-level analysis and
include dummy variables for the higher level units (a fixed effects model). The
accuracy of different parameter estimates from a multilevel model, together with
their standard errors, may be dependent on the sample size. Maas and Hox (2005)
showed that in general estimates were unbiased in two-level linear multilevel models
if there were sufficient (at least 50) higher level units. With fewer higher level units,
the only estimate that was affected was the standard error of the high level variance.

Secondly, the research question can impact on the number of higher level units
needed. If the research question or hypothesis is about the effect of characteristics of
higher level units, such as hospitals, then we need enough hospitals to estimate the
effect of the hospital characteristics or test the hypothesis. As a rule of thumb you
need an additional ten higher level units for each independent variable at this level
that you want to include in the analysis. So if you want to test a specific hypothesis
and take into account a few confounders at the higher level, the number of higher
level units needed quickly increases.

A related consideration has to with the power available to answer specific
research questions (discussed further in Chap. 6). The smaller the number of higher
level units, the more difficult it is to find an effect of a given size of a characteristic of
the higher level units. If you do not want to be too quick to reject a hypothesis—after
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all, the hypothesis may be true even if you do not find a significant effect of the
variable in question—then one option is to use a different threshold when testing the
coefficient of a higher level variable (such as p < 0.10 instead of the more common
p < 0.05).

Cost is often an important factor when making decisions about the number of
higher level units to be sampled, especially when data collection for each extra
higher level unit is very expensive or burdensome. Snijders (2001) shows how costs
may be taken into account when calculating the sample size for a multilevel study.

A final consideration is related to the nature of the higher level units. Sometimes
only a certain number of higher level units exist. There are only (currently) 28
European Union Member States, 12 provinces in the Netherlands and 14 health
boards in Scotland. So if one of these units is relevant for our research, we are
restricted in terms of the numbers available.

In general the number of units within each higher level unit is less of a problem.
Even with small numbers of lower level units within each higher level unit, we can
estimate a mean and a variance. An example where we have small numbers within
higher level units is when we study individuals within households (see e.g. Cardol
et al. 2005). There are some situations where it is important. An example is when we
want to make league tables to inform patients about quality of care in different
hospitals. In this case it is important to have enough observations in each hospital to
be able to show significant differences between hospitals; our interest is in estimating
the hospital effects, and there have to be enough observations in each hospital to
estimate these effects reliably. Another example is when we want to construct new
independent variables on the basis of individual observations. This is the case in the
field of ecometrics (discussed in Chap. 8) where we might want to say something
about safety in neighbourhoods on the basis of survey questions answered by
individuals and use that as a neighbourhood characteristic in an analysis of the
relation between neighbourhood safety and health. In this case the number of
individuals is important to reach a satisfactory reliability of the construct
“neighbourhood safety”. However, in general, if we have a choice, it will be better
to increase the number of higher level units than the numbers within the higher level
units.

Hypotheses That Can Be Tested with Multilevel Analysis

As we argued in Chaps. 1 and 2, higher level units are important because they define
the action space of individuals. Many problems in public health and health services
research are related to people’s behaviour; people behave within the social and
institutional context of, for example, their community or workplace. This context
influences the resources and the range of options (opportunities and constraints) that
actors have (Groenewegen 1997). The question “Which levels are relevant?” is
answered by analysing the research problem and asking: “What kind of opportuni-
ties and constraints determine people’s behaviour, and in which units are these
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opportunities and constraints patterned?” The answers to these questions provide us
with hypotheses, and we can now examine the kind of hypotheses that we can test
using multilevel analysis.

There is a two-sided relationship between the theories that you want to test and
the methodology to do so. Researchers usually do not formulate hypotheses that they
are unable to test. If important hypotheses come up that cannot be tested with the
standard statistical techniques available at the time, then attempts will be made to
develop new techniques. As soon as new statistical techniques are disseminated, new
hypotheses develop. This general observation also applies to MLA and the hypoth-
eses that can be tested with it.

MLA makes it possible to test different kinds of hypotheses (Leyland and
Groenewegen 2003):

• Hypotheses about variation.
• Hypotheses about the relationship between an outcome variable and individual-

level independent variables.
• Hypotheses about the relationship between an outcome variable and higher level

(contextual) independent variables.
• Hypotheses about cross-level interactions.

Hypotheses About Variation

The first step in MLA is to consider the variation in an outcome and to split this
variation into that part that is attributable to differences between individuals and the
part attributable to differences between their contexts. The statistical aspects of this
will be introduced in Chap. 5. At present, it is sufficient to know that we can analyse
how much of the total variance in our outcome variable is determined by the
individual level (e.g. patients) and how much by a higher level, such as doctors or
hospitals. In this manner we can get a sense as to how important each level is. In
MLA we stop seeing variance only as a nuisance parameter that describes uncer-
tainty, but we can also focus on the information that it represents (Merlo 2011).

We can therefore also develop hypotheses about where to expect more variation:
at the individual level or at the higher level (Merlo et al. 2005). In many practical
applications, the majority of the variation will be at the individual level. If we
analyse treatment decisions by physicians, it is reasonable to expect there will be
substantially more variability between patients than between doctors. Physicians
take into account the situation of individual patients and apply their knowledge and
skills according to each patient’s circumstances. However, if the patient’s situation
does not strongly influence the physician’s course of action, possibly because there
is considerable disagreement between physicians as to the relative value of alterna-
tive treatments, more variability might be associated with the physicians. So receipt
of treatment A rather than treatment B might be more strongly influenced by the
physician consulted than by individual patient characteristics or circumstances.
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There are other situations in which we might expect more variation to be at the
higher level. This is for instance the case with repeated measures data (this and other
data structures will be detailed in Chap. 4). When we analyse repeated measures
made on the same individuals (the measures are then the lower level units and the
individuals the higher level units), most of the variations will tend to be located at the
higher level of the individuals themselves. Think, for example, of repeated measures
of a subject’s weight; there is likely to be more variability between people than
between the measures made at different times on the same individual.

We might also be interested in patients treated by physicians who work together
in group practices or hospitals. We now have three levels in our model: the patients,
the physicians and the practices in which they work or, alternatively, the patients,
hospital departments and hospitals. In this case we can develop hypotheses about the
partitioning of variation between physicians and their practices or between hospital
departments and the hospitals in which they are situated.

De Jong et al. (2006) considered how the hospital in which physicians worked
could influence decisions regarding the length of stay of patients treated. Using data
relating to patient discharges from all hospitals in New York State for different
medical and surgical diagnostic-related groups (DRGs), they developed and tested a
hypothesis based on variation. Believing that physicians would adapt to their local
operating circumstances, they hypothesised that there would be more variation in
length of stay between hospitals than between physicians working in the same
hospital. The variation between individual patients, although substantially larger
than the variation between physicians or between hospitals, was not of primary
concern for this hypothesis.

In a more exploratory analysis, with no prior hypothesis, it is still important to
analyse how variation is distributed between levels. This might provide clues as to
what mechanisms could potentially explain variation (Merlo et al. 2009). The extent
to which variation is distributed over different levels is also highly relevant when it
comes to the development of interventions to influence a certain outcome. Think, for
example, about patients’ evaluation of their hospital stay. These patient evaluations
may be influenced by the attending consultant, by the department where the patients
were treated and by the hospital as a whole. Some aspects of the evaluation by
patients may relate to the consultant level, such as the patients’ judgement as to
whether they had received sufficient information from their doctor, whilst other
aspects, such as the quality of meals, will be related to the hospital rather than the
consultant or department. The extent to which variation is distributed over different
levels will give an indication as to the starting point for policies designed to improve
patient satisfaction with their hospital stays (Hekkert et al. 2009). Zegers et al. (2011)
analysed the occurrence of adverse events in hospitalised patients. From the
partitioning of the variance between hospitals and hospital departments, they con-
cluded that interventions to reduce adverse events should not only target hospitals as
a whole, but also hospital departments.

Sundquist et al. (2011) studied how individual physical activity was related to
objective measures of the built environment among a sample in Sweden. Realising
the potential importance of neighbourhood as an influence on individual activity
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levels, given that neighbourhood is a relevant context for physical activity and that it
is an environment that might be amenable to intervention, one of the stated aims of
the study was to determine the proportion of the variability in moderate-to-vigorous
physical activity that was attributable to neighbourhoods. Finding a rather small
proportion of the total variation attributable to neighbourhoods, the authors
suggested that the role of urban redevelopment in improving activity levels may
be limited.

Apart from splitting the variation in an outcome between the different levels in
our model, we can also develop hypotheses about differences in variation between
groups. Variation across groups is usually seen by researchers as a nasty statistical
problem that is best avoided as opposed to a source of hypotheses (Stinchcombe
2005). In their study on the impact of physician behaviour on patient length of stay,
de Jong et al. (2006) reasoned that greater dependencies meant that there would be
less variability among physicians who practiced in just one hospital (compared to
those working in two or more hospitals). They therefore hypothesised that the
variation between physicians (within hospitals) would decrease as the proportion
of physicians practicing in just one hospital increased; that is, that there would be
more variability within those hospitals in which a larger proportion of doctors
worked in more than one hospital.

Ohlsson and Merlo (2007) evaluated the effect of the natural experiment of
introducing a decentralised drug budget in Scania county, Sweden, using a before
and after design. Believing that the increased economic responsibility given to those
responsible for prescriptions would lead to efficient drug prescription, they
hypothesised that not only would the prescription of recommended statins increase
but also that the variation between healthcare centres and healthcare areas would
decrease following budget decentralisation.

In a study of regional inequalities in mortality, Leyland (2004) found that the
variance between the mortality rates of districts in Great Britain differed between the
11 regions and tended to increase over time, although the increases were not
uniform. These variances were used as a measure of inequality within regions and
were considered quite separately from the mean mortality rate for each region.

Although there may not be specific hypotheses concerning differences in vari-
ability between subgroups, it should be appreciated that not testing for differences in
the variance is equivalent to assuming that the variance is the same for all subgroups
but failing to test this assumption.

The emphasis on variation is a typical feature of MLA. If you are used to
analysing your data at a single level with regression analysis, you probably will
not consider differences in the variance between subgroups in your data. Ordinary
regression analysis only predicts the means and not the distribution (Stinchcombe
2005). The coefficient of determination (R2) is used to see how much variation is
explained by a set of independent variables, but how much variation there was to
begin with is usually not discussed. If you usually use analysis of variance, you
might be more aware of differences in variation between groups. When you start
using MLA, thinking about variation is an important first step. We return to the
subject of variation in more detail in Chap. 6.
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Individual-Level Hypotheses

In the case of individual-level hypotheses, a relationship is hypothesised between
two variables at the same, lower, level. An example would be the relationship
between the educational level of a patient and the amount of negotiating the patient
initiates in a consultation with the GP. Why would we use MLA in a case like this?
Basically because we know that the relationship cannot be adequately estimated
without taking the structure of the data into account. We know that there are
numerous other influences on what happens in a consultation, some of which are
related to the individual patients and some to the GPs. In that sense the hypothesis
about the relationship between educational achievement and initiating negotiations
is incomplete, and we cannot simply assume that all other influences are the same
(or that they only lead to random variation at the individual level).

Apart from the specific relationship between two variables at the lower level, we
can also test the hypothesis that only individual characteristics are responsible for
differences in outcomes between contexts such as health differences between com-
munities. If individual characteristics related to health cluster in some communities,
one might mistake this for differences produced by community characteristics or
circumstances. For example, some communities may have poorer health outcomes
but at the same time have older populations. MLA makes it possible to distinguish
these so-called compositional effects from real contextual or area effects. This issue
will be dealt with in more detail in Chap. 7. One could of course pose the question as
to why people with certain characteristics should cluster together as opposed to
being randomly distributed throughout areas. The identification of compositional
effects therefore does not solve the problem of the importance of individual choice
versus material conditions.

Context Hypotheses

In health services and public health research, as opposed to clinical research, we tend
to be more interested in hypotheses relating the context to the outcome when
applying MLA. We can distinguish between two kinds of contextual variables:
those that are aggregated on the basis of individual characteristics at the lower
level, such as the average level of education of the members of a group, and those
that are only defined as characteristics of the higher level units. An example of the
latter would be the number of years that a group has been in existence. This cannot
be deduced from the characteristics of the individuals, but can only be observed for
the group as a whole. Context hypotheses can refer to either kind of variable. The
interpretation, of course, depends on the researcher’s substantive theory. We will
only give some possible interpretations here, to emphasise the importance of think-
ing in terms of possible mechanisms underlying a relationship in order to form
hypotheses. We make no pretence that these are the only plausible interpretations.
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Aggregated Individual-Level Characteristics

In this case, the higher level variable is constructed by aggregating an independent
variable from the lower level to the higher level. (We come back to the way we can
construct aggregated variables within MLA in Chap. 8.) There are numerous exam-
ples and associated interpretations. We will briefly discuss three.

The first example concerns the number diabetics in a GP’s practice and how this
number—obtained from counting all diabetics within the practice—might influence
the regulation of individual patients. The hypothesis could be that the more diabetics
there are in a practice, the greater the chances are that an individual diabetic is more
poorly regulated. In this case the mechanism would be competition: all diabetics in a
practice compete for the scarce and finite resource that is the GP’s time and, in so
doing, they have to divide the GP’s time between them. The consequence is that, as
the number of diabetics increases, each of them has less time with the GP and so all
of them will be worse off.

The second example is substantively the same, but this time the hypothesis is
framed the other way around: the more diabetics there are in a practice, the greater
the chances are that an individual diabetic is better regulated. In this case the
interpretation could be that a GP with more diabetics on their books is more attentive
or more experienced in the treatment of diabetics and individual patients within that
practice have better results as a consequence.

The aggregation of individual characteristics to a higher level may result in
different kinds of variables; we could construct a count of the numbers of subjects
having a certain characteristic, as in the previous two examples, the average value of
a variable such as age, the proportion of subjects that have a particular attribute or
trait (such as smoking), or an aspect of the distribution of a variable. The third
example addresses this last possibility. There is a large (and much debated) research
literature about income distribution and mortality rates. Henriksson et al. (2010)
considered the effect of municipal level income inequality on the incidence of AMI
in Sweden, adjusting for individual- and parish-level socio-economic characteristics.
Income inequality was measured using the Gini coefficient, a statistical measure of
dispersion, and the authors hypothesised that increasing municipality-level income
inequality would be associated with elevated risk of AMI.

Higher Level Characteristics

In this case direct observations or measurements are made on the higher level units.
These higher level characteristics can be indicators of the same processes that are
implicated in the examples using aggregated variables. Competition for a GP’s time
could also be measured using the booking intervals in office consultations; experi-
ence in treating diabetics could be measured directly by testing the knowledge or
skills of GPs involved in the study.
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The number of higher level units may not be very large; as a rule there will be
fewer higher level than lower level units. This may make it feasible to use observa-
tion or other more qualitative methods, such as the content analysis of documents as
a means of constructing higher level characteristics. For example, if we study the
effects of characteristics of urban neighbourhoods on the health behaviours of the
people in these neighbourhoods, we can go out into the neighbourhoods and
observe, for example, aspects of disorderliness. This is feasible with (perhaps)
20 neighbourhoods; however, it would be very costly to collect information on
health behaviour through observation of (perhaps) 50 individuals in each
neighbourhood. This means that MLA provides opportunities to combine quantita-
tive and more qualitative approaches. A quantitative survey of patients at the
individual level, where we usually deal with large numbers, can be combined with
qualitative measures at the higher level. It may also be the case that geocoding
provides a simple means to link the availability of structures derived from publicly
available lists to specified areas (Macintyre et al. 2008).

The big advantage of MLA is that, if contextual information is available, MLA
enables the testing of hypotheses about the relationship between contextual charac-
teristics and individual outcomes, whilst simultaneously taking individual influences
on health into account. This provides better estimates of the relationship between
context and health. This means that, for example, we can analyse the effect of
community wealth on population health, taking individual income into account.

Cross-Level Interactions

The fourth type of hypothesis that can be tested using MLA is that relating to cross-
level interactions. These are combinations of (or interactions between) variables at
different levels. It is the combination of a particular characteristic of the higher level
with a particular individual level variable that is hypothesised to have a specific
effect on the dependent variable of interest. Below we consider a couple of
examples.

In another study of the effect of income inequality on health, Henriksson et al.
(2007) hypothesised that manual workers were at higher risk of death than
non-manual workers when living in areas of high-income inequality, arguing that
such an effect might be supported by both psychosocial and neomaterial explana-
tions. With data on individuals nested within the municipalities of residence, and
following adjustment for both individual occupational social class and area income
inequality, testing this hypothesis then equated to testing the significance of the
interaction between the individual and contextual variables.

Finch et al. (2010) explored whether the relationship between health—measured
using allostatic load, a measure of cumulative physiologic stress—and
neighbourhood advantage or disadvantage varied according to an individual’s edu-
cational status. Their hypothesis—that the relationship between context and the
individual outcome would vary depending on individual characteristics—again
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amounted to a test of the significance of the cross-level interaction between a
neighbourhood-level education index of concentration at the extremes (ICE) and
individual socioeconomic status (operationalised using educational status).

The ability to analyse cross-level interactions is a major advantage of MLA that
follows on from the ability to incorporate both individual and contextual indepen-
dent variables in an analysis. In our thinking and theorising about health and
healthcare, the relationships between context, individual characteristics and out-
comes are of central importance. MLA affords the opportunity to test our ideas
about these relationships.

Conclusion

In this chapter we have covered the basic concepts of multilevel modelling and have
explained its potential and application in non-statistical terms. We have also covered
the rationale for MLA and an explanation of what it is and how it differs from other
regression approaches. We will return to the important subjects of variance and
hypothesis testing at later stages in this book; for the moment it is important that you
are aware that variance is not just a nuisance (the unexplained part of a model) and
that, whether you are interested in formal hypothesis testing or concerned only with
exploratory analysis, variances and contexts add new dimensions to research based
solely on individual variables.
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Chapter 4
Multilevel Data Structures

Abstract This chapter covers different data structures for which multilevel model-
ling is appropriate, giving examples of each. The first such structure is the strict
hierarchy, which may be the structure that first comes to mind when you think about
multilevel models: patients who are treated in hospitals or individuals living in
certain areas. Then there are multistage sampling designs and the evaluations of
community interventions, in which it is the study design that imposes the hierarchi-
cal structure on the data. There are studies that collect data over time, either through
repeated cross-sections or through repeated measures on an individual. This intro-
duces another hierarchy to the data. Such models can be expanded to include
multiple responses: more than one measure on each individual. These can be
analysed simultaneously and considered as being nested within individuals. Then
there are structures which are not strictly hierarchical. Firstly, the cross-classified
model, in which there is an overlap between different classifications meaning that
units at one level are not nested neatly within units at another level. Secondly, the
multiple membership model in which an individual at one level can be a member of a
number of different units at a higher level. Thirdly, the correlated cross-classified
model, used when cross-classifications are repeated over time. Finally, this chapter
briefly covers some further structures that can be modelled as multilevel structures.
The idea of including these further structures is to make the reader aware of the range
of models that could potentially be fitted to data rather than to cover them in detail.

Keywords Multilevel analysis · Hierarchy · Community interventions · Time
dependent data · Multiple responses · Cross-classified models · Multiple membership
models

In Chap. 3, we considered why levels were important and what might constitute a
level in your data. We now expand on these ideas as we show a wide range of data
structures that can be considered to be hierarchical and for which MLA is therefore
the appropriate form of analysis. We draw largely on the model classifications used
by Duncan et al. (1996) and Subramanian et al. (2003).
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Strict Hierarchies: The Basic Model

We start off with the strict hierarchies. A lot of the theory and practice of multilevel
modelling was developed in educational research in which the aim was to determine
whether the shared environment of the school that pupils attended contributed to
educational attainment, after adjusting for differences between schools in pupil
characteristics (Aitken and Longford 1986; Goldstein 1986). From there it is not a
big leap to consider a design of, for example, patients nested within hospitals
(Fig. 4.1). The hierarchies have a pyramid structure with patients at the lower level
(level one) nested within hospitals at the higher level (level two). The lowest level—
the patient level in this example—is the level at which the outcome is measured. The
reason for considering a multilevel model for these data is because the outcome for
an individual patient may be influenced by the hospital that they attend or, in general,
the shared context means that the patient outcomes may well be correlated, violating
the standard regression assumption of independence. So whilst there is variability
between patient outcomes, some of this variability may be due to differences
between hospitals. The ability to partition variation into that attributable to different
levels is an important feature of multilevel models. It is easy to think of examples of
these basic models, whether they be patients in hospitals, survey respondents in
residential neighbourhoods or GPs nested within practices.

We might have a three-level model in which the individuals at level one are the
persons for whom we have measured a response (Fig. 4.2). These individuals are
clustered within households at level two and then within neighbourhoods at level
three. The idea of all of these strict hierarchies is that we have many units at one level
nested within fewer units at the next level. Of course, the real world is not restricted
to two or three levels and nor need our multilevel models be; the inclusion of relevant
contexts may increase the number of levels that we need to consider. For example, in
a study of diagnostic practice style in Alberta, Canada, Yiannakoulis et al. (2009)
used a model including not only the individual physicians, for whom the outcome of
diagnostic style was recorded, and the facilities in which they worked but also the
municipality and census division—a strict hierarchy of four levels. And when

Hospital (2)

Patient (1)

Fig. 4.1 Basic two-level model

Individual (1)

Household (2)

Neighbourhood (3)

Fig. 4.2 Basic three-level model
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exploring the consumption of tobacco in India, Subramanian et al. (2004) included
household, local areas, districts and states as relevant contexts for the survey
respondents in a five-level model.

It is important to note two features of these basic designs. Firstly, we do not need
to have a balanced design. Our sample does not need to have the same number of
patients in every hospital, or the same number of individuals in every household, or
the same number of households in every neighbourhood. Secondly, the examples
that we have discussed have the person as the lowest level, whether this is a patient,
survey respondent or physician. Although this is a common occurrence, and there
have been instances in previous chapters where we have referred to the individual
and level one as though the two were synonymous, this need not necessarily be the
case. For example, in a study of the variation in the use of drug-eluting stents (DESs)
in the treatment of coronary heart disease in Scotland, Austin et al. (2008) took into
account the fact that patients may have more than one lesion treated during a
procedure by using lesions as the lowest level (the level at which the outcome,
DES use, is measured) with these in turn nested within patients, operators and
hospitals. The use of a multilevel model in this instance took into account the
possible clustering of DES use within patients. And in periodontology, in a study
of factors influencing the closure of pockets observed at different sites around teeth,
Tomasi et al. (2007) used a hierarchy of sites within teeth within patients, patients
forming the highest level in this analysis.

It may also be the case that data are not available at the individual level but rather
are aggregated to an administrative area level. Such data restriction may reflect
issues surrounding data confidentiality, whereby agencies are unwilling to release
potentially identifiable individual data, or may just represent the constraints of
official data systems. Cavalini and Ponce de Leon (2008) undertook an ecological
analysis of the association between various socio-economic, political and healthcare
indicators and differing morbidity and mortality outcomes in Brazil. With no data on
individuals they used the levels of municipality, region and state; the outcomes were
all measured at municipality level. No matter whether the data we have refer to
individuals, aggregations of individuals or are collected within individuals, the
lowest level is always the level at which the outcome is measured.

Multistage Sampling Designs

For a multistage sampling design, the hierarchy is imposed during data collection.
The structure of the survey dictates the hierarchical design and straight away this
implies that MLA is necessary. If the survey design is a simple random sample,
individuals are selected from a sampling frame (for example, from a population
register or hospital discharge register). In a two-stage sample high level sampling
units are first selected, perhaps towns or municipalities, and then within each high
level unit a sample of individuals is drawn. Individuals are nested within the higher-
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level sampling units, and this nesting must be taken into account because of the
potential for contextual influences on any outcomes. The data hierarchy will appear
similar to those seen in Figs. 4.1 and 4.2. An example of such a design is the health
interview survey in Belgium, as described by Demarest et al. (2013).

The primary reason for using multistage sampling is usually related to cost. It may
be considerably cheaper to send interviewers to conduct several interviews within
selected municipalities than conducting single interviews across a number of munic-
ipalities. Statistical methods were developed to permit the analysis of data collected
from multistage samples; relatively simple sandwich estimators can be used which
correct the standard error of the estimates to take the clustered sample design into
account (Froot 1989). As described in Chap. 3, one effect of a multilevel data
structure is to reduce the effective sample size which will in turn increase standard
errors and confidence intervals. We return to the impact of clustering on power
calculations in Chap. 6. The use of techniques such as sandwich estimators assumes
that the hierarchical data structure is a nuisance—something for which we must
make allowances but in which we have no substantive interest. But this is an over-
simplification and is rarely the case; social epidemiology as a discipline is built on
such substantive interests as the reasons for variations in health between areas. This
is where we can start to explore the role of composition—who lives in the areas—
and the context, or what it is about the areas themselves that lead to differences in
outcomes between areas. These issues are explored further in Chap. 7.

Evaluating Community Interventions and Cluster
Randomised Trials

There are a number of reasons for conducting an intervention at the community
level; that is, when the community (as opposed to the individual) is the unit of
allocation or randomisation. These include the impossibility or impracticality of
introducing the intervention at an individual level (for example, in the case of water
fluoridation), the desire to avoid contamination between intervention and control
subjects, or as a cheaper and non-stigmatising means of targeting higher risk groups
(Leyland 2010). In health services research, a cluster randomised approach may be
the only appropriate means of evaluating certain interventions such as those relating
to organisational change (Campbell and Grimshaw 1998). But whatever the rationale
underlying the design of the study, if the intervention is at the group level and
outcomes are measured at the individual level, then the data are hierarchical and
must be analysed using MLA (Koepsell et al. 1992). Sample size or power calcula-
tions for cluster randomised trials differ from those for standard trials and are
covered in Chap. 6.

52 4 Multilevel Data Structures



Designs Including Time

We can think of two different types of designs including time: repeated cross-
sections and repeated measures or panel data (Duncan et al. 1996; Subramanian
et al. 2003). A repeated cross-sectional design might be used as a means of assessing
hospital performance and how that changes over time. In such a case the hospitals
form the highest level, and within each hospital every year data are collected relating
to patient outcomes as a measure of that hospital’s performance. The ambition is to
use these data to learn how each hospital performs in comparison to its peers and
how the performance of each hospital is changing over time. Since the outcomes are
at the patient level, the patient forms the lowest level in the hierarchy. Figure 4.3
shows the nesting of patients within years, and years within hospitals, in a three-level
model. Dee (2001) used a repeated cross-sectional design to investigate the impact of
(economic) cyclical state-level income effects on individual alcohol consumption
through the study of repeated cross-sectional surveys of individuals nested within
states of the USA. As with previous models we have no requirement for a perfectly
balanced data set and so there is no need for our samples to include the same number
of patients every year. Moreover, we can include hospitals for which we do not have
data in every year. This will come as a relief to those familiar with the changing
patterns of health provision and the idea that hospitals may close or open during a
period of data collection.

The repeated measures or panel design is similar to the repeated cross-sectional
design except that the same individuals are observed on different occasions. This
means that the outcome is not measured at the level of the individual but at the level
of the measurement occasion nested within the individual. The outcome still refers to
the individual but may differ from one moment in time to another. Figure 4.4
illustrates a study in which outcomes on individuals are assessed on an annual
basis and, in this example, the individuals themselves are clustered within
neighbourhoods. This means that we can analyse longitudinal data in a multilevel
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Fig. 4.4 Repeated measures or panel design
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Fig. 4.3 Repeated cross-sectional design
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framework by taking into account the fact that measurement occasions are nested
within individuals. In addition to any correlations that may exist between individuals
within their contexts (hospitals, neighbourhoods, etc.), this design allows for the
correlation between observations made on the same individual.

Haynes et al. (2008) looked at the risk of accidents in pre-school children using data
from a longitudinal study, with measurement occasions nested within children and
children nested within neighbourhoods. It is not necessary for individuals to be
clustered within higher-level units; MLA can still be used to analyse repeated mea-
sures with individuals forming the higher level. Such a two-level model for changes in
body mass index was used by Lipps and Moreau-Gruet (2010). Repeated measures do
not have to be made on individuals; Kroneman and Siegers (2004) considered how
reductions in the number of available hospital beds affected different measures of bed
use using repeated measures on countries, with the outcomes (bed occupancy, average
length of stay and admission rates) being observed in different years for each country.
The example used in the first computing practical (Chap. 11) is based on the analysis
of repeated measures of mortality rates made at the area level.

As with the previous models, it is not necessary to have information on every
individual on every occasion; if we are able to make certain assumptions about
missingness (that the data are missing completely at random or missing at random),
then we can include individuals with incomplete data in the analysis. More detail about
the different types of missing data and appropriate methods for their analysis can be
found elsewhere (Carpenter et al. 2006; Little and Rubin 2002; Sterne et al. 2009).

When analysing repeated measures data, it is usually the case that we find more
variation between individuals than within individuals (between measurement occa-
sions) and so, unlike the basic models considered above, a larger proportion of the
total variation may be at higher levels. This is easy to understand if you consider, for
example, a study with repeated measures of people’s weight; there is likely to be
much less variability in individual weight from one measurement occasion to
another than there is between the weights of individuals in the population. Such is
the nature of individual heterogeneity.

Multiple Responses

There are strong similarities between repeated measures and multiple response
designs. In the former we measure the same item on individuals at a number of
different measurement occasions; in the latter we measure a number of different
items on individuals, often at the same measurement occasion. This can therefore be
seen as a multilevel model—we have the different responses nested within each
individual—and there may be a further level such as the neighbourhood of residence
as illustrated in Fig. 4.5. The multiple responses may, for example, be drawn from a
questionnaire focusing on health-related behaviours; a number of individuals may be
surveyed about alcohol and tobacco consumption, diet and exercise. These behav-
iours may be correlated within individuals; high alcohol consumption may be
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associated with poor diet, for example. This correlation may remain after adjustment
for individual characteristics, particularly if an important characteristic associated
with more than one behaviour is omitted or poorly recorded in the survey. But we
also have the possibility of modelling and examining these correlations at higher
levels. If alcohol consumption and diet both show variation between areas, is the
nature of the relationship the same? That is, are those areas associated with above
(below) average alcohol consumption also associated with poorer (better) diets?

Once again we can work with an unbalanced data set and so if some individuals
have not responded to all questions, and provided that we can make the usual
assumptions about the data being missing at random, we can include all the data
that we have and do not have to consider the deletion of cases or responses. An
example of a multiple response model includes a joint analysis of self-rated health
and happiness on individuals nested within communities (Subramanian et al. 2005).
In addition to showing the different effects of various socio-demographic variables
on the two outcomes, the authors demonstrated a modest positive correlation at the
individual level and a stronger positive correlation at area level, interpreting this as
meaning that communities that were unhealthy were also likely to be unhappy.

It is possible to combine the analysis of different response types in a multilevel
multiple response model; for example, we could include a continuous response such
as blood pressure alongside a dichotomous response such as smoking status. The fact
that there is no requirement for the data to be balanced or complete means that we
can have structurally missing values: data which may or may not be collected
depending on the response to another question. Duncan et al. (1996) looked at
smoking behaviour among individuals living in areas (electoral wards) in England,
considering two aspects of smoking: smoking status (whether an individual currently
smoked or not) and the number of cigarettes smoked per day. For those who do not
smoke the number of cigarettes smoked per day must be zero and can be ignored,
removing a large peak in the (bimodal) distribution. Smoking status is therefore
treated as a dichotomous outcome and the number of cigarettes smoked per day
(among those who smoke) as a continuous measure. In addition to noting differences
in the factors related to smoking status and cigarette consumption, the authors found
a positive correlation between the two at the area level suggesting that cigarette
consumption tends to be higher for individuals who live in areas in which people are
more likely to smoke. A similar example is given in a study of the use of tranquil-
lizers (benzodiazepines) in neighbourhoods in a Dutch city (Groenewegen et al.
1999). In this case the dichotomous outcome was whether or not people received a
prescription and the dose of the drug, if given a prescription, was treated as a
continuous response. Once again the model permitted not only the analysis of factors
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Fig. 4.5 Multiple responses
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associated with both prescription and dose but also the analysis of the relationship
between these outcomes at the area level.

Any data showing an excessive number of observations at zero are amenable to
these types of mixed response models. Tooze et al. (2002) considered a range of
factors associated with medical expenditure based on a sample of individuals nested
within households. They interpreted the strong positive correlation between the
occurrence of healthcare expenditure (dichotomous) and the intensity of expenditure
(continuous) as indicating that, after adjusting for any differences in covariates,
households that were more likely to seek medical care were also likely to have
greater healthcare expenditure.

Non-hierarchical Structures

The data structures that we have considered up to this point are all strict hierarchies;
that is, a number of units at one level are nested within one and only one unit at the
level above. The reality is that healthcare systems or the social contexts affecting
individuals are often more complex than this, and if we have data that reflects this
complexity then this leads to hierarchies that do not have such a neat structure.
Below we discuss three types of non-hierarchical structures that can be fitted using
MLA: cross-classified models, multiple membership models and correlated cross-
classified models.

Cross-Classified Models

A cross-classified model is one in which units at one level are simultaneously nested
within two separate, non-nested hierarchies (Goldstein 1994). For example, we may
want to examine how the outcome for an individual patient varies according both to
the hospital the patient attended and to the general practitioner (GP) that referred the
patient to hospital. Figure 4.6 shows how the hierarchy may appear for such a model.
Although all patients are referred by one and only one GP, and each attends one and
only one hospital, there is no strict nesting of GPs within hospitals; certain GPs may
refer different patients to different hospitals. Similarly, hospitals are not nested
within GPs since hospitals receive referrals from several different GPs. We say in
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Patient (1)
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Fig. 4.6 Cross-classified model
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such a case that patients are nested within a cross-classification of GPs and hospitals
(Browne et al. 2001; Rasbash and Browne 2001). The way in which the computa-
tional aspects of fitting cross-classified models are handled varies according to the
software used for analysis; some of the statistical packages used to fit multilevel
models treat cross-classified models no differently from strict hierarchies, whilst
other packages may require a distinct specification for this class of model. Readers
are advised to check the reference manuals of their chosen software for further
details.

As with the strictly hierarchical multilevel models, cross-classified models may
be used to reflect the observed hierarchy (in which case the levels themselves may
not be of substantive interest) or they may be used to explore variation and determine
the relative importance of different contexts. This distinction relates to the range of
hypotheses that can be tested using MLA discussed in Chap. 3. Downing et al.
(2007) explored the association between deaths and hospital admissions for a range
of conditions and scores assigned to GP practices through the UK’s Quality and
Outcomes Framework (QOF). Their data comprised patients nested within a cross-
classification of GPs and residential areas, with covariates available on both con-
texts. Urquia et al. (2009) considered the relative impacts of neighbourhood of
residence and country of origin on the birthweight of children born to recent
immigrants in Ontario, Canada, following adjustment for a variety of individual
factors, and concluded that the country of origin made a much larger contribution to
the variation in outcomes. Virtanen et al. (2010) separated the effects of teachers’
neighbourhood of residence and the neighbourhood in which the school was located
on the sickness absences of teachers and found significant relationships with both
(in terms of a contextual variable—mean neighbourhood income—and the variances
at the two levels).

Multiple Membership Model

The second type of non-hierarchical structure used in MLA is the multiple mem-
bership model (Hill and Goldstein 1998). This model is appropriate when units at
one level may belong to (or be members of) more than one unit at a higher level. For
example, consider a patient who receives a course of treatment such as chemother-
apy over a period of time. Certain patients may receive their treatment at more than
one hospital as shown in Fig. 4.7. If the outcome for each patient is survival at
12 months, then we may be interested in determining whether patient survival varies
between hospitals. For those patients who were treated in more than one hospital, we
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Fig. 4.7 Multiple membership model
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must make assumptions about the relative contributions of different hospitals to the
patients’ care. This comes down to assigning a weight attributed to each hospital
with the weights summing to one for each individual (so the weights are, in fact,
proportions). If we know the proportion of time that a patient spent in each hospital,
then these proportions may make suitable weights; otherwise, it may be sufficient to
give equal weight to each hospital attended (so weights of 0.5 if a patient was seen in
two hospitals, 0.33 if seen in three hospitals, etc.). The impact of different weighting
schemes on the results can be examined as a form of sensitivity analysis.

Ryan et al. (2006) examined the influence of caseworkers on two child welfare
outcomes: the length of stay in foster care and the probability of family reunification.
Most youths in the study from Illinois were assigned more than one caseworker;
multiple membership models allowed the authors to account for the complex data
structure when testing hypotheses about the association of certain key caseworker
characteristics on the child outcomes. Another use for a multiple membership model
is to account for changes in geographical boundaries over the course of time;
Leyland (2004) assigned weights based on resident populations to take account of
changes in the number and boundaries of areas following administrative
restructuring. Falster et al. (2018) used a multiple membership model to analyse
the between-hospital variation in patient admission for preventable hospitalisations.
Although the hospital of admission was known for those patients who were admitted
to hospital, the population who were not admitted to any hospital were assigned to
multiple hospitals based on observed admission patterns.

Correlated Cross-Classified Model

The correlated cross-classified model should be used for the analysis of repeated
classifications (Leyland and Næss 2009). Such data structures are typically encoun-
tered when contextual information at regular intervals is linked to an outcome
measured at the end of the study, although they may also be appropriate when
different aspects of the same context are being measured such as place of residence
and place of work. Figure 4.8 provides a simple example of individuals living in four
areas at two different time points. The difference between this model and the cross-
classified model (Fig. 4.6) is that instead of independent contexts such as GP and
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Fig. 4.8 Correlated cross-classified model
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hospital, the areas are the same at each time (denoted areas A, B, C, and D). One of
the assumptions underlying MLA is that the contexts are independent, whether these
are the GPs and hospitals in Fig. 4.6 or the neighbourhood and households in
Fig. 4.2. Standard multilevel models, including the cross-classified model, therefore
assume no correlation between contexts. The multiple membership model described
above is appropriate when individuals move between contexts but the contexts
(e.g. areas) are the same at different points in time. The correlated cross-classified
model comes somewhere between the cross-classified and multiple membership
models, recognising that contexts may not be identical (due, for example, to the
way neighbourhoods may change over time) but at the same time that the contexts
are not completely independent of each other (the poorest area at one time point is
unlikely to become the richest area at another time).

The cross-classified, multiple membership and correlated cross-classified models
are described and the implications of the different assumptions underlying each are
analysed from the perspective of life course epidemiology by Næss and
Leyland (2010).

An example of the use of a correlated cross-classified multilevel model is based
on analysis of the Oslo Mortality Study (Leyland and Næss 2009). Area of residence
was known for inhabitants of Oslo at the time of the 1960, 1970, 1980 and 1990
Censuses and individuals were followed up in the mortality register until 1998. The
models were used to determine the relative contribution of residence at different
stages of the life course—based on known residence at the Censuses—on subse-
quent mortality for different birth cohorts.

Other Multilevel Models

There is a broad range of data types that can be analysed using MLA and of models
that can be constructed in a multilevel framework. Some of these are dependent on
the availability of specialist software, whilst others may be implemented in most
packages that can be used for multilevel modelling. In this section, we briefly
describe some of these models.

We have said little about the response types that can be analysed using MLA,
but most of the examples presented in this chapter have assumed continuous
outcomes to be normally distributed or have used logistic regression for dichoto-
mous outcomes. Multilevel Poisson or negative binomial regression models may be
used when the data take the form of counts, either because individual data are
aggregated to an area level in studies of disease incidence or prevalence (Cavalini
and Ponce de Leon 2008) or when the data represent counts made on individuals,
such as the number of carious, extracted or filled teeth (Levin et al. 2010) or the
frequency of contact with GPs (Cardol et al. 2005). Multilevel Poisson regression is
also appropriate for modelling incidence or prevalence on individual data as a
means of adjusting for exposure or person time at risk (Martikainen et al. 2003).
Multilevel logistic regression can easily be extended to multilevel multinomial
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regression if the responses form unordered categories, such as place of birth being
categorised as home, private hospital or public hospital in a study of maternity care
provision in Ghana (Amoako Johnson and Padmadas 2009), or ordered categories,
such as a measure of self-rated health (Oshio and Kobayashi 2009). Note, however,
that in the presence of five or more ordered categories it may be appropriate to
analyse the data as though the response was continuous and normally distributed
(Mansyur et al. 2008).

Several different models have been developed for the analysis of multilevel data
when the outcome of interest is the time to an event or a survival time. The simplest
of these is the accelerated lifetime or log duration model, which centres on modelling
the logarithm of the survival time. Such a model has been used to assess area-based
inequalities in a 30-year follow-up of a large Swedish cohort (Yang et al. 2009). An
alternative approach is to fit multilevel Cox proportional hazard models; these have
been used, for example, to examine contextual influences on the hazard of mortality
(Chaix et al. 2007). Such models have the advantage of providing answers even if a
large proportion of the data are censored and of enabling the inclusion of time-
varying covariates (Goldstein 2003). For example, Sear et al. (2000) examined the
effect of maternal grandmothers on the survival of children in rural Gambia; the
presence of the grandmother is clearly an effect which may change during a child’s
life. Multilevel Cox regression models require data expansion that can quickly
render a dataset large and unwieldy; an alternative approach is therefore to use
multilevel Weibull survival models, as employed by Chaix et al. (2008) to examine
the impact of individual perception of safety and neighbourhood cohesion on
mortality from acute myocardial infarction.

A multilevel repeated measures model takes into account the fact that observa-
tions made on the same individual are likely to be correlated. A time series model
can take this one stage further by modelling the correlation between observations as
a function of time such that the correlation between two measures made on the same
person close together in time will be higher than the correlation between two
measures made a long time apart. There are a number of different ways in which
this correlation can be included (Goldstein et al. 1994). An example of the applica-
tion of such methods is for the analysis of smoking cessation data in which
adjustment was made for the serial dependence of observations on individuals’
smoking status (Wang et al. 2006).

A similar principle applies to multilevel spatial models as to the multilevel time
series models. It is possible to take geography into account to some extent by using a
series of areas of increasing size. This relates to the so-called ‘modifiable areal unit
problem’ or MAUP (Openshaw 1984). Geographical units are to some extent
artificial and changing from one geographical division to another might influence
the results of a study. MLA facilitates a meaningful analysis of this problem
(Groenewegen et al. 1999; Jones 1993; Merlo 2011). Some of the difference between
small areas (such as neighbourhoods) may be attributable to differences between
larger areas such as municipalities, and the differences between municipalities may
in part be due to differences between larger areas such as counties or regions.
Including these different geographies in a single multilevel model ensures that
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there is a correlation between neighbourhoods in the same municipality and between
municipalities in the same county. But this ignores the detail in the geography; the
exact geographical positioning of neighbourhoods within a municipality or of
municipalities within a county is not taken into account. A spatial multilevel
model allows for a greater degree of correlation between areas that are geographi-
cally close than between areas that are geographically distant. A simple means of
fitting such spatial dependencies is to use a multiple membership model (see above)
in which, in addition to heterogeneous area effects, areas are modelled as multiple
members of the set of their neighbours. Bartolomeo et al. (2010) used such a model
to investigate the geographical patterning of hospitalisations for lung cancer and
chronic obstructive pulmonary disease. Spatial modelling will also provide geo-
graphically smoothed estimates, overcoming some of the problems associated with
small areas and rare outcomes leading to volatile rates and allowing the identification
of clusters of disease. The methodology underlying such modelling may be complex
and is described in detail elsewhere (Best et al. 2005; Lawson et al. 2003; Leyland
and Davies 2005). Næss et al. (2007) used a spatial multilevel model to separate the
effect of air pollution from that of social deprivation, both measured at the
neighbourhood level, on individual mortality following adjustment for individual
socio-economic status.

Other data which lend themselves to multilevel analysis include meta-analysis,
for example a meta-analysis of the results of several clinical trials. The idea of meta-
analysis is to combine information from separate studies. A fixed effects approach to
meta-analysis is based on the assumption that there is a single ‘true’ effect which is
observed with error in each study. The random effects or multilevel approach to
meta-analysis assumes that there is heterogeneity between studies in the effect size.
Published information on the original trials will often be extremely limited; for
example, a randomised controlled trial may report the numbers of deaths and total
number of patients in the treatment and control wings of a trial. In such circum-
stances, and if the original data cannot be made available, it is important to take into
account the precision of the estimate of the effect size by giving more weight to
larger studies. It is also possible to combine summary outcomes from trials with
complete data on individuals from those trials for which full individual data are
available or to combine trial data with observational data. Examples of multilevel
meta-analyses include a study of the effectiveness of interventions to promote
advance directives (such as living wills and durable power of attorney for healthcare)
among the elderly (Bravo et al. 2008) and a quantification of the effects of education
on self-reported health (Furnée et al. 2008).

Multilevel models have been extended to include factor analysis, latent class
analysis and structural equation models. These expand upon their single-level
counterparts to take into account the clustering of individuals within higher-level
units. For example, Franzini et al. (2005) used multilevel structural equation models
to investigate whether latent variables such as collective efficacy (comprising social
cohesion, trust and helpfulness) or neighbourhood disorder (comprising physical and
social disorder) mediated the relationship between neighbourhood impoverishment
and self-rated health after adjusting for individual characteristics. Curry et al. (2008)
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used multilevel path analysis to determine whether objectively measured
neighbourhood crime rates impacted directly on individual depression or whether
the impact was indirect, being mediated by subjective perceptions of neighbourhood
problems. And Vermunt (2007) identified three classes of doctors and two classes of
hospital on the basis of their prescribing behaviour when treating children with acute
respiratory tract infection; responses for individual children were coded as indicating
appropriate use, abuse of a single antibiotic or abuse of multiple antibiotics.

Multilevel latent variable analysis will be considered more extensively in
Chap. 8. The reason for this is that this approach is increasingly used to construct
characteristics of higher-level units on the basis of individual responses to a series of
scale items. These scale items try to measure a latent variable at the higher level. For
example, items about neighbourhood disorder, collected from residents in a survey,
can collectively be used to indicate disorder at the neighbourhood level. This
approach is also known as ecometrics.

Pseudo-levels

In Chap. 3, we considered what constitutes a level. In particular, we made a
distinction between a level—comprising units which could be sampled—and the
characteristics of a level. Although this is true in the strictest sense, it is sometimes
useful to introduce characteristics as a pseudo-level at any level apart from the
highest level in the hierarchy. This is particularly important if we want to test
hypotheses about (or just to explore) variation between subgroups, as was discussed
in Chap. 3. For example, suppose we have health data on a number of individuals
attending different hospitals, and one focus of our interest is whether the variance in
our outcome differs between men and women. Although the individual’s sex is a
characteristic of the individual and not a level, we can include sex as a pseudo-level
in our model so that patients are nested within sex within hospitals, and then
condition on the mean difference between men and women. (Conditioning on the
mean means that we include a dummy variable to take account of the mean
difference in health between men and women. This dummy variable is then a
characteristic of the pseudo-level rather than the individual level since it applies to
all individuals within that group.) Figure 4.9 shows how the inclusion of this pseudo-
level changes the structure of our dataset. The groups at the pseudo-level are often
referred to as cells, and sometimes individual responses are aggregated over these

Hospital (3)

Sex (2)

Patient (1)

M MF F

Fig. 4.9 Model with pseudo-levels
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cells which then form the lowest level. For example, Judge et al. (2009) examined
the rates of joint replacement in England using a hierarchy of cells defined by 5-year
age group and sex (at level 1) nested within small areas (at level 2) and districts
(at level 3). For each cell they had a count of the number of procedures undertaken
and included an offset to adjust for differences in the population at risk in each cell
whilst controlling for age and sex. And Turrell et al. (2007) investigated associations
between area deprivation and mortality using cells defined by a combination of age,
sex and individual occupational social class nested within a hierarchy of areas.

Incomplete Hierarchies

In general, we know to which unit at each higher level a lower-level unit belongs and
so we have complete information on the hierarchy. There are two notable exceptions
when this will not be the case. The first exception concerns multiple responses; the
hierarchies may differ for different responses. This may be because the responses are
actually measured at different levels. Goldstein gives an example of a multiple
response model combining longitudinal measures (during childhood) of height and
bone age with a measure of adult height (Goldstein 2003). Whilst the repeated
measures during childhood are clustered within the individual, the one adult mea-
surement is effectively at the level of individual rather than measurement occasion.
The hierarchy may vary according to the number in each cluster. Dundas et al.
(2014) give an example of individual children nested within sibling groups living in
small areas; sibling group was omitted as a level for the 71% of children who had no
siblings in the study. Alternatively, the structured missingness detailed under the
earlier section on multiple response models may lead to differing hierarchies;
Leyland and Boddy (1998) describe a model of mortality following acute myocar-
dial infarction in which they consider the influences of both area of residence and
hospital attended. Their data include both sudden deaths (death before reaching
hospital) and deaths in hospital or within 30 days of discharge from hospital. These
two responses (sudden death and death in or shortly after discharge from hospital)
were nested within patients. The sudden deaths are clearly not affected by hospital
attended; indeed, for such deaths there is no hospital attended. The second exception
is when the higher-level membership is unknown. In such a situation, it is possible to
use a multiple membership model with different probabilities of membership
attached to the higher-level units (Hill and Goldstein 1998). Each higher-level unit
(e.g. hospital) could be given equal weight or weight proportional to the total number
of patients seen by that hospital in the absence of any knowledge as to group
membership. However, it may be that more detailed information is available and
that the precise membership of higher-level units is only partially missing; for
example, it may be that a patient living in a given area is most likely to attend one
of a number of local facilities.

A slightly different situation may arise when two levels are indistinguishable.
Figure 4.2 illustrates a hierarchy that includes individuals nested within households.
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In general, there will not be many individuals per household and many households
may only contain one person. To an extent this does not matter; as long as there is at
least one household comprising two or more people, then we can start to describe
variation within households as well as between households. (In practice, the more
households in the study in which there are at least two people, the more precise our
estimate of the variance within households will be.) And clearly excluding single
person households from our analysis is likely to introduce considerable bias into our
sample. But our sample design may have included just one person in each house-
hold. In such a case, although it is correct to think of individuals as being nested
within households, we are unable to distinguish between the individual and house-
hold levels. Not really a missing hierarchy, we are forced in practice to work with a
joint individual/household level.

Conclusion

This chapter has introduced the reader to a variety of structures that can be thought of
as multilevel or hierarchical. In addition to the strict hierarchies that perhaps
constitute the common understanding of a multilevel model, we have discussed
the appropriateness of multilevel modelling for designs including time, multiple
responses and non-hierarchical structures. Furthermore, we have covered the con-
cept of a pseudo-level and circumstances in which the unit of membership at a
particular level may be missing.

When working out the data structure in your own research, it is important to bear
in mind what has been said in Chaps. 2 and 3. The first step would be to analyse your
research problem and specify which levels would be relevant to include from a
theoretical perspective. You might end up working with data that are readily
available, and the structure of these data might differ from what you would have
wanted based on an analysis of your research problem. Of particular importance is
whether you are missing information about a level in your data that seems to be
important from a theoretical point of view. If this is the case, then your statistical
model may be misspecified as a consequence. An example of this, which is discussed
in more detail in Chap. 7, is the situation where you consider a health outcome of
people living in neighbourhoods but omit the fact that your subjects are also
clustered in families or households. This would lead to an overestimation of indi-
vidual level or neighbourhood variation or both; see, for example, Sacker
et al. (2006).

Some data structures may be quite complex, especially since the structures that
have been discussed in this chapter can be combined. The more complicated the data
structures are, the more difficult they will be to analyse and interpret. For readers
who are keen to work with more complex data structures, we offer two pieces of
advice. Firstly, we suggest that you simplify the data structure into a less complex,
simple hierarchical structure and analyse the data in this manner before proceeding.
In Chap. 9, we discuss ways of simplifying data structures as part of the modelling
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process. Our second piece of advice in the event of more complex data structures is
to consult a colleague with experience in running and interpreting the analysis or to
read some of the more technical multilevel modelling texts to gain further under-
standing of such analyses (for example, De Leeuw and Meijer 2008; Gelman and
Hill 2007; Goldstein 2010; Snijders and Bosker 2012).
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Chapter 5
Graphs and Equations

Abstract Although we have introduced the conceptual basis for multilevel analysis
in earlier chapters, it remains a statistical method; this chapter introduces the
statistical principles of MLA. This is done primarily through algebraic notation,
and the equations are linked to graphs where appropriate to help with the interpre-
tation. We build up the chapter from a single-level regression analysis to a random
intercept model and finally to a random slope model. We introduce the idea of
intraclass correlation and provide visual examples of typical patterns of covariance
between the intercept and slope residuals. We look at simple extensions to a third
level and the use of complex variance functions to account for heteroscedasticity,
and finally we draw comparisons between fixed effects and random effects models.

Keywords Multilevel analysis · Single-level regression · Random intercept model ·
Random slope model · Intraclass correlation · Variance · Covariance

Multilevel analysis is, as we have discussed, a form of regression analysis that is
appropriate when the assumption of independence of observations that underlies
ordinary regression models does not hold. The reason for this assumption being
violated is the influence of the context; Chap. 4 has introduced a variety of contexts
that may be important for our analyses and which may extend beyond ‘typical’
contexts such as neighbourhood, hospital or school to include, for example the
individual (for repeated measures or multiple responses) or time (for repeated
cross-sections).

We start this chapter with the basic, single-level, linear regression model and
show how we can change this into a multilevel model by adding the context. As the
chapter progresses, we cover a range of multilevel models and introduce some of the
commonly encountered ideas and terminology such as the intraclass correlation
coefficient and random slopes. Where possible we link these ideas to graphs as an
aid to interpretation.

The chapter works through the random intercept and random slope models based
on the example introduced in Chap. 3 concerning an investigation of the relationship
between the time spent on exercise each week and certain individual and contextual
characteristics. In this example, we have data that were collected in a health
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interview survey. The respondents’ addresses were geo-coded, and in this manner,
the respondents were allocated to neighbourhoods in the study area. We provide the
algebraic notation of the regression equations and introduce the basic terminology
cumulatively as we progress. For reference, this terminology is summarised in
Box 5.3 at the end of this chapter.

Ordinary Least Squares (Single-Level) Regression

Using a single-level regression model, we would regress the dependent variable, the
time spent exercising each week, on one or more independent variables ignoring the
neighbourhood in which people live, and how this may affect our outcome. Consider
a regression including only the respondent’s age; the regression equation is

yi ¼ β0 þ β1x1i þ e0i ð5:1Þ

In this equation, yi is the dependent variable. Note that for the single-level regres-
sion model, we do not pay any attention to the area of residence of each individual
and, as such, the dependent variable is uniquely identified by the subscript i. β0 is
used to denote the intercept—the number of minutes spent exercising by the reference
group: respondents for whom all independent variables take the value 0. (The value
0 may not always be the best choice; in terms of respondent’s age, for example we
would not be interested in the time spent exercising by respondents who are 0 years
old. To overcome this problem, we may choose to centre some of the independent
variables such as age, so that the intercept takes on a more meaningful value, such
as the time spent exercising by a respondent of average age. See Chap. 11 for an
example of this in practice.) x1i is the independent variable, in this case the age of
respondent i. β1 indicates the average change in time spent exercising per week
associated with a 1 year increase in age. e0i is the residual or error term.

This equation is illustrated graphically in Fig. 5.1. The time spent exercising tends
to decrease with increasing age; the extent to which there is a decrease is determined
by the slope β1. The error term e0i is the vertical distance between the regression line
and each observation; in other words, it is the difference between the time that we
would expect individual i to spend on exercise given their age, β0 + β1x1i, and the
time that they actually spent on exercise, yi.

Equation (5.1) is accompanied by an important assumption about the residuals
e0i namely that they are identically and independently distributed and can be
characterised by a normal distribution with mean 0 and variance σ2e0.

e0i � N 0, σ2e0
� � ð5:2Þ

In this equation, N indicates that the residuals are assumed to follow a normal
distribution with zero mean and variance σ2e0.

72 5 Graphs and Equations



As we described in Chap. 3, this error distribution is often seen as being nothing
more than a nuisance; it is, after all, the part which cannot be explained by our
model. But the assumption that the residuals are independent of each other is the one
that we are in danger of violating if there is a level missing from our model—
neighbourhood in this example. This leads us to the random intercept model.

Random Intercept Model

In a random intercept regression model, we include an effect for each area that
impacts on all individuals in that area equally, regardless of their age.

yij ¼ β0 þ β1x1ij þ u0j þ e0ij ð5:3Þ

In this equation, the new terms introduced to Eq. (5.3) over and above those in
Eq. (5.1) are as follows. yij is our dependent or response variable: the outcome for
individual i living in neighbourhood j, the number of minutes per week spent
exercising. Our survey respondents are numbered from i ¼ 1, . . ., N and each lives
in one neighbourhood j ¼ 1, . . ., J. There are nj respondents in neighbourhood j so
N ¼PJ

j¼1nj . xpij are the independent or explanatory variables, again measured on
individual i in neighbourhood j. The subscript p is used simply to distinguish
between the different variables; for example x1ij might be the individual’s age in
years and x2ij a dummy variable indicating the subject’s sex (1 ¼ male, 0 ¼ female).
xpj are also independent variables, but these are measured at the contextual or
neighbourhood level; that is, they take the same value for all individuals living in
neighbourhood j. These variables may be directly observed or measured at the
neighbourhood level; for example, x3j may be the proportion of the surface area of

yi = β0 + β1x1i + e0i 
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neighbourhood j that is characterised as being ‘green space’. Alternatively, the
contextual variables may represent an aggregation of individual measures; x4j may
be the average age of the respondents in neighbourhood j.

βp is the regression coefficient associated with xpij or xpj. So β1 would indicate the
average change in time spent exercising per week associated with a 1-year increase
in age and β2 would show the average effect of being male on the time spent
exercising (relative to that for the baseline category, female, for which x2ij ¼ 0).
u0j is the estimated effect or residual for area j. This is the difference that we expect to
see in the time spent exercising for an individual in neighbourhood j compared to an
individual in the average neighbourhood, after taking into account those (individual
or neighbourhood) characteristics that have been included in the model. The 0 in the
subscript denotes that this is a random intercept residual, a departure from the overall
intercept β0 applying equally to everyone in neighbourhood j regardless of individ-
ual characteristics. e0ij is the individual-level residual or error term for individual i in
neighbourhood j.

Figure 5.2 illustrates this equation graphically. As in Fig. 5.1, the time spent
exercising for someone living in an average area is shown as the heavy line, and this
relationship is determined by just the person’s age x1ij. The part of Eq. (5.3)
involving the β coefficients, β0 + β1x1ij, is called the fixed part of the model because
the coefficients are the same for everybody; the residuals at the different levels,
u0j + e0ij, are collectively termed the random part of the model as these values
depend on the individual and neighbourhood. The additional effect for inhabitants of
area j, u0j, applies to all inhabitants of the area regardless of age; people in the area
illustrated in Fig. 5.2 tend to do more exercise than average. The time we would
expect individual i to spend on exercise now depends on their area of residence and

yij = β0 + β1x1ij + u0j + e0ij 
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is given by β0 + β1x1ij + u0j; this is shown in Fig. 5.2 as the grey line. The vertical
distance between the two lines, u0j, is constant (i.e., it does not depend on age).

In Fig. 5.2 we can see that the vertical distance from the observed time that person
i in area j spends on exercise, yij, and the average time that someone of this age would
spend on exercise, β0 + β1x1ij, is now broken down into a part that is due to the
difference between area j and the average, u0j, and a part that is due to the difference
between individual i and the average for area j, e0ij. Both the components have their
associated distributions and variances:

u0j � N 0, σ2u0
� �

e0ij � N 0, σ2e0
� � ð5:4Þ

In this equation, σ2u0 is the variance of the neighbourhood-level intercept residuals
u0j.

In Eq. (5.3) the fixed part of the model β0 + β1x1ij does not vary given a person’s
age x1ij. The total unexplained variation in the outcome (adjusted for age) is therefore
equal to the variance of u0j + e0ij or σ2u0 þ σ2e0; that is, some of the variation in time
spent exercising is due to differences between neighbourhoods and some is due to
the differences between individuals within neighbourhoods. Figure 5.2 shows how
the time spent exercising varies with age on average across all areas (black line) and
also in area j (grey line). Figure 5.3a shows the relationship for all areas in our
sample; each area is shown as a separate line. The variability between areas is then
the extent to which these lines are dispersed around the average; if the lines are close
together, then there is little variation between neighbourhoods and σ2u0 is small.
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Fig. 5.3 Random intercept model showing (a) variation between neighbourhoods and (b) variation
between individuals within a single neighbourhood
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Figure 5.3b shows the variability of the observations made on respondents living in
area j; these tend to be higher than average (given the individuals’ ages) since the
area mean is clearly higher than the population mean shown in Fig. 5.3a. However,
there is some variability in the tendency to exercise. Some people spend more time
exercising than the average for that age in the area whilst others spend less than
average—indeed, some spend less than the population average as there is consider-
able scattering around the average for area j. The variability between individuals
within areas is then the extent to which the observations are scattered around the
average for each area; if the observations are close to the line, then there is little
variation within neighbourhoods and σ2e0 is small.

The proportion of the total variance that is due to differences between
neighbourhoods is the intraclass correlation coefficient ρI:

ρI ¼
σ2u0

σ2u0 þ σ2e0
ð5:5Þ

ρI is a measure of the similarity between two people from the same neighbourhood
and will take a value between 0 and 1 inclusive. If there were no variation between
the area effects then all of the u0j would be equal (to zero) and σ2u0 would be zero
meaning that ρI ¼ 0. If there were no variation within neighbourhoods (following
adjustment for age), then the time spent exercising would be determined exactly by
age and neighbourhood alone. In this case, σ2e0 would be 0 and so we can see from
Eq. (5.5) that ρI ¼ 1; the exercise times of individuals from the same area would be
perfectly correlated. The size of ρI varies between studies and is very important for
power calculations; we return to a discussion of this in Chap. 6. Typically we might
expect somewhere around 2–5% of the total variation to arise due to differences
between contexts although there are notable exceptions in public health and health
services research when this proportion might be higher. Clustering within families or
households tends to be quite strong giving large intraclass correlation coefficients;
Cardol et al. (2005) found that 18% of the variance in the frequency of medical
contacts was attributable to the family, and Sacker et al. (2006) found 13–21% of the
variation in poor general health and 20–34% of the variation in limiting illness was
attributable to differences between households. For studies in which the data com-
prise repeated measures on individuals a large proportion of the variability is often at
the individual level (which is not the lowest level in a repeated measures design—see
Chap. 4). For example, Lipps and Moreau-Gruet (2010) found that over 90% of the
total variance in body mass index was at the individual (as opposed to measurement
occasion) level in a repeated measures analysis.

The model described by Eqs. (5.3) and (5.4) is the basic random intercept or
variance components model. These terms are used interchangeably which might be
confusing when reading studies that report multilevel analysis. There is, however, a
glossary of the terminology used in MLA (Diez-Roux 2002) which is useful to have
at hand when reading papers that use this technique. As with the single-level
regression model, there are certain implicit assumptions regarding the residuals.
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As well as assuming that the residuals at each level are independently and identically
distributed, the model is built on the assumption that the neighbourhood residuals u0j
are independent of the individual level residuals e0ij and that they are uncorrelated
with all of the independent variables (in this case x1ij). In a multilevel model
described by Eqs. (5.3) and (5.4), it is possible that there will be a correlation
between the independent variable x1ij and the neighbourhood residuals u0j. This
can be avoided by including the group (contextual) mean x2j ¼ ∑ix1ij, so that
Eq. (5.3) becomes

yij ¼ β0 þ β1x1ij þ β2x2j þ u0j þ e0ij ð5:6Þ

Random Slope Model

From Fig. 5.3a you will note that whilst the intercept—the point at which the lines
cross the vertical axis—varies between neighbourhoods, the slope is the same in all
areas. The lines are parallel, indicating that a fixed increase in age is associated with
the same average decline in time spent exercising in all areas. A random slope model
allows the relationship between the independent and dependent variables to differ
between contexts; we enable this by including an area effect for the slope (the
relationship between time spent on exercise and age) in addition to the area effect
for the intercept.

yij ¼ β0 þ β1x1ij þ u0j þ u1jx1ij þ e0ij ð5:7Þ

The new term in this equation is u1j. This is the slope residual for neighbourhood
j that is associated with the independent variable x1ij. Just as u0j denotes a departure
from the overall intercept β0, u1j indicates the extent of a departure from the overall
slope β1 in a random slope model. In general, there may be a residual upj associated
with any of the independent variables xpij or xpj. However, not every slope will be
random and so there will not be slope residuals for every regression coefficient.

The fixed part of this model is, as before, β0 + β1x1ij, and this is shown as the black
line in Fig. 5.4. The random part is now given by u0j + u1jx1ij + e0ij which clearly
depends on the individual’s age x1ij. The grey line in Fig. 5.4 is determined by the
fixed part together with both area effects (the intercept residual u0j and the slope
residual u1j), i.e. β0 + β1x1ij + u0j + u1jx1ij. For the selected area, there is still a
tendency to exercise more than average; the light line in Fig. 5.4 is consistently
above the heavy line. But unlike the random intercept model in Fig. 5.2, the distance
between the two lines in Fig. 5.4 varies according to the person’s age; the increased
mean time spent exercising in area j is greater at younger ages than at older ages.
This means that the relationship between time spent exercising and age differs
between areas. On average, a 1-year increase in age is associated with a change of
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β1 in the time spent exercising, but in area j, each additional year is associated with a
difference of β1 + u1j minutes.

Just as the intercept residuals u0j have an associated variance (σ2u0 ), the slope
residuals u1j also have a variance (σ2u1). What is new, however, is the introduction of
a covariance (σu01) between the intercept residual and the slope residual for
each area.

u0j

u1j

" #
� N

0

0

" #
,

σ2u0 σu01

σu01 σ2u1

" # !

e0ij � N 0, σ2e0
� � ð5:8Þ

The covariance is a measure of the extent to which two variables change in the
same direction. We can use the covariance between u0j and u1j, along with the two
variances, to calculate the correlation between the two:

ρu01 ¼ σu01ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2u0σ

2
u1

p ð5:9Þ

The unexplained variance in Eq. (5.7) is now

var u0j þ u1jx1ij þ e0ij
� � ¼ σ2u0 þ x21ijσ

2
u1 þ 2x1ijσu01 þ σ2e0 ð5:10Þ

The term involving the covariance σu01 takes into account the fact that the
intercept and slope residuals, u0j and u1j, are not independent of each other. The
covariance matrix in Eq. (5.8)—the variances σ2u0 and σ

2
u1 and the covariance σu01—

conveys a variety of information about the different relationships between time spent
exercising and age for the neighbourhoods in our study. Figure 5.5 shows how
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various patterns in the covariance matrix can be translated into different graphs
illustrating these relationships. The fixed part of the model β0 + β1x1ij is the same in
each graph, and so the black line—denoting the relationship in the average area—
does not change. Firstly, Fig. 5.5a shows that if the variance of the slope is very small
or zero then we are back to a random intercept model. The lines for the
neighbourhoods are parallel to each other since the relationship between exercise
and age does not vary between contexts. Figure 5.5b illustrates a moderate slope
variance and a positive covariance between the intercept and slope residuals for each
area. In general, areas with a large (small) intercept residual u0j will tend to have a
large (small) slope residual u1j, meaning that areas with intercepts higher than
average will tend to have slopes that are more positive (or less negative) than
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Fig. 5.5 Random slope model with differing covariance matrices showing (a) small (or zero) slope
variance; (b) moderate intercept and slope variance, positive covariance; (c) moderate intercept and
slope variance, negative covariance; (d) moderate intercept and slope variance, small (or zero)
covariance; (e) large intercept variance, moderate slope variance, positive covariance; and (f)
moderate intercept variance, large slope variance, positive covariance
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average. If the inhabitants of an area tend to do more exercise than average this will
usually be the case at all ages, but this benefit is most pronounced at older ages. This
leads to the general pattern of lower variability between areas at younger ages and
increased variability at older ages. Equation (5.10) shows how the unexplained
variance will increase with age if the covariance σu01 is positive. In Fig. 5.5c the
covariance between the intercept and slope is negative, meaning that areas with
higher intercepts tend to have lower (or more negative) slopes. This leads to a pattern
of increased variability between neighbourhoods at young ages and decreased
variability at older ages. Figure 5.5d illustrates a case in which the covariance
between the intercept and slope residuals is very small or zero (centred around age
50 years: see Box 5.1); in such a case, there is no relationship between the two.
Unlike Fig. 5.5b, c, the knowledge that the mean time spent exercising at age
50 years in one particular area is higher than average does not impart any further
information about whether the slope will be flatter or steeper than average. The lines
for the neighbourhoods cross quite randomly. In Fig. 5.5e, we can see the impact of
increasing the intercept variance for the model seen in Fig. 5.5b, and Fig. 5.5f
demonstrates the effect of increasing the slope variance again from that seen in
Fig. 5.5b. The former tends to increase the average effect or distance from the heavy
line (the average area) whilst the latter tends to increase the difference between areas
in the strength of the relationship between exercise and age.

The interpretation of the covariance given above is a slight simplification since
this actually depends on the centring of the independent variable. This means that the
size, and even the sign, of the covariance can change if the independent variable is
centred around a different value although neither the data nor the pattern of conver-
gence or divergence of areas will change. See Box 5.1 for an explanation.

Box 5.1 The Effect of Centring on the Covariance
In the equations in this chapter, x1ij is the age of individual i in neighbourhood
j, taking values dependent on the sample. In Eq. (5.1), β0 is the intercept and
denotes the time spent on exercise for an individual for whom all covariates are
equal to zero; in other words, this is the mean time spent on exercise by a
person who is 0 years old. Since this is almost certainly outside the range of
our data, we can choose to centre age around another value as an aid to
interpretation. To centre around age 50 years, we would replace x1ij by
x�1ij ¼ x1ij � 50, so that the random slope model in Eq. (5.7) becomes

yij ¼ β�0 þ β1x
�
1ij þ u�0j þ u1jx

�
1ij þ e0ij

The new intercept, β�0, now indicates the mean time spent on exercise by a
50-year old. The estimate of the slope, β1, has not changed and nor have the
slope residuals u1j. The u�0j are the random intercept residuals which now
represent area effects for 50-year olds (as opposed to the u0j which were the

(continued)
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Box 5.1 (continued)
area effects for those aged 0 years). You can see from the random slope model
in Fig. 5.4 that magnitude of the area effect, or the distance from the grey (area-
specific) line to the black (population) line, differs by age. So changing the
intercept in a random slope model also alters the area-specific intercept
residual.

Since the intercept residuals change if we change the intercept, their
variance also changes and so does the covariance between the intercept and
slope. For a centred model, the level 2 variances and covariances given in
Eq. (5.8) become

u�0j
u1j

� �
� N

0

0

� �
,

σ�2u0 σ�u01
σ�u01 σ2u1

" # !

It is straightforward to show that in this example σ�2u0 ¼ σ2u0 þ 100σu01 þ
2500σ2u1 and σ�u01 ¼ σu01 þ 50σ2u1. The implication of this is that the centring
of a variable with a random coefficient will change the covariance and
therefore the correlation between the intercept and slope residuals.

The interpretation of random slopes will vary according to the substantive nature
of the research but always depends on the nature of the covariance. Damman et al.
(2011) give a series of examples of random slope models examining the relationship
between healthcare experiences and patient characteristics in a sample of patients
drawn from 32 family practices in the Netherlands. They showed a negative covari-
ance between the practice-level intercept and the residual for the patient’s age,
indicating less variability between practices for older patients; similarly variation
decreased with increasing patient health status. Although the relationship between
educational level and patient experiences could be seen to vary across practices,
there was no correlation between the average experience and the slope across
educational level. Finally, a positive correlation between the practice-level intercept
and the residual for the patient’s ethnicity suggested greater variation in experiences
between practices for migrant patients than for those from a Dutch background.

Three-Level Model

The two-level random intercept model described by Eqs. (5.3) and (5.4) can easily be
extended to include a third level. Assume that the J neighbourhoods are themselves
nested within K towns, and we believe it plausible that people’s exercise habits may
differ between towns as well as between neighbourhoods within towns. The time
spent exercising by individual i living in neighbourhood j of town k, yijk, then
includes an effect or residual for town k, v0k, and is given by
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yijk ¼ β0 þ β1x1ijk þ v0k þ u0jk þ e0ijk ð5:11Þ

The residuals at the three levels are assumed to be independently normally
distributed:

v0k � N 0, σ2v0
� �

u0jk � N 0, σ2u0
� �

e0ijk � N 0, σ2e0
� � ð5:12Þ

It is now possible to allow the coefficient of age to vary across towns instead of
(or as well as) neighbourhoods by introducing a slope residual v1k in the same
manner as we did for the neighbourhood level above.

Heteroscedasticity

In linear multilevel models, as with single-level models, we can allow for
heteroscedasticity (also known as complex level 1 variation). The two-level random
intercept model described by Eqs. (5.3) and (5.4) makes the assumption that the level
1 variance σ2e0 is constant and independent of the person’s age x1ij. It may be that this
assumption is too simplistic and inappropriate, and instead of the observations being
randomly distributed around the line for each area as in Fig. 5.3b, we find that there
is more variability in the amount of exercise undertaken by older respondents. Such a
scenario is illustrated in Fig. 5.6.

Heteroscedasticity of this kind can be accommodated by including a further
residual term at level 1, e1ij, in a manner analogous to the inclusion of a random
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slope at level 2: it is only the interpretation that is different. Equations (5.3) and (5.4)
now become:

yij ¼ β0 þ β1x1ij þ u0j þ e0ij þ e1ijx1ij ð5:12Þ

and

u0j � N 0, σ2u0
� �

e0ij

e1ij

" #
� N

0

0

" #
,

σ2e0 σe01

σe01 σ2e1

" # !
ð5:13Þ

The unexplained variation in the outcome is now given by the variance of the
random part u0j + e0ij + e1ijx1ij which is given by σ2u0 þ σ2e0 þ 2x1ijσe01 þ x21ijσ

2
e1 .

Although the variance between areas is constant, the variance between individuals
within areas differs according to the individual’s age.

In a single-level regression model, ignoring heteroscedasticity in the data will
result in unbiased parameter estimates, but the standard errors associated with these
estimates may be incorrect meaning that tests of significance may be misleading. In a
multilevel regression model, the failure to model heteroscedasticity that is present in
the data may result in the erroneous detection of a random slope (Snijders and
Berkhof 2008).

Fixed Effects Model

We introduced the fixed effects model as an alternative to MLA in Chap. 3 and show
its algebraic representation here to highlight the differences between the multilevel
and fixed effects approaches. Since the fixed effects model introduces a series of
J � 1 dummy variables to model the effect of the neighbourhoods it is an extension
of the single level models described by Eqs. (5.1) and (5.2). We let xpi take the
value 1 if individual i lives in neighbourhood p, p ¼ 2, . . ., J, and 0 otherwise.
Equation (5.1) then becomes

yi ¼ β0 þ β1x1i þ
XJ
p¼2

βpxpi þ e0i ð5:14Þ

The parameters associated with the dummy variables, βp, now denote the differ-
ence between the mean time spent exercising in neighbourhood p compared to
neighbourhood 1 (the baseline). There is only one term in the random part of
Eq. (5.14)—e0i—as no assumptions are made about the distribution of the area
effects βp.
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When we introduced the fixed effects model in Chap. 3, we mentioned that such
models may change the interpretation of the (fixed part) regression parameters. This
is because under the fixed effects model, the higher level units are regarded as
nuisance parameters and all associated contextual effects are removed from the
analysis. However, as described in Chap. 2 when considering the transformation
from micro-level to macro-level, the contextual variables available to us include the
mean of the characteristics measured at the individual level. The fixed effects model
effectively centres all our level 1 independent variables around their mean, so
Eq. (5.14) is more appropriately written as

yij ¼ β0 þ β1 x1ij � x1j
� �þXJ

p¼2

βpxpij þ e0ij ð5:15Þ

where x1j is the average of the x1ij for neighbourhood j. Whilst the parameter estimate
β1 in the multilevel models indicates the association between the time spent exercis-
ing and the individual’s age, in the fixed effects model β1 represents the association
between the time spent exercising and the extent to which an individual’s age differs
from the average age of respondents in their neighbourhood. These two effects, and
their interpretations, are not necessarily the same (Leyland 2010).

We have tried to ensure that we are internally consistent in terms of the algebraic
notation that we use in this book. However, some papers use alternative notations;
we describe a common alternative in Box 5.2.

Box 5.2 Alternative Notation Used in MLA
To a large extent the alternative notation used is a substitution of one letter or
symbol for another which is trivial if confusing. However, multilevel models
are sometimes broken down into separate equations representing distinct parts
of the model. This box details the equivalence of the notation that we use in
this book to that used by Diez-Roux (2002). We can expand the random slope
model given by Eqs. (5.7) and (5.8) to include a contextual variable x2j and the
cross-level interaction between the individual and contextual variables x1ijx2j:

yij ¼ β0 þ β1x1ij þ β2x2j þ β3x1ijx2j þ u0j þ u1jx1ij þ e0ij

The equivalent notation

Yij ¼ γ00 þ γ10Iij þ γ01Gj þ γ11IijGj þ U0j þ U1jIij þ εij

represents a substitution of γ00 for β0, γ10 for β1 and Iij for x1ij etc. and is also
sometimes written as

(continued)
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Box 5.2 (continued)

Yij ¼ b0j þ b1jIij þ εij

where

b0j ¼ γ00 þ γ01Gj þ U0j

b1j ¼ γ10 þ γ11Gj þ U1j

Rankings and Institutional Performance

The higher level residuals in multilevel models are also termed effects because, in
the simple case of a random intercept model, the residuals represent the estimated
effect of a higher level unit on all of the individuals (level 1 units) contained in that
higher level unit. If the levels in a model include an institution such as a care home,
school or hospital, then we might like to provide some comparison of institutions to
identify those that are performing well or poorly in comparison to their peers—a
“league table” of performance. Although the use of performance indicators requires
careful consideration and should not be adopted universally (Smith 1995), it is clear
that if they are to be used, then their construction should be methodologically sound
and that necessitates the use of MLA (Goldstein and Spiegelhalter 1996; Marshall
and Spiegelhalter 2001).

In a random intercepts model such as that identified by Eqs. (5.3) and (5.4), the
level 2 residual u0j is our estimate of the effect of institution j. As mentioned in
Chap. 3, the estimates of the u0j are shrunk towards zero, the mean for all hospitals.
The extent of this shrinkage is dependent on the number of observations that we have
for any given hospital. The u0j are not known with certainty, hence the need to
estimate them. They can typically be plotted together with a measure of uncertainty
such as 95% confidence intervals as shown in Fig. 5.7, previously shown as Fig. 2.5;
the smaller the confidence interval, the more certain we are about the estimate.
Hospital effects in this example comprise the hospital residual u0j added to the mean
score for all hospitals, and these are plotted in rank order from the hospital with the
lowest mean score (following adjustment for the patient’s age, sex, education and
physical and mental health) on the left to that with the highest score on the right.
Typically there is substantial overlap between the estimates for different hospitals as
is the case in Fig. 5.7, meaning that despite having a higher mean score, it is difficult
to say with any certainty that one particular hospital is better than a hospital a few
positions lower in the rankings.

The production of a measure of institutional performance following adjustment
for patient characteristics using a random intercept model can be illustrated by
Fig. 5.5a. Although the outcome varies according to the individual’s age, the
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hospital effect—the distance between the line for any particular hospital and the
fixed part of the model (the black line)—is the same for all ages. As a consequence
the ranking of the hospitals—the ordering of the lines from lowest to highest—is the
same at all ages. With a random slope model, this becomes more complicated;
Fig. 5.5d illustrates how the lines in a random slope model may cross each other
meaning that the ranking of hospitals will differ according to the patients’ age. In the
random slopes model defined by Eqs. (5.7) and (5.8), the random part of the model is
given by u0j + u1jx1ij; this is the composite residual and clearly varies according to
the age of the individual x1ij. So in a random slope model, it is unlikely that a single
league table would capture all of the differences in rankings, but effects can be
estimated (together with confidence intervals) and rankings produced for any
given age.

The use of 95% confidence intervals around the residuals in plots such as Fig. 5.7
enables the reader to gauge whether the estimate for any particular unit differs
significantly from the effect for the average level 2 unit. Depending on the intended
use of such a plot, it may make more sense to adjust the confidence intervals so as to
enable comparisons between pairs or sets of units; Goldstein and Healy (1995)
describe the mechanics of making such an adjustment.

Conclusion

This chapter has introduced the algebraic notation for the models that are detailed in
the rest of the book. The notation system is flexible in that it can readily be extended
to include some of the more complex models that were described in Chap. 4. There

Fig. 5.7 Hospital performance scores (and confidence intervals) for patients’ experience of their
room and stay (78 hospitals; 22,000 patients). (Source: Sixma et al. 2009)
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are three reasons for needing to understand the algebraic representation of multilevel
models. Firstly, it provides a concise means to describe your work in a manner that
would enable others to replicate your models. Secondly, it facilitates an understand-
ing of the models used by other researchers when reading literature relevant to your
own research. And finally, the algebraic elements introduced in this chapter are the
basic building blocks of multilevel regression models constructed using MLwiN, the
software used in the practical section of this book (Chaps. 11–13).

Box 5.3 Basic Terminology
This box summarizes the terminology for the various algebraic terms used in
the models in this chapter.

yij is the dependent variable: the outcome for individual i living in
neighbourhood j. Individuals are numbered from i ¼ 1, . . ., N and each lives
in one neighbourhood j ¼ 1, . . ., J. There are nj individuals from

neighbourhood j so N ¼PJ
j¼1nj.

xpij are the independent variables, measured on individual i in
neighbourhood j. The subscript p is used to distinguish between the variables.

xpj are independent variables, measured at the neighbourhood level; this
variable takes the same value for all individuals living in neighbourhood j.

β0 is used to denote the intercept.
βp is the regression coefficient associated with xpij or xpj.
u0j is the estimated effect or residual for area j. This is the difference in the

outcome for an individual in neighbourhood j compared to an individual in the
average neighbourhood, after taking into account those characteristics that
have been included in the model. The 0 in the subscript denotes that this is a
random intercept residual, a departure from the overall intercept β0 applying
equally to everyone in neighbourhood j regardless of individual
characteristics.

upj is the slope residual for neighbourhood j that is associated with the
independent variable xpij or xpj. Just as u0j denotes a departure from the overall
intercept β0, upj indicates the extent of a departure from the overall slope in a
random slope model.

e0ij is the individual-level residual or error term for individual i in
neighbourhood j.

σ2u0 is the variance of the neighbourhood-level intercept residuals u0j.
σ2up is the variance of the neighbourhood-level slope residuals upj.
σu0p is the covariance between the neighbourhood-level intercept residuals

u0j and slope residuals upj.
σ2e0 is the variance of the individual-level errors e0ij.
ρI is the intraclass correlation coefficient or the proportion of the total

variation in the outcome that is attributable to differences between areas.

Conclusion 87



References

Cardol M, Groenewegen PP, de Bakker DH, Spreeuwenberg P, van Dijk L, van den Bosch W
(2005) Shared help seeking behaviour within families: a retrospective cohort study. Br Med J
330:882–884

Damman OC, de Boer D, Hendriks M, Meuwissen LE, Rademakers J, Delnoij DMJ, Groenewegen
PP (2011) Differences between family practices in the associations of patient characteristics
with health care experiences. Med Care Res Rev 68:725–739

Diez-Roux AV (2002) A glossary for multilevel analysis. J Epidemiol Community Health
56:588–594

Goldstein H, Healy M (1995) The graphical presentation of a collection of means. J R Stat Soc Ser
A 158:175–177

Goldstein H, Spiegelhalter DJ (1996) League tables and their limitations: statistical issues in
comparisons of institutional performance. J R Stat Soc Ser A 159:385–443

Leyland AH (2010) No quick fix: understanding the difference between fixed and random effect
models. J Epidemiol Community Health 64:1027–1028

Lipps O, Moreau-Gruet F (2010) Change of individual BMI in Switzerland and the USA: a
multilevel model for growth. Int J Public Health 55:299–306

Marshall EC, Spiegelhalter DJ (2001) Institutional performance. In: Leyland AH, Goldstein H (eds)
Multilevel modelling of health statistics. Wiley, Chichester

Sacker A, Wiggins RD, Bartley M (2006) Time and place: putting individual health into context. A
multilevel analysis of the British household panel survey, 1991-2001. Health Place 12:279–290

Sixma H, Spreeuwenberg P, Zuidgeest M, Rademakers J (2009) [Consumer quality index hospital
stay]. NIVEL, Utrecht

Smith P (1995) On the unintended consequences of publishing performance data in the public
sector. Int J Public Adm 18:277–310

Snijders TAB, Berkhof J (2008) Diagnostic checks for multilevel models. In: De Leeuw J, Meijer E
(eds) Handbook of multilevel analysis. Springer, New York

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

88 5 Graphs and Equations

http://creativecommons.org/licenses/by/4.0/


Chapter 6
Apportioning Variation in Multilevel
Models

Abstract The starting point of multilevel analysis is to separate the variance in an
outcome into the parts that are associated with the levels we distinguish. Several
issues concerning variances at all levels are discussed in this chapter. Partitioning the
variance between levels is straight forward in two-level linear models, but more
complicated when we consider more than two levels or when our outcome is
dichotomous. We discuss ways of clarifying and interpreting the importance of the
higher level variance in logistic multilevel regression analysis. This can be done by
transforming the difference between the 2.5 and 97.5 centile into an odds ratio or by
using the median odds ratio, both of which can be interpreted in the same way as the
odds ratio of a specific fixed effect. The higher level variance estimated from
multilevel logistic regression models tends to be low leading to the question as to
whether this small variance is still important. The clustering of observations within
higher level units also informs power calculations. More variance at a higher level
means that we need more observations to achieve the same power as when there is
little variation at the higher level. The specification of levels is important, both from
a theoretical and a statistical point of view. Omitting a relevant level has conse-
quences for the estimation of the amount of variation associated with the remaining
levels.

Keywords Multilevel analysis · Variance partitioning · Multilevel logistic
regression · Median odds ratio · Power calculation · Design effect · Omitted level
bias

One feature of multilevel models that is absent in single-level models is the ability to
partition any unexplained variance between levels and hence quantify the impor-
tance of different levels. As we explained in Chap. 3, we can develop hypotheses
solely concerned with variation in the phenomenon we are studying. In this chapter
we give further consideration to the important topic of variance, and we consider
interpretation of the variance and expound upon the implications of the variance both
for model interpretation and for study design.
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Variance Partitioning for Continuous Responses

In Chap. 5 we saw that the intraclass correlation coefficient ρI was a simple summary
of the proportion of the total variance in a two-level random intercept model that was
attributable to the higher level.

ρI ¼
σ2u0

σ2u0 þ σ2e0
ð6:1Þ

There are many situations in which the proportion of variance at a higher level
cannot be summarised in such a simple fashion. These include circumstances when
we have more than two levels (meaning that σ2e0 and σ2u0 are not the only variances),
in the presence of heteroscedasticity (non-constant level 1 errors, in which case σ2e0 is
not the only variance at level 1), and when we are fitting a model with random slopes
(σ2u0 is not the only variance at level 2).

In general the proportion of the total variance that is attributable to a particular
level in the model, for a given set of compositional and contextual characteristics, is
called the variance partition coefficient (VPC; Goldstein et al. 2002). In many cases
the VPC must be calculated for specific values of the covariates included in a
multilevel regression model. For example, in the case of a two-level random slope
model with a continuous outcome written as

yij ¼ β0 þ β1x1ij þ u0j þ u1jx1ij þ e0ij ð6:2Þ

where the random part is given by u0j + u1jx1ij + e0ij which depends on x1ij. This
means that the total variance, and therefore also the proportion of the variance that is
at level 2, varies according to the value of the level 1 characteristic x1ij.

Variance Partitioning for Multilevel Logistic Regression

In a multilevel logistic regression model, the VPC cannot be defined as in Eq. (6.1)
even in the simplest variance component model. As detailed in Chap. 12, the
observed outcome yij, a dichotomous response taking the value 1 if true and
0 otherwise, is modelled as a binomial process with denominator 1 and probability
πij such that

yij � Binomial 1, πij
� � ð6:3Þ

In a random intercept model with a series of predictors xpij, the transformed
probability πij is modelled such that
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logit πij
� � ¼ log

πij
1� πij

� �
¼ β0 þ β1x1ij þ � � � þ u0j ð6:4Þ

Now because of the assumption of a binomial distribution, the variance of the yij
is given by πij(1� πij). This is dependent on the predicted values πij and so, in turn, is
dependent on all of the covariates xpij. Moreover, the random effects u0j, again
assumed to be normally distributed with variance σ2u0 , are on the logit scale, and
so it is not possible to make a direct comparison between the level 2 variance σ2u0 and
the total variance πij(1 � πij).

Goldstein et al. (2002) discuss four approaches to the estimation of the VPC. The
first approach, and the most commonly used, is the latent variable method used by
Snijders and Bosker (2012, Chap. 17). This entails substituting the constant quantity
π2/3 � 3.29 for the lowest level variance, meaning that for a two-level multilevel
logistic regression model with a random intercept,

ρI ¼
σ2u0

σ2u0 þ π2=3
ð6:5Þ

The second is a simulation method that is generalisable and has the advantage of
not depending upon approximations. The third uses a Taylor series expansion (a power
series approximation of a mathematical function) to provide an algebraic approxima-
tion for the VPC. The last method uses a binary linear model; this is a very approx-
imate approach that involves treating the dichotomous responses yij as though they are
normally distributed and fitting a model accordingly and, as such, tends to work better
when the probability of the outcome is close to 0.5 rather than close to 0 or 1.

Variance Partitioning for Models with Three or More Levels

In the presence of more than two levels, the VPC details the proportion of
unexplained variance that is attributable to the different levels in the model. Merlo
et al. (2012) modelled the probability of death using a multilevel logistic regression
model with four levels; individuals were nested within households, which were in
turn clustered within census tracts and municipalities. The authors estimated vari-
ances associated with the three highest levels, denoted by σ2H, σ

2
C and σ2M, respec-

tively, and used these to calculate the VPCs under the latent variable method
(Snijders and Bosker 2012) as

VPCM ¼ σ2M= σ2M þ σ2C þ σ2H þ π2=3
� �

VPCC ¼ σ2M þ σ2C
� �

= σ2M þ σ2C þ σ2H þ π2=3
� �

VPCH ¼ σ2M þ σ2C þ σ2H
� �

= σ2M þ σ2C þ σ2H þ π2=3
� � ð6:6Þ
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Note that these variance partition coefficients are cumulative, indicating the
proportion of unexplained variance at the level in question and at higher levels.
This means that they can also be interpreted as the correlation between individuals
from the same higher level unit; individuals living in the same household must live in
the same census tract and people from the same census tract must live in the same
municipality since these are strictly clustered. It is straight forward to calculate the
proportion of the total variance associated with a particular level by subtraction. For
example, in the null model, estimates of VPCH and VPCC were 0.186 and 0.023,
respectively, indicating a correlation in mortality between individuals within the
same household of 0.186 and suggesting that 16.3% of the total variance in mortality
was attributable to differences between households within census tracts.

Interpretation of Variances

In a multilevel model with a random intercept, the interpretation of the variance in
terms of the VPC—however estimated—is fairly straightforward. For example,
Gonzalez et al. (2012) investigated the clustering of young adults’ body mass
index (BMI) within families; for a two-level null model, they reported a variance
between families (σ2u0) of 8.92 and a variance between young adults within families
(σ2e0 ) of 13.92. The variance partition coefficient (which in this simple case is the
same as an intraclass correlation coefficient) is therefore

VPC ¼ σ2u0= σ2u0 þ σ2e0
� � ¼ 8:92= 8:92þ 13:92ð Þ ¼ 0:391

This means that they found 39.1% of the variation in BMI in young adulthood to
be attributable to the family level, with the remaining 60.9% being due to differences
between young adults within families. The total variance in the sample is 22.84 and
so the standard deviation σ is 4.779; with a reported mean BMI of 25.38, we would
expect 95% of the young adults to have a BMI of between
(μ � 1.96σ, μ + 1.96σ) ¼ (16.01, 34.75). We can also say something about the
variation between families; we would expect 95% of families to have a mean young

adult BMI of between μ� 1:96
ffiffiffiffiffiffiffi
σ2u0

p
, μþ 1:96

ffiffiffiffiffiffiffi
σ2u0

p� �
or (16.99, 28.69).

In multilevel logistic regression models, we have less information available—just
the higher level variance σ2u0 in a two-level random intercept model—and our
interpretation of the variance is different. We are, however, still able to interpret
the random part of a multilevel logistic regression model, and given that it is slightly
more complex, this is arguably more important than for the multilevel linear
regression model. For example, Esser et al. (2014) examined in-hospital mortality
among very low birthweight neonates in Bavaria. Following adjustment for individ-
ual casemix (including gestational age, sex and the clinical risk index for babies
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[CRIB] score), the authors found a variance between hospitals (σ2u0 ) of 0.324.
Assuming the latent variable method discussed above, the variance partition coeffi-
cient calculated according to Eq. (6.5) is given by

VPC ¼ 0:324= 0:324þ 3:29ð Þ ¼ 0:090

In other words, 9.0% of the total variation in mortality is attributable to differ-
ences between hospitals after adjustment for casemix (with the remaining 91.0%
relating to differences between patients within hospitals that have not been
accounted for by variables included in the model). The high-level variance σ2u0 is
again informative, but this time it is on a log odds scale. We would expect 95% of
hospitals to have a log odds ratio of mortality—relative to the typical hospital—of

�1:96
ffiffiffiffiffiffiffi
σ2u0

p
, þ1:96

ffiffiffiffiffiffiffi
σ2u0

p� �
. Converting this to an odds ratio scale (by expo-

nentiating), we would expect 95% of hospitals to have an odds ratio (OR) of
mortality associated with being in that hospital, compared to the typical hospital,

to be in the interval exp �1:96
ffiffiffiffiffiffiffi
σ2u0

pn o
, exp 1:96

ffiffiffiffiffiffiffi
σ2u0

pn o� �
or (0.33, 3.05).

Rather than considering the 95% coverage intervals, we can make comparisons
between the upper and lower limits of the distribution. Returning to the example of
Gonzalez et al. (2012), we would expect the mean BMI of a family at the 97.5 centile
to exceed that of a family at the 2.5 centile by 2� 1:96

ffiffiffiffiffiffiffi
σ2u0

p
¼ 11:71—the

difference, save for rounding error, between the upper and lower 95% limits of
28.69 and 16.99 calculated above. So 95% of families should be covered by 11.71
points on the BMI scale. It is possible to do something similar for a logistic
regression model; we would expect the odds of mortality for a hospital at the 97.5

centile to be exp 2� 1:96
ffiffiffiffiffiffiffi
σ2u0

pn o
or 9.31 times the odds of mortality associated

with a hospital at the 2.5 centile. Again, apart from rounding error, this is approx-
imately the ratio of the two limits of the coverage interval, 3.05 and 0.33.

The variance estimate from a multilevel logistic regression model can therefore
be used as a means of informing us about the variation between higher level units in
the dataset. The comparison of the 97.5 and 2.5 centiles is arbitrary; a commonly
used alternative that is not dependent on such an arbitrary range and which was
introduced by Larsen and Merlo (2005) is the median odds ratio (MOR). The MOR
is the median of odds ratios comparing two people with identical covariates chosen
randomly from different higher level units (ordered so that the odds ratio is always at
least one). It is calculated as

MOR ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� σ2u0

q
Φ�1 0:75ð Þ

	 

ð6:7Þ

Φ�1(0.75) is the 75th centile of the standard normal density or 0.6745 giving
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MOR ¼ exp 0:954�
ffiffiffiffiffiffiffi
σ2u0

q	 

ð6:8Þ

In the example of in-hospital mortality among very low birthweight neonates
given by Esser et al. (2014), the variance of 0.342 gives an MOR of 1.72. This
calculation has converted the variance to a measure of dispersion on the odds ratio
scale, telling us something about the average difference between two random
hospitals. Since it is now on the odds ratio scale, this can be compared to any
other odds ratio, for example, for any of the fixed effects such as sex.

The MOR is used as a means of transforming the variance onto a meaningful and
interpretable scale in multilevel logistic regression; there are equivalent measures for
other forms of multilevel analysis. Chan et al. (2011) found a median rate ratio
(MRR) of 1.31 between practices for treatment using warfarin among patients with
nonvalvular atrial fibrillation using a multilevel modified Poisson regression model.
Chaix et al. (2007) reported a median hazard ratio (MHR) of 1.25 between small
areas in Sweden when analysing ischaemic heart disease mortality. The calculation
of the MRR and the MHR follows the same principles as for the MOR. More details
about the MRR can be found in Austin et al. (2018) and details of the MHR in Austin
et al. (2017).

The MOR and related measures make use of the distributions of the residuals and
are easy to calculate since they depend only on the higher level variance σ2u0 . An
alternative measure, the absolute relative deviation (ARD), quantifies the average
difference between the effect of each high-level unit and the effect of an average
high-level unit (see Martikainen et al. 2003; Tarkiainen et al. 2010). The ARD uses
the model residuals u0j and so is more complicated to calculate but may be partic-
ularly useful when there are fewer higher level units (and the distribution of these
higher level units may not strictly follow a standard statistical distribution).

Zero Variance

Unexplained variance between high-level units may constitute a small proportion of
the total variance in the outcome. Unfortunately there is no consensus as to exactly
what constitutes a ‘small’ proportion. Usually the higher level variance is small
compared to the lower level variance. The common exception is for repeated
measures in which there will typically be less variability between measurement
occasions than between the higher level units. For example, in a study of health
functioning in a cohort of British civil servants, Stafford et al. (2008) found 57% of
the variation in physical functioning and 49% of the variation in mental functioning
at baseline to be associated with the level of the individual. Chapter 11 describes the
modelling of repeated measures on areas rather than individuals; in that example
82% of the variation in mortality rates is seen to be at the district level.
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In some situations, a higher level variance will be estimated to be zero. The
suggestion that all of the unexplained variation is at the individual (lowest) level
does not mean that the mean outcome is identical for all contexts; rather, this means
that there is no more variation between higher level units than we would have
expected by chance. But that does not mean that there is no variation, and, at first
sight, the differences between high-level units may appear substantial.

To illustrate this concept, we simulate a random assignment of individuals to
25 hospitals, with each hospital comprising between 90 and 120 patients. Each
patient has a ‘vitality score’; these scores are generated as random draws from a
normal distribution with mean 1.64 and variance 1. Figure 6.1a shows the mean
scores for the 25 hospitals under one such simulation. There is little variation
between the hospital means—the minimum and maximum are 1.45 and 1.77 with
the variance of the hospital mean scores (0.007) being very small compared to the
individual variance of 1 that was used to generate these data.

If the vitality score is such that a patient with a score of 0 or more denotes life and
a score below 0 denotes death, then we can use the individual scores to categorise
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patients. A score of 0 corresponds to �1.64 standard deviations so about 5% of all
patients will be classified as dead. Figure 6.1b shows the results of aggregating the
individual patient deaths to the hospital level and expressing these as a proportion.
The proportion of deaths in each hospital now ranges between 0.018 and 0.099, but
this fivefold difference in mortality rates between hospitals has occurred by chance.
We would quite reasonably estimate the variance between hospitals to be zero since
there is no more than we would expect by chance.

When there is no variance between higher level units in a two-level model, the
intraclass correlation coefficient is 0 and the model effectively collapses to a single-
level model. However, in such circumstances Merlo et al. (2009) point out that this
should not exclude the possibility of investigating (and indeed discovering) contex-
tual effects. Figure 6.1c shows how the ranking of hospitals in terms of their
mortality rates may be correlated with key staffing indicators such as the staff/bed
ratio. Despite there being no unexplained variance being associated with the hospi-
tals, we can find a significant relationship with a contextual variable.

Merlo et al. (2012) argue that the general contextual effects (the overall extent to
which context influences individual health outcomes, assessed using the variance
and VPC) should have greater prominence in research and that such measures are
more informative than tests of the significance of small area variation common in
spatial epidemiological analysis. The authors further suggested that the small vari-
ances typically found at the area level should lead to less importance being placed on
administrative areas as a determinant of individual health than is currently the case
(see also our discussion of the relevance of contexts in Chap. 2).

Multilevel Power Calculations

Power calculations are an important aspect of study designs involving primary data
collection and are often regarded as essential by funders even for the analysis of
existing data. When a study includes different levels, it is necessary to take these into
account when conducting the power calculation; failure to do so will lead to an
overestimation of the power available for the analysis since the lack of independence
between observations nested within the same higher level unit reduces the effective
sample size.

The focus of the power calculation depends on its purpose. Common uses are to
indicate the power that is available to detect a specified effect with a given sample
size, the sample size needed to detect a specified effect at a given level of power or an
estimate of the effect size that could be detected with a given sample size at a
specified level of power. The three quantities power, sample size and effect size are
related, and so the unknown quantity can be changed by simple algebraic manipu-
lation. (We have assumed that the significance level used is the common α ¼ 0.05.)
As is the case for single-level power calculations, two of the three quantities are
assumed to be known in order to estimate the third. However, specifying the sample
size in a multilevel design is more complicated; in addition to the number of
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individuals (level 1 units), we need to know the number of level 2 units and the
extent of the clustering of the outcome within the level 2 units as expressed by the
intraclass correlation coefficient ρI.

The calculation of the required sample size n for a single-level problem with
power β to detect an effect size of magnitude x/σ at a significance level α is as
follows:

n ¼ Z1�α=2 þ Z1�β

x=σ

� �2
ð6:9Þ

Zr is the value from the standard normal distribution with the proportion r below it,
and so α¼ 0.05, Z1 � α/2¼ 1.96. The effect size here is standardised and expressed in
terms of the number of standard deviations and assumes that the outcome is normally
distributed; equivalent formulae are available when the dependent variable is
dichotomous.

The multilevel data structure is taken into account by inflating the variance in
Eq. (6.9) by a design effect D

D ¼ 1þ nj � 1
� �

ρI ð6:10Þ

nj is the average number of individuals (level 1 units) in a cluster. The design effect
therefore depends on both the magnitude of the intraclass correlation coefficient and
the average cluster size. If ρI ¼ 0, there is no correlation between individuals within
the same high-level unit, D ¼ 1, and the power is the same as for a simple random
sample. If ρI ¼ 1 there is no variation within high-level units, D ¼ nj, and there is no
gain through sampling more than one individual per cluster. Power can only be
increased in this instance by sampling more level 2 units. If nj ¼ 1, then only one
individual is being sampled per cluster, D ¼ 1, and the power is the same as for a
simple random sample. In general, D will be greater than 1 and the clustering of
outcomes within contexts reduces the power of a multilevel model relative to a
simple random sample.

The dependence of the power calculation on the design effect means that we need
to have an idea of the likely magnitude of the design effect. Design effects can often
be calculated based on the reporting of intraclass correlation coefficients in the
literature. For example, if we were interested in compliance with a colorectal cancer
screening programme, we might base our power calculation on the study by Pornet
et al. (2011). They found a variance between geographical areas in France (Ilôts
Regroupés pour l’Information Statistique, IRIS) of 0.040 in an empty model. Given
that this estimate was derived from a multilevel logistic regression model, the
estimated intraclass correlation coefficient calculated using Eq. (6.5) is 0.012.
This means that an estimated 1.2% of the variation in uptake of screening is
associated with the area. This study was based on the analysis of 8691 individuals
in 829 IRISs; if we were to take a similar sample, then the average cluster size would
be nj ¼ 10:48: Based on Eq. (6.10), the design effect is given by
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D ¼ 1þ 10:48� 1ð Þ � 0:012 ¼ 1:11

Even with a trivial intraclass correlation coefficient, and a modest average cluster
size, the clustering of individuals within areas means that we would need to increase
our sample size by 11% to get the same power as a simple random sample of
uncorrelated individuals. Note that this increase in sample size needs to be reflected
in an increase in the number of areas, since an increase in the number of individuals
per area would in turn increase the magnitude of the design effect.

It is possible that a literature search will turn up a relevant research article from
which the intraclass correlation coefficient can be found for a multilevel power
calculation. There are also resources reporting intraclass correlation coefficients
for different study types, such as those for various health outcomes in UK settings
(Ukoumunne et al. 1999), cardiovascular disease in primary care practices in Canada
(Singh et al. 2015) and BMI, physical activity and diet across countries (Masood and
Reidpath 2016). The need for information to perform power calculations is a further
argument for the need to report the intraclass correlation or variances in research
articles (see Chap. 10 for further discussion of this).

From the above, it would appear that a large intraclass correlation coefficient is
the enemy of efficient and economical study design, with even small intraclass
correlation coefficients leading to substantial increases in the sample size required
(and hence in many cases, the cost involved) to replicate the power of a simple
random sample. However, this is design dependent since a repeated measure
design—with a large associated intraclass correlation coefficient—can increase the
power of an analysis. We can illustrate this by considering two simulated study
designs for the evaluation of an area intervention. Figure 6.2a shows how the power
available to detect a specific effect size increases with the effect size in a repeated
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cross-sectional design. This simulated study has 20 individuals measured before the
intervention and 20 after the intervention in each of 50 areas, assuming an intraclass
correlation coefficient of 0.05. With this design, the effect size has to be close to 0.25
before the power reaches 0.8. In Fig. 6.2b, the study design is changed to a repeated
measures design, such that each of 20 individuals is measured before and after the
intervention (two measurements per person). This design retains the same total
number of measurements as in the repeated cross-sectional design (2000), and the
total variance is unchanged, but there is now some variation within as well as
between individuals. This study is now more highly powered to detect effects of
modest sizes, with power of 0.8 to detect an effect size of 0.11–0.13 based on the
same proportion of the variance at the area level as in Fig. 6.1a but with 69–89% of
the remaining variance being attributable to differences between individuals. With
this study design, the fact that a relatively small proportion of the total variance
(10–29%) is associated with the measurement occasion means that any change
between the pre- and post-intervention measures is more likely to denote an effect
of the intervention.

Power calculations are commonly used to determine whether it will be possible to
detect an effect of a certain size; as such they involve the comparison of the
magnitude of a parameter estimate to its precision (as measured by its standard
error). But the accuracy of different parameter estimates, and their standard errors,
may also be dependent on the sample size. Maas and Hox (2005) showed that in
general estimates were unbiased in two-level linear multilevel models if there were
sufficient (at least 50) level 2 units. With fewer level 2 units, the only estimate that
was affected was the standard error of the high-level variance.

Software for Multilevel Power Calculations

In the simplest designs, it may be possible to inflate the sample size required over
that needed for a simple random sample using the design effect, as we did for the
example on compliance with colorectal cancer screening above. However, this may
not be straightforward for more complicated designs such as when there is consid-
erable lack of balance between cluster sizes or when the effect size to be estimated is
not at the lowest level (such as the simulated area-based intervention above). For
such circumstances, specialist software is available, for example, MLPowSim
(Browne et al. 2009), Optimal Design (Spybrook et al. 2011) and PINT (Snijders
and Bosker 1993). The topic along with the software has also been covered in some
detail by Moerbeek and Teerenstra (2015).

There may be other constraints on the sample size calculation such as cost. In
particular, cost may be an important consideration when there is a cost associated
with each higher level unit that is sampled over and above the costs of the individuals
sampled. This is the case if, for example, we had to organise data collection in more
hospitals, needing permissions, time of hospital personnel, field workers, etc.
Snijders (2001) gives an example of incorporating cost considerations into a
multilevel study design.
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Population Average and Cluster-Specific Estimates

The parameter estimates obtained from a multilevel model are sometimes called
cluster-specific (or random effect) estimates. These estimates are conditional on the
random part of the model and therefore indicate the effect of the variable in question
on two individuals from the same higher level unit. In contrast, population average
(also called marginal) estimates indicate the effect of a covariate on the average
person (Diez-Roux 2002). The two estimates are identical for normally distributed
responses but will tend to differ for non-linear responses, such as for a logistic
regression model, with the differences becoming larger as the variance increases.
Population average estimates are usually given as the output from generalised
estimating equations (GEEs; see Zeger et al. 1988) whilst cluster-specific estimates
are the default output from most multilevel modelling packages. The population
average estimate β� is approximately related to the cluster-specific estimate β as
follows (Larsen and Merlo 2005):

β� � β=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:346σ2u0

q
ð6:11Þ

Note that β and β� here are parameter estimates on their original scale, i.e. log odds
ratios for a logistic regression model. As can be seen from Eq. (6.11), the smaller the
variance σ2u0 the smaller the difference between the two estimates. For example, with
an estimate of β ¼ 1.40 (giving an odds ratio OR ¼ 1.49), a variance of σ2u0 ¼ 0:05
leads to a population average estimate of β� ¼ 0.397 (OR ¼ 1.49) whilst a variance
of σ2u0 ¼ 0:50 gives β� ¼ 0.369 (OR ¼ 1.45). So if required (e.g. if requested by a
journal), population average effects can be obtained from the cluster-specific effects.
The distinction between the multilevel and GEE approaches is explored in more
detail elsewhere (Burton et al. 1998; Hu et al. 1998; Hubbard et al. 2010).

Omitting a Level

Suppose we have a study which has data on two levels. A theoretical analysis of our
research problem might lead us to hypothesise the importance of other levels too.
What is the consequence of omitting a theoretically important level for the interpre-
tation of the portioning of variance? A statistical and empirical analysis (using UK
Census data) was made by Tranmer and Steel (2001). We distinguish between three
situations shown in Fig. 6.3.

To make it more concrete, think of an example in which we are studying episodes
of care of patients admitted to hospital departments. The data we have in Fig. 6.3a
refer to patients within hospital departments. It may also be important to have
information on the hospitals. In Fig. 6.3b, we have data on patients and hospitals,
but not on the hospital department. Finally, in Fig. 6.3c, we lack any information at
the level of the patient.
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What happens to the variance in these situations? The first situation is quite
straightforward (although not satisfactory); the variation at the highest level in
Fig. 6.3a is combined with the variation at the next level down and is indistinguish-
able from it. In the example of hospitals, the variance estimated at the level of the
department includes variance between hospitals as well as variance between depart-
ments within hospitals, but we do not know the proportion of the variance that is
associated with each of these two levels. The patient-level variance will, however, be
estimated accurately. In Fig. 6.3b, the department level is omitted, and the associated
variance is distributed between the patient and hospital levels. Sacker et al. (2006)
give an example of such a situation. They studied self-rated health of individuals
taken from the British Household Survey at different times. They compared a model
with two levels, individuals nested within areas (electoral wards) and a model with
three levels where the level of the household is included between individuals and
areas. As Fig. 6.4 shows, part of the individual-level variance estimated from the
two-level model is actually related to the households people live in and (a smaller)
part of the area-level variance estimated from the two-level model turns out to be
associated with variation between households within the areas.

Tranmer and Steel (2001) show that for a linear model the proportion of the
intermediate-level variance that will be distributed to the highest level is approxi-
mately njk=nk, where njk and nk are the average cluster size (in terms of level 1 units,
e.g. individuals) at the intermediate and highest levels, respectively, with the
remainder being distributed to the lowest level. However, if the magnitude of the
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variance at the omitted level is unknown, it is impossible to assess the impact of its
omission.

When the lowest level is omitted as in Fig. 6.3c, the model is rather different since
the analysis is aggregated to the intermediate level (such as hospital department). The
variance at the highest level (hospital) is estimated correctly, but the estimated variance
at the intermediate level (department) includes a component from the lowest (individ-
ual) level. Although the proportion of the lowest level variance that is incorrectly
attributed to the intermediate level is likely to be small—Tranmer and Steel (2001)
estimate this proportion to be just 1=njk—this will commonly be a small proportion of
a large variance since σ2u0 is commonly much smaller than σ2e0 . For example, let us
assume that in the correctly specified three-level model, 5% of the variance is at the
level of the hospital, 5% at the level of the hospital department and the remaining 90%
of the variance refers to differences between patients within hospital departments. The
fact that σ2e0 is 18 times σ2u0 means that, even if there are as many as 100 patients in
each hospital department (njk ¼ 100), omitting the patient level would result in an
18% inflation of the estimated variance between hospital departments.

Conclusion

The variances at different levels form an important and informative part of the
multilevel model and even small variances at higher levels can have a substantial
impact on the required sample sizes. Despite their importance for model interpretation,
assessment of the importance of contexts and for the conduct of future power
calculations, Riva et al. (2007) found in a review that many studies did not report
variance components. This is clearly an oversight by authors and journals, and we

100%

area

household

individual

80%

60%

40%

20%

0%

2-
lev
el

3-
lev
el

2-
lev
el

3-
lev
el

2-
lev
el

3-
lev
el

1992 1996 2000

Fig. 6.4 Proportion of variance at each level of a two-level (individuals within areas) and three-
level (individuals within households within areas) baseline model of poor general health in the
British Household Panel Study. (Reproduced with permission from Elsevier, Health & Place)
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would hope that this situation will improve over time. In Chap. 10 (Reading and
writing), we further emphasise the importance of reporting variances from multilevel
studies. We have also seen that when a level is omitted from an analysis, the impact on
the variances estimated in the (incorrectly specified) multilevel model is unpredictable.
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Chapter 7
Context, Composition and How Their
Influences Vary

Abstract Individual-level outcomes are influenced by people’s individual charac-
teristics and by characteristics of the higher level units or contexts. In the previous
chapter, we discussed the apportioning of variation between lower and higher levels.
Here we move to explaining this variation. Higher level variation might be explained
by variables at that level, known as contextual effects. However, they may also be
the effect of the concentration of people with particular characteristics in higher level
units. So the variation at higher level might be reduced just by adding individual-
level variables. We illustrate how to disentangle the context and composition with an
example of the influence of individual social capital and neighbourhood social
capital on people’s self-rated health.

The chapter ends with a general discussion of issues to take into account when
estimating the contextual effects.

Keywords Multilevel analysis · Compositional effects · Contextual effects · Model
specification · Model interpretation · Social capital

It is recognised that people’s health is patterned by individual characteristics and also
by area characteristics. There remains, however, debate as to whether people’s health
behaviours and health outcomes are influenced by the social and physical environ-
ments of the place in which they live (Macintyre et al. 1993) or whether the different
health outcomes and health behaviours observed across areas merely reflect the
concentration of people living within those areas (Sloggett and Joshi 1994). The
first of these—the influence of the characteristics of the environment—are usually
termed contextual effects; the second—the characteristics of people within areas and
consequent concentration of these characteristics—are called compositional effects.
Multilevel modelling presents a natural way of determining the relative importance
of compositional and contextual effects and thereby of disentangling their impor-
tance. This is easily generalised to other example, such as hospitals, where, for
example, we could think of a contextual effect as the influence of a hospital quality
system on patient outcomes, and compositional effects might include the concen-
tration of people with a particular stage of the disease. This chapter considers how
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multilevel modelling can be used to disentangle individual and contextual influences
on individual health.

Context or Composition?

To be clear as to the definitions of context and compositional effects, we can refer to
their definitions provided in Diez-Roux’s (2002) glossary for multilevel analysis:

COMPOSITIONAL EFFECTS
When inter-group (or inter-context) differences in an outcome (for example, disease

rates) are attributable to differences in group composition (that is, in the characteristics of
the individuals of which the groups are comprised) they are said to result from composi-
tional effects.

CONTEXTUAL EFFECTS
Term generally used to refer to the effects of variables defined at a higher level (usually

at the group level) on outcomes defined at a lower level (usually at the individual level) after
controlling for relevant individual level (lower level) confounders.

It is important that we should consider the meaning of any contextual variables in
an analysis. Once an individual variable is aggregated to a context (e.g. by taking the
mean), then its interpretation may change. For example,

mean neighborhood income may provide information that is not captured by individual-level
income. The mean income of a neighborhood may be a marker for neighborhood-level
factors potentially related to health (such as recreational facilities, school quality, road
conditions, environmental conditions, and the types of foods that are available), and these
factors may affect everyone in the community regardless of individual-level income. Simi-
larly, community unemployment levels may affect all individuals living within a community,
regardless of whether or not they are unemployed. (Diez-Roux 1998)

However, the distinction between compositional and contextual characteristics
may not be straightforward since individuals may be constrained by their environ-
ment. Macintyre and Ellaway explain this idea:

Occupation may be determined by the local labor market; housing tenure by the local
housing market; education by the available educational system and local provision; income
by the prevailing labor market conditions; and car ownership by the density of population,
distance to facilities, and local transport networks. Hence, rather than seeing [these] as
properties of individuals, we could . . . see them as features of the local environment.
(Macintyre and Ellaway 2003)

The fact that people with certain characteristics are concentrated in the same
neighbourhoods is related to neighbourhood processes, such as selective migration
and retention. These neighbourhood processes may be related to the outcome of
interest, for example self-rated health, in a direct (less healthy people staying in the
area) and indirect way (people with higher education or income moving out, but
income and education in part determining individual health). Such neighbourhood
processes are important for the interpretation of results of our analyses and pose
interesting research questions in themselves (see Sampson 2012).
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Using Multilevel Modelling to Investigate Compositional
and Contextual Effects

We can illustrate the ways in which MLA makes it possible to investigate compo-
sitional and contextual impacts on health using an example based on an investigation
of the influences of individual and neighbourhood social capital on self-rated health.
This study used data from the Dutch Housing and Living Survey (Mohnen 2012;
Mohnen et al. 2015). For this example, we concentrate on one measure of individual
social capital that was used: whether or not the respondents had contact (including
by telephone) at least weekly with friends, people whom they knew very well or
family members (who did not live in the same household). The authors also created a
neighbourhood social capital score using ecometric techniques (see Chap. 8) based
on respondent views as to whether people in the neighbourhood knew each other,
whether neighbours were nice to each other and whether there was a friendly and
sociable atmosphere in the neighbourhood. (In this study, the neighbourhoods
comprised on average 2500–3000 addresses and about 4000 residents. The total
analytic sample of 53,260 lived in 3273 neighbourhoods giving an average of 16.3
respondents per area.) Individual social capital is therefore a dichotomous variable
(72.7% reported at least weekly contact with friends and family, subsequently
referred to as high individual social capital) whilst neighbourhood social capital is
a score ranging from �0.78 to 0.46 (mean ¼ �0.10, standard deviation ¼ 0.20).
Positive scores indicate greater social capital. Self-perceived health is dichotomised
with 79.0% rating their health as good or better; as such, multilevel logistic model-
ling is appropriate for these data.

We can investigate the importance of the compositional (individual) and contex-
tual (area) social capital on good or better self-rated health by comparing the
following series of random intercept models:

Model Description

M0 Null model

M1 Individual social capital

M2 Neighbourhood social capital

M3 Individual and neighbourhood social capital

M4 Individual and neighbourhood social capital and their interaction

All models adjust for a range of individual socio-demographic confounders: sex,
age, ethnic background, education, employment, income, home ownership and
length of residence. Furthermore, all models include three neighbourhood variables:
the proportion of respondents with income in the lowest twenty percent, an average
measure of perceived home maintenance and urban density. So the null model M0
above is not empty; it consists of the eight individual and three neighbourhood
variables listed above (as do all of the other models), but coefficients of these are not
relevant to our interest in the relative importance of individual and area social
capital. For each model, we will examine the interpretation of the effects of interest
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by plotting the predicted log odds. This series of models is a good way of
disentangling context and composition (more on developing a modelling strategy
can be found in Chap. 9).

Table 7.1 presents the estimated coefficients for the social capital variables for
each of the models. The following sections interpret these coefficients and detail the
implications of the specified model for the association of individual and area social
capital with self-rated health.

Model M0: Null Model

Since we are not interested in other covariates, we omit them and describe this model
algebraically as

yij � Binomial 1, πij
� �

logit πij
� � ¼ log

πij
1� πij

� �
¼ β0 þ u0j

ð7:1Þ

The logit of the probability of reporting good or better self-rated health for
individual i in neighbourhood j is modelled using a mean or intercept and a random
effect for each area. The estimate of β0 is the estimated log odds of good health for an
individual living in the average area, conditional on having certain baseline charac-
teristics of both individual and area. (The exact characteristics depend on the precise
coding of variables and how age is centred, etc., but these are not of interest to our
substantive research question regarding the relationship between social capital and
health.) The estimates from this model are plotted in Fig. 7.1. Figure 7.1a plots the
predicted log odds of good or better health separately for those with high (solid grey
line) and low (solid black line) individual social capital across the observed range of
values of area social capital on the horizontal axis. In this instance, the lines coincide
since we have not included a term differentiating between high and low individual
social capital in model M0, and the lines are flat since there is no effect of
neighbourhood social capital (again this is not included in M0). Figure 7.1b plots
the predicted log odds of good or better health separately for areas with high (solid

Table 7.1 Coefficients (log odds ratios) exploring associations between social capital and good or
better self-rated health for models M0 (null), M1 (individual), M2 (area), M3 (individual and area)
and M4 (individual, area and interaction) (Mohnen 2012)

Model Individual social capital Area social capital Interaction: individual�area
M0

M1 0.081

M2 0.230

M3 0.076 0.203

M4 0.065 0.257 �0.135
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grey line), average (dotted black line) and low (solid black line) social capital across
individual social capital on the horizontal axis. (We have used areas with a social
capital score of 0.23, �0.10 and �0.43 to indicate high, average and low social
capital, respectively.) Again all three lines overlap because there is no term in M0
denoting area social capital, and the lines are flat because there is no difference in the
estimated log odds of good or better health between those with high or low
individual social capital.

Model M1: Individual Social Capital

This time our model includes individual social capital, x1ij, and its associated
parameter estimate β1:

logit πij
� � ¼ β0 þ β1x1ij þ u0j ð7:2Þ

Parameter estimates from this model are used to create Fig. 7.2. From Fig. 7.2a
we can see that those with high individual social capital are now more likely to report
being in good health (or better) than those with low individual social capital. Since
neighbourhood social capital is not included in M1, the predicted log odds of good
health are constant regardless of the extent of neighbourhood social capital.
Figure 7.2b illustrates this another way; we are unable to distinguish between
areas with high, average or low neighbourhood social capital (the lines lie on top
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Fig. 7.1 Predicted log odds of good or better health obtained under model M0 (null model) across
(a) area and (b) individual social capital

Using Multilevel Modelling to Investigate Compositional and Contextual Effects 111



of each other) but, regardless of the extent of neighbourhood social capital, respon-
dents with high individual social capital are more likely to report good health than
those with low individual social capital.

Model M2: Neighbourhood Social Capital

Our model this time includes neighbourhood social capital, x2j, and its associated
parameter estimate β2:

logit πij
� � ¼ β0 þ β2x2j þ u0j ð7:3Þ

Parameter estimates this time have been used to create Fig. 7.3. Figure 7.3a shows
that there are no differences between those with high or low individual social capital
since individual social capital is not included in Eq. (7.3). What we do see, regardless
of individual social capital, is a gradient corresponding to area social capital;
respondents living in areas with high social capital are more likely to report being
in good health than those living in areas with average social capital who are, in turn,
more likely to report being in good health than those living in areas with low social
capital. Figure 7.3b shows again no difference between individuals with high or low
individual social capital; there is a distinction in the likelihood of reporting being in
good health that is dependent on the social capital of the area of residence but which
is not affected by individual social capital as this is not included in Eq. (7.3).
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Fig. 7.2 Predicted log odds of good or better health obtained under model M1 (containing
individual social capital only) across (a) area and (b) individual social capital
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It is worth noting at this stage that in terms of Diez-Roux’s definition we could
argue that in this case area social capital (x2j) is not strictly a contextual variable
(Diez-Roux 2002) since there is an important individual-level confounder missing
from Eq. (7.3), namely individual social capital. It is possible that the relationships
discovered in model M2 and described in Fig. 7.3 reflect a relationship between
individual social capital and health combined with a tendency for those with high
(low) individual social capital to cluster in neighbourhoods which therefore have
high (low) area social capital. We can explore this in models M3 and M4 when both
individual and area social capital are included in the same model. In general, it is
important to ensure that the lowest level in a model is as complete as possible when
we are interested in contextual effects to ensure that we are interpreting these
appropriately and not incorrectly assigning individual characteristics, for which we
have not fully controlled, to the area level.

Model M3: Individual and Neighbourhood Social Capital

This time the model is expanded to include both individual and neighbourhood
social capital:

logit πij
� � ¼ β0 þ β1x1ij þ β2x2j þ u0j ð7:4Þ
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Fig. 7.3 Predicted log odds of good or better health obtained under model M2 (containing area
social capital only) across (a) area and (b) individual social capital
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The parameter estimates from this model are used to plot the predicted log odds of
good or better health in Fig. 7.4. It is clear that the likelihood of reporting good
health increases as area social capital increases, but individuals with weekly contact
with friends and family were also more likely to report good health. The two effects
are independent (there is no interaction included in M3); the predicted difference
between people with high and low individual social capital is the same (on the log
odds scale) regardless of the area social capital. This is reflected in the lines in
Fig. 7.4a being parallel. Similarly, the fact that the lines in Fig. 7.4b are parallel
indicates that the impact of area social capital is the same regardless of whether an
individual is classified as having high or low individual social capital.

Model M4: Individual and Neighbourhood Social Capital
and Their Interaction

Model M4 develops M3 by including the interaction between individual and
neighbourhood social capital:

logit πij
� � ¼ β0 þ β1x1ij þ β2x2j þ β3x1ijx2j þ u0j ð7:5Þ

The inclusion of the interaction term between individual and area social capital—
x1ijx2j in Eq. (7.5)—and its associated parameter estimate β3 means that the assump-
tion of independence of the compositional and contextual effects has been dropped.
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Fig. 7.4 Predicted log odds of good or better health obtained under model M3 (containing
individual and area social capital) across (a) area and (b) individual social capital
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Figure 7.5 illustrates the impact of this on the predicted log odds of good health or
better. Whilst it is still clear that there is a gradient across area social capital, with an
increase in the probability of reporting being in good health increasing with increas-
ing area social capital, from Fig. 7.5a we can see that the gradient is stronger (i.e. the
impact of area social capital is more pronounced) for those with low individual social
capital than with high individual social capital. Figure 7.5b suggests that individual
social capital has a greater impact on self-reported health in low social capital areas
than in average social capital areas, and more in average social capital areas than in
high social capital areas. Despite this, people in high social capital areas tend to
report better health than those in average or low social capital areas irrespective of
their individual social capital. Note that the presence of the interaction means that the
lines in Fig. 7.5 are no longer parallel; the magnitude of the individual effect (the
distance between the lines) depends on the context, and the magnitude of the
contextual effect depends on individual circumstances.

Random Slopes and Cross-Level Interactions

A quick comparison of the illustrations in Fig. 7.4 (parallel lines) and Fig. 7.5
(in which the lines are no longer parallel) brings to mind the comparison between
the models for random intercepts and random slopes in Fig. 5.5. The same principle
applies: if the lines are not parallel, then this indicates that the relationship between
an individual variable and the outcome varies between contexts. In a random slopes
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Fig. 7.5 Predicted log odds of good or better health obtained under model M4 (containing
individual and area social capital and their interaction) across (a) area and (b) individual social
capital
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model, we do not know the reason for the relationship varying between contexts, just
the fact that this variation exists. In the example used in the previous section relating
to individual and area social capital, the authors could have tested for the existence of
a random slope by expanding model M3 to enable the coefficient of individual social
capital x1ij to vary between neighbourhoods (let us call this model M3A).

logit πij
� � ¼ β0 þ β1x1ij þ β2x2j þ u0j þ u1jx1ij ð7:6Þ

The coefficient of individual social capital is now given by (β1 + u1j). This varies
between contexts but not in a way that is determined by known area characteristics.
For each neighbourhood j, we would estimate a slope residual u1j which would
determine the nature of the relationship between individual social capital and health
in that neighbourhood. With a cross-level interaction, we are able to describe the
contextual circumstances associated with this relationship. From Eq. (7.5) we can
see that the coefficient of x1ij is given by (β1 + β3x2j); this again varies between
contexts but this time in a predictable way. (We saw from Fig. 7.5 that the impact of
individual social capital was more pronounced in areas with low social capital.) In
this way, it is possible to use random slope models as a means of hypothesis
generation in exploratory analyses. Inspection of the values of the slope residuals
u1j may reveal an apparent association with a known contextual factor. A cross-level
interaction is generally to be preferred to a random slope since the former provides a
means to describe how relationships differ between contexts (thus providing the
potential for an explanation of the mechanism) rather than simply noting that such
variation exists.

Impact of Compositional and Contextual Variables
on the Variances

We have emphasised the important information that can be conveyed by the
variances at different levels in a multilevel model. It is also worth reflecting on
changes to the variances that occur during the modelling process.

When any variable is added to a multilevel model, as with an ordinary least
squares (single level) regression model, we would expect to see a reduction in the
total variance—the additional term is explaining some of the variability in outcomes.
When compositional characteristics are added, we may see a reduction in the
variance at any level of the model; patient characteristics, for example, may explain
some of the differences between hospitals in patient outcomes. A hospital serving an
elderly community, for example, may achieve worse patient outcomes than average
solely due to the difference in the ages of the patients they see compared to other
hospitals. And of course we would expect individual characteristics to explain some
of the differences in outcomes between individuals.
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The situation is slightly different when we consider contextual variables. Whilst
this will still produce a reduction in the total unexplained variance (or no change in
the total variance if the variable is not related to the outcome), a variable describing
contexts cannot explain variation within those contexts. If we consider the impact of
individual and neighbourhood income on self-reported health, then individual
income could account for some of the variations between individuals within
neighbourhoods as well as between the neighbourhoods themselves, whilst mean
neighbourhood income could only explain some of the variation between
neighbourhoods. Mean neighbourhood income does not differ between individuals
in the same neighbourhood and therefore cannot explain differences in individual
outcomes within neighbourhoods.

We should note here that a cross-level interaction between a level 1 and a level
2 variable will behave like a level 1 variable. In the above example, the interaction
between individual and area income will vary between individuals living in
the same neighbourhood and so may explain part of the variation within
neighbourhoods.

Although the addition of a variable defined at a certain level should reduce the
total variance, and the variance in the outcome attributed to that level, there may be
circumstances under which the addition of a variable may increase the variance at
higher levels. For example, the addition of a compositional variable (such as the
patient’s age) may increase the variance between hospitals whilst decreasing the total
(hospital plus patient) variance. There are three possible reasons for this phenome-
non which we outline below.

Firstly, we should note that we are dealing with estimates, and there is uncertainty
around these estimates. This is particularly true in the random part of the model and
particularly at higher levels where there are fewer observations. So when noting a
small increase in a high-level variance following the addition of a compositional
characteristic, it is worth considering whether such an increase is important or
whether this may reflect a lack of precision in the estimated variances. Certainly if
the total variance appears to increase following the addition of a variable, this can
only be due imprecision in the estimates.

Secondly, there may be a genuine increase in the variance between contexts
following the addition of a compositional characteristic. In these circumstances,
the omission of a compositional variable in effect masks existing variation between
contexts. An unadjusted analysis of patient outcomes may show little variability
between hospitals when the patient’s age is ignored. However, if outcomes deteri-
orate with increasing age, then the inclusion of individual age within a multilevel
model may increase the variance between hospitals as those hospitals with a greater
proportion of elderly patients are in fact performing better than average, given the
age of their patients, and those with a smaller proportion of elderly patients are
actually performing worse than would be expected. An example of this is given by
Aakvik et al. (2010) who consider the contributions of patient, GP and municipality
to certified sickness absence. They find that upon the addition of patient-level
covariates to a null model, the total variance in the number of days of sick leave
for females decreases from 5828 to 5650. However, they indicate an increase in the
variance attributable to the GPs from 46.7 to 47.4.
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Finally, multilevel logistic regression is a special case in which the reported
variance at the higher level may appear to increase following the addition of a
variable measured at a lower level. An explanation as to why this may happen is
provided by Snijders and Bosker (2012), but briefly this reflects the link between the
variance and the probability of an outcome described in Chap. 6, with the variance of
the yij being given by πij(1 � πij) when the outcome follows a binomial distribution.
As we saw from Eq. (6.5), the variance partition coefficient in a multilevel logistic
regression model can be approximated by

ρI ¼
σ2u0

σ2u0 þ π2=3
ð7:7Þ

If we add a compositional variable to a two-level multilevel logistic regression,
then we might reasonably expect to see this explain a greater proportion of the
variance within contexts (level 1) than between contexts (level 2), in which case the
variance partition coefficient (the proportion of unexplained variance attributable to
differences between contexts) should increase. Since π2/3 � 3.29 is fixed, the only
way to increase the variance partition coefficient is to increase the level 2 variance
σ2u0. This means that, in a multilevel logistic regression model, σ2u0 can increase even
though the variance between level 2 units decreases. Jat et al. (2011) provide such an
example in their analysis of maternal health service use in India. They show that the
district-level variance associated with the receipt of postnatal care increases from
0.389 in the empty model to 0.480 when a variety of individual, community and
district variables are included. As a consequence, the proportion of the unexplained
variance associated with the districts increases from 8.5 to 11.1%.

Model Specification and Model Interpretation

The exact specification of the model that is fitted can impact on the estimates that are
obtained and hence on the interpretation of the model. It is not surprising to find that
regression coefficients can differ depending on whether certain terms are included in
a regression model or not, but in a multilevel model regression coefficients can also
differ depending on the terms that are included in the random part of the model. We
will illustrate this with an example.

A reanalysis of 1930 US Census data considered levels of illiteracy by race/
nativity (with the population classified into ‘native whites’, ‘foreign-born whites’
and ‘blacks’) and, importantly, whether the relationship between illiteracy and race
varied between states (Subramanian et al. 2009). The two models of interest shown
in Table 7.2, derived from Table 2 of the original paper, compare a two-level
variance components model with a model in which the coefficients for the three
racial groups are allowed to vary.
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M3 : logit πij
� � ¼ β0 þ β2x2ij þ β3x3ij þ u0j ð7:7Þ

M4 : logit πij
� � ¼ β0 þ β2x2ij þ β3x3ij þ u1jx1ij þ u2jx2ij þ u3jx3ij ð7:8Þ

The probability of illiteracy πij for racial group i in state j is modelled in terms of
three dummy variables indicating race/nativity, x1ij, x2ij and x3ij, denoting ‘native
whites’, ‘foreign-born whites’ and ‘blacks’, respectively.

The odds ratio indicating average illiteracy among the ‘foreign-born white’ group
compared to the ‘native white’ group decreased from 13.63 (95% CI 13.58–13.67) to
5.71 (95% CI 5.18–6.29) when this coefficient is allowed to vary between states.
These are derived from the coefficients β2 in Eqs. (7.7) and (7.8), respectively, and
the substantial difference between these odds ratios indicates the dependence of the
fixed parameters on the specification of the random part of the model. The substan-
tial reduction in the deviance information criterion (DIC)—an indicator of the fit of a
model (Spiegelhalter et al. 2002)—shown in Table 7.2 suggests that model 4 pro-
vides a better fit to the data. In this case inappropriate specification of the random
part of the model has a sizable impact on the estimate of illiteracy among the
‘foreign-born white’ group. The reasons for this difference relate to the relationship
between the fixed part coefficients and the higher level variance detailed in the
section ‘Population Average and Cluster-Specific Estimates’ in Chap. 6.

Sources of Error Affecting the Estimation of Contextual
Effects

Blakely and Woodward (2000) identified six limitations in study design and sources
of error that affected the estimation of contextual effects. This paper remains
relevant, and these limitations should be borne in mind when fitting or interpreting
a multilevel model that includes one or more variables at the macro level.

Lack of Variation in the Contextual Variable

The variation present in an individual-level variable will be reduced when aggre-
gated to a contextual level. For example, there will be more variation in individual

Table 7.2 Odds ratios (OR) and 95% credible intervals (CI) for illiteracy by race/nativity under
different models

M3 M4

OR (95% CI) OR (95% CI)

Native white (ref) 1.00 1.00

Foreign-born white 13.63 (13.58–13.67) 5.71 (5.18–6.29)

Black 5.86 (5.84–5.88) 5.95 (5.42–6.53)

For full table see Subramanian et al. (2009)
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income than in mean neighbourhood income. Such a reduction in variability
between contexts, combined with there often being few contexts (there will certainly
be fewer contexts than individuals in a multilevel model), means that there will be
less power to detect a contextual effect than there is to detect the effect of an
individual-level variable. Given the reduction in the range of values that a contextual
variable can have (because of the reduced variability), it is worth bearing in mind
that fairly modest contextual effects may be important.

Precision of Estimates and Study Design

Since there will always be fewer contexts than lower level units (individuals), contex-
tual effects will be estimated with less precision. If the estimation of contextual effects
is an essential part of your research, then this should be taken into account through the
research design; an increase in the precision of the contextual effects will generally be
achieved by increasing the number of higher level units (possibly at the expense of the
number of lower level units included, as discussed in Chap. 3).

Selection Bias

If the individuals sampled for or otherwise included in a study are not representative
of the population (such as would be achieved through a random sample), then the
study is said to suffer from selection bias. The concern is that the association
between a variable of interest and the outcome in the analytical sample differs
from that seen in the eligible population (Hernán et al. 2004). In a multilevel
study, particularly when we are interested in estimating contextual effects, the
potential for selection bias exists at all levels of the model. We therefore have to
consider representativeness at all levels (not just at the individual level) and should
report response levels and any consideration of bias at all levels.

Confounding

Confounding occurs when one variable is associated with a key variable (such as the
exposure of interest) and also influences the outcome. Contextual factors may suffer
from both within-level confounding (confounding by other contextual factors) and
cross-level confounding (confounding by individual characteristics). It is also pos-
sible that a contextual variable will confound the relationship between an individual-
level variable and the outcome. The solution to the presence of such confounding
variables is generally to adjust adequately for such variables in the analysis (Royston
et al. 2006).
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Information Bias

The estimation of contextual effects may be affected both by misclassification or
mismeasurement of the contextual variable and by the incorrect assignment of
individuals to the contexts. If either occurs in a systematic way, then there is a
potential for biased results. Whilst misclassification and mismeasurement issues are
also present for individual-level variables, the incorrect assignment of individuals to
contexts introduces further potential for bias, particularly in the case when contex-
tual variables are subsequently created by aggregating individual variables to their
(incorrectly assigned) contexts.

Model Specification

The exact specification of the multilevel model may influence the estimation of
contextual effects for several reasons. The contexts used may impact on the magni-
tude of the effect detected (with smaller areas more closely approximating individual
circumstances) but may also be important in terms of the mechanism through which
the contextual variable operates (e.g. with areas defined by political or other admin-
istrative boundaries). Cross-level effect modification and indirect cross-level effects
are often overlooked; the presence of a cross-level interaction, for example, may
mean that the interpretation of a contextual effect depends on the circumstances of
the individual. The nature of a contextual effect may be complex and may not be
linear. It is therefore important to consider different functional forms or multiple
categories for the contextual effects although the lack of variation in the contextual
variable noted above, and in some cases a restricted number of contexts, may make
this difficult. Finally, multicollinearity is likely to be more problematic for contex-
tual variables than for individual variables which may in turn make it impossible to
estimate independent effects for several contextual variables.

Conclusions

Both the characteristics of the individuals themselves (compositional factors) and
those of the relevant contexts in which individuals operate (contextual factors) may
influence individual outcomes. In order to be able to judge the importance of
contextual variables, it is important that full and appropriate adjustment has been
made for potential differences in composition between the higher level units.
Multilevel analysis provides a useful tool to explore the impact of compositional
and contextual factors, and the interpretation of potentially complex models can be
aided by relatively simple figures. The analysis of contextual effects can introduce a
further dimension of complexity into regression modelling.
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Chapter 8
Ecometrics: Using MLA to Construct
Contextual Variables from Individual Data

Abstract Multilevel analysis can be used to construct characteristics of higher level
units. This is done on the basis of systematic observations by several observers or of
perceptions of respondents who describe, for example, their neighbourhood. By
using MLA, we solve a number of problems associated with simple aggregation of
data from the individual level to the higher level. The chapter starts by identifying
these problems and then works step by step towards more elaborate models to
measure latent characteristics of higher level units. Latent variable analysis in
MLA is also called ‘ecometrics’, a new term for methods to measure characteristics
of ecological units on the basis of multiple observations or responses.

Keywords Multilevel analysis · Ecometric analysis · Aggregation · Contextual
variables · Latent variable analysis · Reliability · Patient safety

In Chap. 3, in the section on hypotheses, we mentioned different types of variables
that can characterise higher level units. They could be either directly measured at the
higher level or aggregated from characteristics of lower level units (such as individ-
uals). Examples of variables that are measured at the higher level are the specialty of
a hospital ward, or the total surface of green areas in a neighbourhood. Other
characteristics can be measured by aggregation from individual-level characteristics,
such as the average age or income of the inhabitants of a neighbourhood. Sometimes
we are not dealing with separate variables but with composite scores, based on
several variables or responses. Examples are questionnaires that ask people about
neighbourhood contacts and that could be combined into a social capital measure or
questionnaires to doctors and nurses in hospitals that ask about dealing with issues of
safety which could be combined into a measure of patient safety culture.

We could just aggregate the individual variables or responses to items in
questionnaires to the appropriate higher level. However, there are problems associ-
ated with doing this, and we can overcome these problems by applying MLA to
construct our higher level variables. We then use MLA to estimate the higher level
effect—e.g. a neighbourhood effect or a hospital effect—net of the individual
variation at other levels. When applied to composite scores, this approach is now
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known as ecometrics or latent variable analysis in MLA (Raudenbush 2003;
Raudenbush and Sampson 1999).

The use of ecometrics in public health and health services research is becoming
more frequent. It is therefore important to pay attention to this application of
multilevel research. Following its name—ecometrics as the measurement of ecolog-
ical characteristics—it is currently mainly used to construct variables to characterise
neighbourhoods, such as social capital (Mohnen et al. 2011; Nyqvist et al. 2014;
Prins et al. 2012). It is much less frequently used for other ecologies of humans, such
as work places (Oksanen et al. 2013), schools (Gilreath et al. 2012) or healthcare
institutions (van Schoten et al. 2014).

This chapter is based around an example of patient safety culture in hospital
departments. We will discuss the multilevel model and its interpretation in ecometric
analysis, and we will compare ecometrics with traditional methods. We end the
chapter with a discussion of ecometric properties (comparable to psychometric
properties), such as reliability.

Problems with Simple Aggregation

Simple aggregation of individual variables to a higher level unit is not wrong, but there
can be a couple of problems with doing this. First, our individual-level variables are
often derived from a sample of individuals. When we group these individuals into
higher level units, the sample sizes may vary. Some higher level units might have
many more individual observations than others, and this is especially likely to be the
case when the study was not originally designed as a multilevel study. If we simply
aggregate an individual-level variable using such data, our aggregated variable is then
based on different numbers of observations. However, if we aggregate the data and use
this aggregated variable in our model, all aggregated observations are treated in the
same manner, irrespective of whether they were based on say 100 individual obser-
vations or just ten. The solution to this has already been presented in Chap. 3; the
multilevel approach to estimating higher level effects or residuals takes into account
whether the number of observations differs between higher level units. The estimated
values for units with few observations are shrunk towards the overall mean.

The second problem is particularly important when the individual variables
contain a subjective element. Examples are people’s responses to questions about
their neighbourhood (‘how safe is your neighbourhood?’) or the hospital in which
they were treated (‘were you treated with respect during your visit to this hospital?’).
The responses to such questions supposedly indicate a characteristic of the higher
level unit—the neighbourhood or the hospital—but part of the response is deter-
mined by individual differences in how people perceive their neighbourhood or
hospital. The response may also be determined in part by incidental circumstances,
such as what they read in the newspaper that morning. What we are really interested
in is the common component in all responses about the same unit, net of the
individual component. We can obtain this by partitioning the variance in individual
responses into that attributable to higher level units and that attributable to
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individuals. We do this using MLA as detailed in Chap. 6. Related to this is the
argument that using ecometrics the effect of same source bias is reduced (as noted by
de Jong et al. 2011). Same source bias originates from the fact that in survey research
often both the independent variables and the dependent variables are asked from the
same respondent in the same questionnaire.

A third problem is that the sample of individuals in higher level units may differ
between these units as a result of selective non-response. Selective non-response
might lead to there being more elderly respondents or more highly educated respon-
dents in some hospitals or neighbourhoods. If these characteristics are related to the
variables that we want to aggregate, simple aggregation would lead to the creation of
a biased contextual variable. This might be the case if elderly people have a higher
level of response in some neighbourhoods in a survey looking at neighbourhood
safety, since we know that elderly people perceive their neighbourhood as less safe
than younger people. Again the solution is to use MLA to control for the effects of
differential neighbourhood composition. The idea that the estimation of contextual
effects should take into account relevant compositional factors was discussed in
Chap. 7.

Finally, there is a specific problem when the responses at the individual level form
a scale where several questions or items together are supposed to measure a
characteristic of the higher level unit. For example, rather than simply asking people
who were treated in a hospital whether they were treated with respect, we could
design some questions that when combined measure the unobserved variable
‘respectful treatment’. We could construct the scale at the individual level in a
single-level model. However, if we did this we would lose information about the
fact that the items are not only nested within the individuals that complete the
questionnaire but also within the higher level units that we want to characterise.
The solution here is to analyse the data using a multiple response model with items at
the lowest level, nested within individuals and higher level units (latent variable
analysis). We have described such data structures in Chap. 4.

This means that we can use MLA to construct a contextual variable, because we
want to say something about higher level units, based on individual-level observa-
tions. We can use either a single variable (using a two-level model) or a number of
variables collected at the individual level (using a three-level model) and combine
these into a higher level variable. The first step is to construct a multilevel model
including the variable(s) that we want to use to describe our higher level units as
dependent variable(s). In the second step we then take the higher level residual (the
higher level effect) and use this as an independent variable in a subsequent multilevel
analysis, relating this to a dependent variable (such as self-rated health).

Single Variables

We can use MLA both when we want to construct a characteristic of a higher level
unit based on a single individual variable and when we wish to combine information
from several related individual variables. We begin by considering the single-
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variable case. From the problems that we discussed in the previous section, we can
see that it is possible to make another distinction. Some individual variables indicate
objective information, such as household income, whilst others indicate perceptions
or evaluations of characteristics of the higher level units, such as perceived safety or
the extent to which treatment was respectful.

When using objective information, such as household income per
neighbourhood, we may have access to population data from municipalities or
national statistical sources. However, this information is not always available,
especially not when we have good reasons to deviate from a standard administrative
definition of neighbourhoods (as discussed in Chap. 2). In such a case, we may have
to use sample data. As discussed above, the sample size might differ between
neighbourhoods, and we would have more confidence in an aggregated variable
which is based on more information than one based on fewer observations. The
estimated neighbourhood-level income from a multilevel analysis will be closer to
the overall mean when the sample size (and thus the number of observations) in that
neighbourhood is smaller.

When analysing individual perceptions or evaluations, multiple questions are
often used. However, for research into patient experiences with healthcare providers,
single questions are also often used. These could be used to compare healthcare
providers, or they could be used as independent variables at the provider level in the
analysis of an individual-level dependent variable. Research with the so-called
consumer quality index on GP care showed very strong clustering of the single
item from the questionnaire about privacy at the reception desk (‘Can people in the
waiting room hear what is being discussed at the reception desk?’; Meuwissen and
De Bakker 2008). They found the intra-class correlation to be 0.29; nearly a third of
the variation in responses was associated with the level of the GP practice. Although
there is still a lot of variation between the individual patients in how they answered
this question, the answers clearly say something about the contexts. The GP practice
residuals could subsequently be used in a separate analysis to predict individual
satisfaction with GP care.

Composite Variables: The Traditional Method

As we said, usually perceptions will be based on composite variables. We will
discuss both the ‘traditional approach’ and the ecometric approach. The example
we will use is based on data from a study on patient safety culture in hospital wards
(Smits 2009). Patient safety culture could be seen as an independent variable at the
level of the hospital ward to predict adverse events among patients. Patient safety
culture is measured by several items in a questionnaire for hospital personnel.

Other examples for comparable data structures and approaches in analysing data
could be a questionnaire about social capital for inhabitants of neighbourhoods
(Mohnen et al. 2011) or observations that are made concerning the disorderliness
of streets within neighbourhoods, including items such as people drinking outside,
graffiti and broken windows (Raudenbush and Sampson 1999).
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The items from the patient safety questionnaire that we will be using relate to
‘feedback and learning from error’. The items are:

– We are informed about errors that happen in this unit.
– We are given feedback about changes put into place based on event reports.
– In this unit, we discuss ways to prevent errors from happening again.
– Mistakes have led to positive changes here.
– After we make changes to improve patient safety, we evaluate their effectiveness.
– We are actively doing things to improve patient safety.

The traditional approach would be to perform a psychometric analysis and
combine the items into a scale, all within a single-level model. This would involve
undertaking an analysis of the characteristics of the items, their inter-correlations,
item total correlation and so on. We would calculate Cronbach’s alpha as a measure
of the reliability of the scale. Finally we would actually calculate the scale and
aggregate the individual scale values to ward level. This would be our independent
variable for subsequent multilevel analysis of individual-level outcomes such as the
occurrence of adverse events.

We will not go deeply into the psychometric properties of this scale (for more
details, see Smits et al. 2008). The scale average in an analysis of 583 employees in
four hospitals was 3.34; Cronbach’s alpha was 0.78; and the correlation of the scale
with a grading of patient safety from excellent to failing was 0.40.

After aggregating the individual scale values to the level of hospital wards, we
can rank the wards in terms of their patient safety culture. Some hospitals can be seen
to have a more favourable patient safety culture than others.

Composite Variables: A Simple Multilevel Model

In this section we will take the analysis one step further but do not stray too far from
the traditional approach: we will analyse the individual scale values in a multilevel
model. In the following section, we will introduce the ecometric approach in which
we treat the separate items that form the scale as the lowest level, with these
responses nested within the individual.

In our example, we are not interested in individual variation in perceived safety
culture, but only in the common variance at the ward (or hospital) level. When we
theorise about patient safety culture, our hypothesis about variation would be that if
something approximating patient safety culture exists, we should find significant
clustering at the level of hospitals or wards since this is almost certain to vary
between units. Culture as a concept implies a shared definition of the situation. And
if we want to characterise the wards or hospitals, then we need to remove the
individual variation.

In this example, the sample size varies between wards. The average sample was
22, but there was a minimum of only seven questionnaires and a maximum of 53. In
this case we estimate a three-level model with the data structure shown in Fig. 8.1.
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We use a three-level model because the hospital wards are themselves nested
within hospitals, and the hospital itself may affect the safety culture within its wards.
When analysing social capital in neighbourhoods, we could work with a two-level
model involving neighbourhoods at the highest level and scale values for a social
capital scale as the dependent variable at the level of the individual. The social
capital scale would have been constructed from individuals who answered questions
about their neighbourhood. In our example of patient safety culture, the minimum
number of observations on a ward is relatively small (only seven observations in one
ward). The question then is: how confident would we be about an estimate of the
population parameter ‘patient safety culture’ derived from the ward that had this
small sample size? How confident can we be of any difference from the population
mean given the small sample size? This is the rationale for using an estimator that
shrinks the estimate for this ward a bit closer to the overall mean.

The multilevel model we estimate is described in Eq. (8.1).

yijk ¼ β0 þ v0k þ u0jk þ e0ijk

v0k � N 0, σ2v0
� �

u0jk � N 0, σ2u0
� �

e0ijk � N 0, σ2e0
� �

ð8:1Þ

Here yijk is the response ‘feedback and learning from error’ for respondent (nurse
or doctor) i in ward j and hospital k, measured on a scale from 0 to 5 (the answers to
the six items forming the scale were given values 0 through 5, then added and
divided by the number of items). The random intercept model described partitions
the variance between the individual, ward and hospital levels. The resulting esti-
mates from this model are shown in Table 8.1.

The constant gives the scale average. In addition we have estimated three
variance components: at hospital, ward and individual level. It is important to note

Table 8.1 Estimates from a
multilevel analysis of the
individual scale values for the
scale ‘feedback and learning
from error’; empty model
(simple multilevel model)

Parameter Coefficient (SD)

Fixed part

Constant 3.372 (0.045)

Random part

Hospital-level variance 0.021 (0.013)

Ward-level variance 0.052 (0.012)

Individual-level variance 0.293 (0.010)

Hospitals (n=19)

Wards (n=87)

Individuals (n=1889)

Fig. 8.1 Data structure illustrating the example of a simple composite variable model
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that there is a significant variation at ward level, which is what we would expect
given that the item in question is measuring an aspect of patient safety culture.

An advantage of the multilevel analysis over and above the traditional approach
of simply aggregating the individual scale values is that we can adjust for compo-
sitional effects by including individual independent variables that may have an
impact on individual responses but not necessarily hospital culture. The adjusted
model is described in Eq. (8.2).

yijk ¼ β0 þ β1x1ijk þ β2x2ijk þ β3x3ijk þ v0k þ u0jk þ e0ijk

v0k � N 0, σ2v0
� �

u0jk � N 0, σ2u0
� �

e0ijk � N 0, σ2e0
� �

ð8:2Þ

In addition to the constant, this model includes three variables enabling adjust-
ment for the number of years an individual has worked in the ward, the number of
hours he or she work per week and whether the respondent is a physician or a nurse.
The estimates from this model are detailed in Table 8.2.

Although the adjusted model fits the data better than the empty model, in this
dataset the variance components of the adjusted model are nearly the same as for the
null model. This is of course not necessarily the case. Apparently employee charac-
teristics, in this case the composition of our samples according to length of employ-
ment on this ward, the number of hours they work and whether they are nurses do not
vary much enough between wards or hospitals to influence the results. In other
datasets, there might be bigger effects of composition; it is not possible to know
whether these will exist before undertaking the analysis.

As we have two higher levels, wards and hospitals, we can also calculate two
variance partition coefficients for each model (see Table 8.3).

Table 8.2 Estimates from a multilevel analysis of the individual scale values for the scale
‘feedback and learning from error’; empty model and adjusted model (simple multilevel model)

Parameter

Empty model Adjusted model

Coefficient (SD) Coefficient (SD)

Fixed part

Constant 3.372 (0.045) 3.373 (0.046)

Years in this ward 0.028 (0.010)

Hours per week �0.050 (0.025)

Nurse (reference: physician) 0.011 (0.004)

Random part

Hospital-level variance 0.021 (0.013) 0.023 (0.013)

Ward-level variance 0.052 (0.012) 0.051 (0.011)

Individual-level variance 0.293 (0.010) 0.290 (0.010)

�2�log likelihood 3080.7 3059.5
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Twenty per cent of the total variation in this scale is above the level of the
individual; this is a relatively strong clustering effect. The scale apparently measures
something at the level of the contexts, as should be the case given that we intended to
measure culture.

This all looks fine, but as we mentioned in the introduction to this chapter, there is
still a problem with this approach. The items are nested within individuals, wards
and hospitals. We should take ward-level correlations between items into account
and because we want the scale to say something about wards, we would also like to
know how reliable a measure it is of ‘feedback and learning from error’ at the ward
level. For this reason, in the next section we move beyond the traditional approach or
the simple multilevel model based on the individual scale values to a full ecometric
approach.

Ecometric Approach

In the ecometric approach, we will estimate a more complicated model: a multiple
response model with items at the lowest level, nested in individuals and higher level
units. The data structure then looks as in Fig. 8.2.

The term ‘ecometrics’ was coined by Raudenbush. He describes ecometrics as a
statistical method to evaluate the validity and reliability of imperfect measures of
contextual properties (Raudenbush 2003). The term is analogous to psychometrics,
the difference being that it does not aim to measure latent psychological character-
istics of individuals but latent characteristics of ecological units. The data used in
ecometrics are multiple observations on an ecological unit, made by trained
observers or individuals (e.g. respondents in a survey) who are able to give infor-
mation about characteristics of these units. As in psychometrics, the aim is to
combine these multiple observations into a single scale or latent variable and to
analyse the characteristics of the scale such as its reliability and validity. Mujahid
et al. (2007) have illustrated the ecometric approach by using survey data to
construct a number of scales that are relevant for health and health behaviour.

Hospitals (n=19)

Wards (n=87)

Individuals (n=1889)

Items (n=11334)

Fig. 8.2 Data structure
illustrating the example of
an ecometric model

Table 8.3 Variance partition coefficients at hospital and ward level (simple multilevel model)

Level Empty model Adjusted model

Hospital 0.058 0.063

Ward 0.142 0.140
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They include respondents’ perceptions of the walking environment, the availability
of healthy food and social cohesion. An example based on observers’ evaluations of
neighbourhood environment is given by Gauvin et al. (2005).

The basis of an ecometric analysis is a three-level model: the items or observa-
tions are the lowest level, nested within observers or individual respondents, and
these nested again in higher level units. (In our example, the higher level units of
interest are the hospital wards, but these are in turn nested within the hospitals to take
the particular data structure and the possibility that hospitals influence the culture on
wards into account.) The model is shown algebraically in Eq. (8.3).

yijkl ¼ β0 þ β2 x2ijkl � 1
6

� �
þ β3 x3ijkl � 1

6

� �
þ β4 x4ijkl � 1

6

� �
þ β5 x5ijkl � 1

6

� �

þβ6 x6ijkl � 1
6

� �
þf 0l þ v0kl þ u0jkl þ e1ijklx1ijkl þ e2ijklx2ijkl þ e3ijklx3ijkl

þe4ijklx4ijkl þ e5ijklx5ijkl þ e6ijklx6ijkl

f 0l � N 0, σ2f 0

� �

v0kl � N 0, σ2v0
� �

u0jkl � N 0, σ2u0
� �

emijkl � N 0, σ2em
� �

, m ¼ 1 . . . 6 ð8:3Þ

In this formulation, β0 is the scale average and β2� � �β6 are the deviance scores for
items 2–6, respectively. With six items, and therefore six responses per individual,
we include only five dummy variables x2ijkl. . .x6ijkl coded 1 if the response relates to
that item and 0 otherwise. We subtract the reciprocal of the number of items—in this
case 1

6—from each of the dummy variables to ensure that we obtain the deviance
scores. This amounts to scoring each variable equal to 5

6 if the response relates to that
item and � 1

6 otherwise, meaning that each of these variables has a mean of 0. By
doing so, the value obtained for β0 is comparable to the scale value of the original
single-level model (between 0 and 5). Otherwise the scale value would be the
average of the item that was left out. The response yijkl refers to item i for respondent
j in ward k and hospital l. There are variances associated with the hospital, ward and
individual levels, whilst each of the six items is assumed to be independently
normally distributed with its own variance σ2e1 . . . σ

2
e6.
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Application of the Ecometric Approach

Applying this model to our data gives the results presented in Table 8.4.
We can start by pointing out the differences between the simple multilevel model

shown in Table 8.1 and the model shown in Table 8.4. Apart from the constant,
which is the scale average, we now have fixed effects for the different items. We did
not have that for the simple model because the scale was first constructed at the
individual level, and the scale value for each individual was taken as the dependent
variable. There is also a difference in the random part. In addition to the individual-,
ward- and hospital-level variances, we now also estimate a variance for each item.

When it comes to interpreting the model shown in Table 8.4, we first note that the
average scale value obtained is almost identical whether we use the ecometric or the
simple approach. This is because we use the item weights for the fixed effects as
explained above. This is only necessary when we want an easily interpretable and
comparable scale average.

The other fixed effects give the weights of the scale items. The average score of
item 2, for example, is 3.375 + (0.394�5/6) ¼ 3.703. The fixed effects indicate how
frequently individuals tend to agree with a statement, something called item diffi-
culty in psychometric analysis. Item 3 was the item for which agreement was most
common: ‘In this unit, we discuss ways to prevent errors from happening again’.
Agreement was least common for item 6: ‘We are actively doing things to improve
patient safety’. It appears to be easier to agree with item 3 than with item 6.

Then we move on to the variance components or the random part of the model.
Each item has its own variance, indicating the measurement error. Item 1 has the
biggest variance: ‘We are informed about errors that happen in this unit’. The
ecometric analysis has separated the individual variance in the traditional approach

Table 8.4 Estimates from a
multilevel analysis of the scale
‘feedback and learning from
error’; empty model
(ecometric approach)

Parameter Coefficient (SD)

Fixed part

Constant 3.375 (0.044)

Item 1 (reference)

Item 2 0.394 (0.026)

Item 3 0.643 (0.024)

Item 4 0.328 (0.025)

Item 5 0.265 (0.024)

Item 6 �0.020 (0.026)

Random part

Hospital-level variance 0.019 (0.012)

Ward-level variance 0.049 (0.011)

Individual-level variance 0.201 (0.009)

Item 1 variance 0.716 (0.026)

Item 2 variance 0.536 (0.020)

Item 3 variance 0.354 (0.014)

Item 4 variance 0.450 (0.017)

Item 5 variance 0.354 (0.014)

Item 6 variance 0.516 (0.019)
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into item-specific measurement error and variance associated with the individual.
The item variance is used to calculate the reliability of the scale (see next section).
The other variances can be used to calculate variance partition coefficients.

As with the simple model, we can estimate an ecometric model (Fig. 8.2) in which
we adjust for individual characteristics. However, once again the empty and adjusted
models do not differ much and so we have not shown these results.

Table 8.5 shows the variance components for the model presented in Table 8.4
and for a model adjusted by the number of years spent working on that ward, the
number of hours worked per week and the type of employee (nurse or physician). As
a consequence of removing the measurement error (item variance) from the individ-
ual variance, the intra-class correlations are higher compared to those obtained under
the simple approach and shown in Table 8.3. The percentage of the variance at ward
and hospital levels combined has increased from 20 to 25%.

So far we have analysed the scale ‘feedback and learning from error’, and we
have estimated the variances at the ward and hospital levels. The final step is to
calculate and save the ward residuals or effects. Whilst the hospital level is still in the
analysis, the ward residuals show the departure from the hospital mean. The ward
residuals can be used as an independent variable at ward level in a new analysis.
Figure 8.3 shows the ranking of the hospital wards according to how they score on
the scale ‘feedback and learning from error’.

Table 8.5 Variance partition coefficients at hospital and ward level (ecometric approach)

Level Empty model Adjusted model

Hospital 0.072 0.078

Ward 0.183 0.180

Fig. 8.3 Ranking of hospital wards on the scale ‘feedback and learning from error’. Ward residuals
from the empty model (including the hospital level + mean scale value)
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The point estimates of the ward residuals can be used as an independent variable
in a new analysis. We then have the ward effect, net of the individual variation in the
perceptions of employees about patient safety culture. Some wards score signifi-
cantly lower on patient safety culture, and some score significantly higher within
their hospital. If we want an overall ward effect, we can omit the hospital level from
the analysis meaning that the hospital-level variance would all go to the ward level
(as described in Chap. 6: Apportioning variation in multilevel models).

Comparison of the Traditional and Ecometric Approach

In an analysis of neighbourhood disorder, Steenbeek (2011) compared simple
aggregation of the individual-level scale values and ecometric analysis. In his
analysis of 71 Dutch neighbourhoods, only 6% had exactly the same rank. Nearly
30% of neighbourhoods moved ranks between the two analyses by more than five
positions. With some exceptions, agreement between the two methods was greatest
at the extremes, and there were notable differences in ‘average’ neighbourhoods. In a
similar manner, we can compare two sets of rankings of the wards in our example,
one based on the simple aggregation of scale values and the other based on the
ecometric analysis. Figure 8.4 compares the ranks obtained under the two methods.
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Fig. 8.4 Comparison of ranking of hospital wards based on ecometric analysis and the traditional
method (aggregated scale values)
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The top panel of Fig. 8.4 shows on the horizontal axis the ranking of the wards
based on the aggregated scale values, or the ‘traditional method’, and on the vertical
axis the ranking based on the ecometric analysis. We note from the top panel that in
this particular example the two rankings are fairly consistent. Most of the hospital
wards are very close to the diagonal, and this is true at the extremes more than in the
middle. Secondly, the lower panel shows the distribution of the differences of the
rankings, with the number of wards on the vertical axis and the difference between
the ecometric and the traditional ranking on the horizontal axis. In approximately a
quarter of the wards, the ranking is the same. In 40% of the wards the difference is
two or more ranks out of the 87 wards. The correlation between the scores produced
by the traditional method and the ecometric approach is consequently very high. As
yet little has been published that cites the correlation between the two approaches.
Steenbeek et al. (2012) also found high correlations between the two methods (over
0.90), and Mohnen et al. (2011), in an analysis of neighbourhood social capital,
found a correlation of r ¼ 0.80. These differences are not very big, but if these were
to be used for information relating to public performance, especially when the results
are presented by grouping constituents into three or five categories, then even a
difference of one or two ranks could move a unit from an ‘average’ category to one
described as performing ‘below average’.

Further Ecometric Properties of the Scale

In psychometric analysis, reliability is usually expressed by means of Cronbach’s
alpha. There is an equivalent to Cronbach’s alpha in ecometric analysis which takes
into account how much agreement there is between observers or respondents
evaluating the same ecological unit (the extent of inter-subject agreement), the
number of informants or respondents sampled, and the number of items. This is
shown in Eq. (8.4).

Reliability ¼ σ2v0
σ2v0 þ σ2u0=nJ þ

PnI
m¼1σ

2
em=nInJ

ð8:4Þ

In our example σ2v0 is the ward-level variance, σ
2
u0 the individual-level variance,PnI

m¼1σ
2
em is the item consistency (the sum of the error variances at item level, also

known as the measurement error), nJ is the average number of individual respon-
dents in a ward, and nI is the number of items. As the model still includes the hospital
level, the ward-level variance relates to the departure from the hospital means.

Using Eq. (8.4), the reliability of the scale ‘feedback and learning from error’ at
the ward level can be calculated as follows.
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Reliability ¼ 0:049
0:049þ 0:201=22þ 2:926= 6� 22ð Þ ¼ 0:61

This reliability is adequate but not very high. It is a lower reliability than
Cronbach’s alpha at the level of the employees which would be calculated using a
traditional approach (which was 0.78). It is also much lower than the ward-level
reliability, which we would calculate by first aggregating the individual items to
ward level and then performing a reliability analysis, giving a value of Cronbach’s
alpha of 0.90. This means that a failure to take into account the structure of the data
would result in an overestimation of reliability at the ward level.

From Eq. (8.4) it is clear that the average number of observers or respondents per
higher level unit is an important determinant. We can see this relationship in Fig. 8.5;
reliability increases sharply with the number of observers or respondents per eco-
logical unit. Raudenbush and Sampson (1999), Steenbeek (2011) and, in the field of
public health research, Corsi et al. (2012) give graphs like this based on their own
data. The form of the relationship is the same. Such graphs can inform us as to the
appropriate number of observers or respondents per ecological unit when we want to
apply an ecometric analysis. At about 30–40 respondents per ecological unit, the
reliability is usually above 0.70. An important cause of low reliability is a small
sample size; see, for example, Riva et al. (2011).

The item inter-correlations inform us about whether some of the items might be
redundant; very high item inter-correlations suggest that we could have done with
fewer items since they appear to measure the same thing. If the item inter-correlations
are very low, then the items do not appear to relate to the same latent variable meaning
that we could increase reliability by omitting uncorrelated items when constructing
the scale. In an ecometric analysis, we can compare the item inter-correlations at the
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individual level and at the ward level. In our example, these range between 0.61 and
0.94 at ward level and between 0.26 and 0.49 at the level of the individual employees
within the wards. Judging from the ward-level item inter-correlations, we could
probably have used fewer items. However, we could not have known this in advance.
If we were to develop a measurement instrument for use at an ecological level, the
development of this instrument would include an analysis of the item inter-
correlations. Based on the results of this analysis, we would be in a position to
reconsider the items measured.

We can assess the construct validity of the scale at ward level by examining
associations with other contextual measures. As an example, we calculated the
correlation of the scale with self-reported frequency of event reporting at ward
level. This correlation is 0.63, a moderately high correlation. In wards that have
higher scores on the scale ‘feedback and learning from error’, more people tend to
say that they frequently report events. However, these are not necessarily the same
people who (at individual level) say that they receive feedback about errors. The
correlation at the individual level between the scores on the scale ‘feedback and
learning from error’ and the self-reported frequency of event reporting is only 0.36.

Conclusions

Ecometrics is a statistical method used to combine multiple data items collected from
individuals, be these respondents in a survey or trained observers, about higher level
units. This combination of individual responses is used to ascertain properties of the
higher level units. We can take into account varying sample sizes associated with the
higher level units and consequent reliability, shrinking the estimates for units with
few observations towards the overall mean. We can also take into account the
composition of the sample and adjust for compositional differences. Ecometrics
also allows us to analyse interesting properties of the data, such as the extent of
clustering at different levels, and the reliability and difficulty of items.
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Chapter 9
Modelling Strategies

Abstract When devising a modelling strategy, researchers determine the steps they
will take to answer their research question or test their hypothesis. Two general
principles are important. Firstly, most of the steps that you would take in a single-
level regression analysis are also relevant for MLA. Secondly, start with simpler
models, for example in terms of the number of levels, and add further complexity as
required. The statistical model used depends on the measurement level of the
dependent variable. In a baseline model, the variances are estimated at each level.
After that we can start to analyse the fixed effects in a more exploratory manner or a
specific hypothesis can be tested. Disentangling context and composition and pro-
viding an indication of their relative importance are often the aims of the modelling
strategy. As the number of higher level units is often small, it may not be possible
simultaneously to analyse several contextual variables. We end this chapter by
discussing the interpretation of results in the light of a number of common
assumptions.

Keywords Multilevel analysis · Modelling strategy · Measurement level ·
Exploratory research · Hypothesis testing · Sample size · Assumptions

Before you actually start analysing your data, it is important to define a strategy for
your analysis or modelling strategy. The modelling strategy describes what you
intend to do when analysing the data and takes the form of a sequence of steps that
lead to an answer to your research question. The modelling strategy naturally comes
somewhere in the middle of the research cycle (Fig. 9.1). It is determined by the
research questions of your study, the hypotheses (where these exist) and the nature of
the data; as such, it reflects the logic of your research. After you have determined
your modelling strategy, you will undertake the analysis and write up the results in
tables and figures as necessary and in the main body of your report. The way that you
write up your research should follow the steps of your modelling strategy (see also
Chap. 10).

Many of the decisions you make when defining your modelling strategy are not
specific to multilevel analysis but are appropriate for data analysis in general.
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Everything that you have learned about single-level regression analysis is likely to
be important when you undertake a multilevel regression analysis.

Some important general advices are to start simple and only make your analysis
more complicated when you are happy that you have a clear understanding of the
results of your simpler analysis. This is not to say that we would argue in favour of
using inadequate statistical models purely on the grounds of simplicity. But, as an
approach to improve your understanding of the data and the research problem, it is a
useful step. How can you expect to understand and explain a complex model if you
do not have an understanding of a simpler underlying model?

Define the Data Structure

We discussed multilevel data structures in Chap. 4. The simplest multilevel data
structures are strict hierarchies with only two levels. Often our data structures in the
real world are more complicated, but again it is useful to start simple.

Simplification could be based on the frequencies of the occurrence of certain
combinations in the data. For example, although in reality your data might contain a
level below individual patients, such as that of the separate contacts patients make
with the health service, it may be that in your data 99% of patients only had one
contact. Or, if we were analysing pregnancy outcomes in different hospitals, we
would want to take into account that pregnancies are nested in women, with one
woman possibly having more than one pregnancy. However, if we have hospital data
from only 2 years, it could be that there is a very small number of women with more
than one pregnancy in the data set. A way of keeping things simple would be to
select initially only the first pregnancy that occurred of any women with two
pregnancies in the data set or to select one at random. That would result in a
two-level analysis instead of a three-level analysis with limited power to differentiate
between the levels of women and pregnancies. After conducting the analysis for a
two-level model, and once you are satisfied that the conclusions for this model are
clear, you can run a three-level model to check whether that alters the results. Given

-    research question

-    hypotheses

-    description of research design

-    available data

-    modelling strategy

-    selection of models to be reported

-    tables and interpretation

-    conclusions 

Fig. 9.1 The place of the
modelling strategy in the
research cycle
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that there would be little additional data—just the additional pregnancies of the few
women who had more than one pregnancy during the 2-year study period—we
would not expect substantial differences between the models. The most important
additional information is likely to be the ability to partition the variation between that
attributable to unexplained differences between women and that due to differences
between pregnancies within women. This means that it would probably make more
sense to report the results of the three-level analysis rather than the two-level
analysis. However, the sparsity of the data structure (the vast majority of women
only having one pregnancy during the study period and virtually no women with
more than two) may cause computational problems and a need to resort to reporting
the results from a two-level model.

The decision to simplify might also be based on a preliminary analysis of
variation, if this were to show that the variation at one of the levels in your dataset
was trivial. With simple hierarchical data, the inclusion of additional levels is not a
big problem, but with the more complicated data structures (such as cross-classified
and multiple membership models), it might be a wise first step at least to consider
leaving out levels that do not really contribute to the variation in the outcomes.

Often there are also deviations from strict hierarchies. A multiple membership
model could be simplified if only a few cases belong to more than one higher level
unit. If most patients usually see their own GP and only occasionally another GP,
you could assign them to their usual GP. (If there is a list system, then this would be
the GP to whose list that patient belongs.) Doing this simplifies the data structure to a
strict hierarchy and keeps the analysis simple.

The first steps in the analysis of a cross classified data structure could be to
analyse the two hierarchies separately first, as was done for example by Chum and
O’Campo (2013). They studied the determinants of cardiovascular disease in resi-
dential neighbourhoods and the neighbourhoods where people worked. This gave a
first impression of the variation at different levels. The prevalence of CVD clustered
more strongly in residential than in work neighbourhoods. Their strategy was to
estimate the variance attributable to each level in three models (individuals nested in
residential neighbourhoods, work neighbourhoods and the cross classification of the
two). Their next step was then to analyse the fixed effects associated with the
characteristics of the two contexts in this cross-classified structure.

The information that can be gained through the use of a cross-classified data
structure depends to some extent on the degree of overlap between the two hierar-
chies. If there is considerable overlap, then the results from the two-level models are
unlikely to differ since there would be little difference between the hierarchical data
structures used in each. However, when there is less overlap, the results may differ if
one context is more important than the other. In either case, using a cross-classified
model will help to gain an understanding of the relative importance of the contexts,
which may in itself relate to one of your research questions.
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Measurement Level and Distribution of the Dependent
Variable

The measurement level and the distribution define the statistical model that should
be used. If the dependent variable is continuous and approximately normally dis-
tributed, then linear regression is appropriate. It may be that a transformation is
necessary to make the outcome follow an approximate normal distribution; you
should remember that such transformations make your job of explaining the model
and the parameter estimates more difficult. With a dichotomous variable, you will
normally choose logistic regression. Often an ordinal dependent variable, such as
self-rated health, can be dichotomised to make the analysis simpler. It should be
noted, however, that this results in a loss of information. It is up to you as the
researcher to decide whether this loss of information is acceptable; this will in part
depend on the field of research and what is currently seen as ‘good practice’. Often
we only find out whether this loss of information is important after comparing the
analysis of a dichotomised dependent variable with, for example, an ordered logit
analysis. Such analyses are often best undertaken as a form of sensitivity analysis
(in this case it is the sensitivity to the choice of analytical model that you are testing).
When the results of two competing analyses are not materially different, it can be
enough to say so in a sentence or two. The choice of which set of results to present as
your main results then amounts to a trade-off between the need to explain a more
complex model and the added information that such a model may bring.

The results of a linear regression model are often not seriously affected by
violations of the distributional assumptions. As a consequence, a first step in your
analysis could again be to use a simpler model, such as linear regression, and only
when you have a fuller understanding of your data and the relationships between
variables progress to more complicated models, such as ordered logits in the case of
ordinal variables or Poisson models in the case of count variables.

The Baseline Model

Defining the baseline model comes early in your modelling strategy. It is often called
the null model or empty model. This suggests that the baseline, against which we
will evaluate further models, is always a model that contains no individual variables.
This is, however, not necessarily the case. For example, if the main focus of your
analysis is the relationship between income and access to specialised care, and if you
know that access to specialised care is also dependent on age, you might decide to
use a model including only age as the baseline.

In a study of body mass index (BMI) among women in nearly 33,000 commu-
nities in 57 countries, Corsi et al. (2012) adjusted their baseline model for the age of
the women. Given that BMI is known to be related to age, and the countries studied
have a range of rather different demographic profiles (and there are probably even
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greater differences between the communities within those countries), it is only
possible to interpret the variation in BMI at the levels of communities and countries
after accounting for differences in the age structure.

It often makes sense to adjust the baseline model for age and sex when studying
health outcomes. For example, Voigtländer et al. (2010) made such an adjustment to
their baseline model when analysing the influence of regional and neighbourhood
deprivation on self-rated health. Another example is provided by Deraas et al. (2014)
who fitted a baseline model including age and sex in their study of the influence of
primary care on unplanned hospital admissions.

Cole et al. (2009) studied mental health outcomes and musculoskeletal disorders
in a cohort of healthcare workers. They had five measurements per worker. They
adjusted their baseline model for year of observation to take changes in the preva-
lence of health problems over time into account when estimating the variance at
hospital and regional level.

The baseline model consists of limited information such as the overall average of
the dependent variable (and relationships with key variables of interest such as age
and sex) and the variances at the different levels. In previous chapters, we have
discussed how to interpret the variation at the different levels in the study (see
Chap. 6: Apportioning variation in multilevel models).

Exploratory Research and Hypothesis Testing

The modelling strategy differs according to the aims of the research and the research
questions. We distinguish here between exploratory research and hypothesis testing
research.

In exploratory research, the research question is only partly specified. The
dependent or outcome variable is specified, but the independent variables are not.
An example of an exploratory research question would be: does hospital length of
stay vary between hospitals and which characteristics of hospitals explain this
variation? The dependent variable is length of stay and the independent variables
are not specified. A useful modelling strategy in a case like this would be as follows:

1. Estimate a random intercept model to verify if there is indeed variation between
hospitals in length of stay of the patients. This null or baseline model might
already include some basic patient characteristics that are known to be related to
length of stay and without which any analysis would be deemed to be incomplete:
perhaps the patient’s age and sex. In an exploratory analysis, it may be more
appropriate not to include any covariates in the null model.

2. Then add the individual-level variables, such as diagnosis, comorbidities or
treatment. Adding the individual-level variables might reduce the variation
between hospitals because of differences in case-mix (differences in the compo-
sition of the patient population) between hospitals.
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3. The next step is to add hospital characteristics to see which variables at this level
relate to length of stay. These could include the size of the hospital or the degree
of specialisation.

4. At this stage, it might be interesting to explore random slopes for some of the
individual-level variables. For example, the relationship between the age of the
patients and length of stay might vary between hospitals. In an exploratory
analysis, the slope variation can be a source of new hypotheses about how
hospitals influence length of stay.

5. Finally, you could consider introducing selected cross-level interactions. Your
choice of the interactions to include might be informed by your findings regarding
the random slopes. If, for example, you have seen that the effect of age on length
of stay varies between contexts, then you could explore whether this was due to
an interaction between the patient’s age and a hospital characteristic such as the
size of the hospital. Alternatively you may have a particular interest in examining
cross-level interactions involving pre-specified individual or contextual variables.
If this were the case, then these key variables would usually be mentioned in your
research question, and it might be more appropriate to undertake this analysis
before looking for random slopes in step 4.

Changes in the amount of variation at the different levels should be evaluated at
each step. In an exploratory analysis, you might want to use a stepwise procedure,
selecting those variables that matter for the outcome of your study, such as forward
or backward selection of significant variables. As with any exploratory analysis, you
should be aware that performing multiple tests at a given level of significance means
that you are likely to encounter statistically ‘significant’ results by chance.

In hypothesis testing research, we specify not only the dependent variable but
also one or more independent variables. An example of a research question related to
a hypothesis could be: is more social capital in neighbourhoods related to better self-
rated health among the people who live there? The first step is the same as in
exploratory research: estimate an appropriate baseline model to see how the variation
in self-rated health is apportioned between individuals and neighbourhoods. Again,
this baseline model might include some variables that are known to be correlated
with self-rated health. At this point you can either introduce the contextual variable
of interest (social capital in this example) or the individual variables. In the following
sequence, we start with the contextual variable(s) of interest.

1. Add the contextual variable to the baseline model and see if there is a significant
relationship with the outcome variable. If not the hypothesis is refuted. However,
its effect could be masked by differences in the composition of the population of
neighbourhoods. Hence, it might be worthwhile checking what happens to the
effect if individual-level variables are added.

2. Add the relevant individual-level variables to the previous model and see whether
the effect of the contextual variable stays the same or disappears. If there was an
effect of the contextual variable and that disappears when individual variables are
taken into account, then the apparent contextual effect was the result of differ-
ences in the composition of the neighbourhood populations.
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3. In hypotheses testing research, you might also have specific ideas about cross-
level interactions. Your hypothesis might be that the effect of social capital is
stronger for people who have lived in their neighbourhood for a longer time. We
would assume that the length of residence (an individual level variable) would
already have been included in the model in step 2, in which case the next step
would be to include the cross-level interaction between neighbourhood social
capital (the contextual variable) and length of residence. It is not necessary first to
fit a random slope model to test whether the effect of length of residence varies
randomly between contexts.

Context and Composition

In Chap. 7 we discussed a very common modelling strategy, aimed at disentangling
contextual effects and compositional effects. As is clear from the previous section,
an attempt to make a distinction between contextual and compositional influences is
a goal common to many modelling strategies in multilevel research.

Modelling the Effects of Higher Level Characteristics

In Chap. 3 we defined higher level units as units that can be sampled. Sample size is
thus an issue not only at the lowest level but also at the higher levels. We have many
lower level units nested within fewer higher level units. The number of higher level
units is often restricted by the fact that in reality they form an entire population.
Think of neighbourhoods within a city; the number of neighbourhoods is restricted
by the size of the city and perhaps the administrative definitions with which we are
working. The number of EU member states is equally restricted at any one time to
the number of countries that are in the EU. Another restriction is more pragmatic;
when the higher level units are organisations, such as schools, and you want to study
students nested in schools, the effort needed to include more schools in a study is
often considerable.

The number of higher level units has consequences if the focus of the research is
on the effect of higher level characteristics. This number should then be sufficient to
estimate a mean, a variance and the effect of the relevant variables of interest at that
level. As a rule of thumb, the number of units that you need is approximately ten
times the number of variables you want to include in the analysis. This means that if
you want to include ten variables to test your hypothesis about the characteristics of
hospitals and how they influence an outcome at patient level, you would need at least
a hundred hospitals. Alternatively, if you want to analyse the effect of characteristics
of the healthcare systems of EUmember states on access to healthcare, the maximum
number of higher level units (at the time of writing) is 28. As such, the number of
country-level variables that could be included in an analysis is only two or three.
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This limitation on the number of contextual variables that can be included in an
analysis has consequences for the design of studies and for the modelling strategy.
For the design of a study where the effects of higher level characteristics are
important, it is more important to increase the number of higher level units (if this
is possible) than the number of lower level units (Snijders and Bosker 2012). In
terms of a modelling strategy, this means that we have to be careful not to include too
many independent higher level characteristics at the same time. In the example of the
analysis of 28 EU member states in which we wish to study the effect of healthcare
systems on access to healthcare, we would probably want to include one confounder,
such as the wealth of a country, along with one characteristic of the healthcare
system at a time. We could repeat the analysis several times using each relevant
healthcare system characteristic individually and compare the results. We would not
be able to analyse the effects of several characteristics at the same time. This also
excludes the possibility of adding a contextual variable with several categories since
this would be operationalised by introducing a series of dummy variables. We would
consequently have to be more careful in formulating our conclusions which would
be based more on weighting the results against our hypotheses and background
knowledge than on strict statistical criteria.

In Chap. 10 we will give some examples of studies where the authors were not
sufficiently aware of this problem and, as a consequence, introduced more contextual
variables than the available number of higher level units could support.

Random Effects at Higher Levels

In all of the models considered in this book, we have assumed that the higher level
effects are all normally distributed. (This may be after an appropriate transformation;
for example, in a multilevel logistic regression, we assume that the log odds ratios
associated with membership of the higher level units are normally distributed.) This
assumption is convenient but not always appropriate. Austin (2005, 2009) has
considered the impact of this assumption and found that an inappropriate assumption
of normality at the higher level does not appear to have implications for the
estimation of fixed effects, but it may lead to biased or incorrect estimates of the
variances. This then has consequences for assessment of the importance of different
levels in a model or for studies in which the residuals themselves are of some
importance (such as studies of institutional performance).

One way in which the distribution of higher level residuals may appear
non-normal is due to the presence of outliers. Multilevel data may contain outliers
in the same way that the data for traditional regression models may be outlying; the
difference is that in a multilevel model, the outliers may be at any level in the model.
Methods have been developed for the detection and treatment of outliers at higher
levels (Langford and Lewis 1998; Lewis and Langford 2001). These essentially rely
on including a fixed effect for a context regarded as outlying; this removes the
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impact of this unit on the estimation of the higher level variance whilst including the
lower level units (such as individuals) in the analysis.

Interpreting the Results in the Light of Common
Assumptions

As we said at the beginning of this chapter, a number of assumptions are the same as
in single-level regression analysis. We will briefly illustrate this with an example of a
hypothetical intervention study. We have chosen the example of an intervention
study to be able to address some assumptions that are typically made in such studies.
The example is the evaluation of an intervention to reduce BMI. Individuals have
been randomised to the intervention and control groups, and we have pre- and post-
intervention measures for everyone in the study. Individuals are nested within
communities (e.g. neighbourhoods or schools). A slightly different study design of
a community intervention would be possible, in which it would be the communities
(and all individuals within them) rather than the individuals that would be
randomised to the intervention and control groups. The structure of the data is that
of a three-level model with measurement occasions nested in individuals, clustered
within areas (a repeated measures design). To make the intervention and control
groups comparable, we adjust for age, sex and educational status (basic/higher).
Algebraically the model can be written as shown in Eq. (9.1).

yijk ¼ β0þβ1x1jkþβ2x2jkþβ3x3jkþβ4x4jkþβ5x5ijkþβ6x4kx5ijkþ v0kþu0jkþ e0ijk

v0k �N 0,σ2v0
� �

u0jk �N 0,σ2u0
� �

e0ijk �N 0,σ2e0
� �

ð9:1Þ

Here yijk is the primary outcome, BMI, at measurement occasion (pre- or post-
intervention) i for individual j in community k. x1jk, x2jk and x3jk are individual-level
covariates relating to the person’s baseline age, sex and educational status; these do
not change between measurement occasions. x4jk denotes whether the individual is in
the intervention (coded 1) or control (coded 0) groups, and x5ijk indicates whether the
measurement occasion was pre- (coded 0) or post- (coded 1) intervention. The term
x4jkx5ijk is then the cross-level interaction picking out the post-intervention measure-
ment occasion in the intervention group. The coefficient associated with this term,
β6, is the parameter of interest, indicating the success or otherwise of the interven-
tion. In addition to the individual characteristics, the model takes into account that
there may have been a baseline difference in BMI between the intervention and
control groups and that there may be a population change in BMI between the two
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measurement occasions; neither of these events should mistakenly be ascribed to an
intervention effect. We also model the variances at the three levels.

First of all we will consider some assumptions underlying the fixed part of the
model that was used to make the groups comparable. For these assumptions, it is
irrelevant whether we are discussing an intervention study or an observational study.
The parameter estimates are given in Table 9.1.

One assumption made in the model described in Eq. (9.1) is that the effect of age
on BMI is linear for all ages. This is an assumption that can be tested easily by
comparing this model with one where we also add age squared or a model where we
recode age into a number of categories. Another assumption is that the effect of age
on BMI is the same regardless of sex or education level and that the effect of
education is the same for men and women. These assumptions can be tested by
using interaction terms between these variables. Alternatively, if the study is
powered for this, we could consider stratified analyses by key variables such as
gender. Often a stratified analysis will give you a better impression of the size and
direction of the interaction effect and whether this differs between groups. (This is at
the cost of power; there will obviously be fewer observations in each of the strata
than in the overall analysis.) However, as the stratified analysis takes more space in
the tables, you may decide to report the version with the interaction effect and use the
stratified analysis as a valuable step in your own interpretation of the interaction.

Next consider the impact of the intervention itself. An assumption here is that the
intervention is equally effective regardless of age, sex or education level. It is
conceivable that, and may be worth testing whether, the intervention is differentially
effective for older and younger people, men and women or more and less educated
people. Knowing not just whether an intervention has worked but for which groups it
appears to be more or less successful is important if we subsequently want to
improve or tailor the intervention and if we are interested in the impact of the
intervention on inequalities. We can examine differential impacts on subgroups by
introducing the appropriate interaction terms (between the intervention and the
subgroup of interest) into the model.

Table 9.1 Parameter
estimates for the evaluation of
a hypothetical intervention
on BMI

Parameter Coefficient (SD)

Fixed part

Constant 25.155 (0.052)

Age �0.510 (0.015)

Male 0.315 (0.042)

Higher education �1.015 (0.042)

Intervention �0.048 (0.044)

Time ¼ post 0.018 (0.018)

Intervention � (time ¼ post) �0.195 (0.025)

Random part

Community-level variance 0.090 (0.019)

Individual-level variance 1.961 (0.044)

Measurement occasion variance 0.396 (0.008)
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There are also some assumptions implicit in the way the random part of the model
has been formulated. In this model we have assumed that the variance in BMI is the
same regardless of age, sex and educational level. This can be tested by estimating
the variances separately for age groups, men and women and educational categories.
Another assumption is that the variance is unchanged by the intervention. The model
that was estimated, shows a decrease in mean BMI in the intervention group, but it is
possible that the intervention has changed the variance. An example would be if the
intervention had a greater impact on those with higher BMI; this would result not just
in the decrease in BMI seen in the intervention group following the intervention but
also a reduction in variance in the same group.

All of the above assumptions may be reasonable and may be supported by the
data. But if the data does not support these assumptions, then fitting the alternative
models may impact on estimates in unpredictable ways. In an example such as this,
we have an extremely important single parameter—the intervention effect—and
cannot say with certainty that changes to the model would not alter the magnitude
or statistical significance of this estimate. In short, it is unlikely that your modelling
strategy will test every aspect of your model, but it is important that you are aware of
your underlying assumptions.

Conclusions

The modelling strategy for a multilevel analysis begins with the research question
and hypothesis that the study is addressing. Simplifications to the model that you are
fitting will help you to gain a better understanding of the data and an idea of your
answer, with further detail being provided by the complexity that you subsequently
add. There will inevitably be assumptions underlying any choices that we make
during the construction of a modelling strategy, including which models we consider
and which we do not. Whilst it may not be necessary formally to test every
assumption, it is important that we are aware of the assumptions that we have
made and what their consequences might be—even if the answer is that their
consequences may be unpredictable.
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Chapter 10
Reading and Writing

Abstract This chapter focuses on two issues. Firstly, we consider the critical
reading of research articles that use MLA, and secondly we explore the standards
for writing up research that has used MLA. Critical reading is important both for
people who do not regularly use MLA themselves and for those who are regular
users. The irregular users need to be able to assess the methodology of studies using
MLA, whilst regular users may find inspiration for new ways and strategies of data
analysis and for ways to write up and present their own research, particularly the
methods and results sections. So the reading and writing parts of this chapter are
related. When a method of analysis is used that is relatively new to its field, there are
no clear standards as to what should be included in the methods section or how the
tables might be laid out.

Keywords Multilevel analysis · Critical reading · Reporting

Communication is an important part of the research process. Research results are
important in themselves, but will only be used if they are communicated to the
relevant audiences. In public health and health services research, we usually have
two types of audiences: the research community and the users of research in policy
and practice (Bensing et al. 2003).

The ‘end users’ of research probably will not read the research papers themselves,
but intermediaries certainly will. Such intermediaries might be health scientists and
epidemiologists who work in policy development positions within (public) health
authorities. It is crucial that we as researchers should write up our research in a way
that makes our methodological and statistical approach as clear as possible.

The research community enters the process when we submit a paper for publica-
tion. Some reviewers will be selected for their specialised statistical knowledge,
whilst others will be selected for their substantive knowledge about the subject of the
research. We cannot guarantee that the latter will be completely up-to-date with
MLA. We therefore need to write about our approach and to present our results in a
way that is understandable to many audiences.
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Critical Reading

An increasing number of research articles in the area of public health and health
services research are being published that use multilevel analysis. We have simply
counted the number of articles that used the term ‘multilevel’ in a Pubmed search of
the journals Social Science and Medicine, Journal Epidemiology and Community
Health and European Journal of Public Health (see Fig. 10.1). This simple search
may have missed some articles that used slightly different terminology such as
‘hierarchical’ instead of ‘multilevel’. However, the picture is clear and that is one
of a huge increase in the use of multilevel analysis in our area of research: from
5 articles in 1998 to 65 articles in 2015 in just these three journals.

In the past the alternatives to multilevel analysis that we described in Chap. 3
were often used. However, it is now rare to see a published paper that analyses
clustered data and does not use multilevel analysis. In fact, as early as 1998 we came
across an article the authors of which—in a foot note—said that they initially
submitted a ‘naïve’ (as they called it themselves) single-level analysis, but were
asked by the reviewers to repeat the analysis using MLA (Matteson et al. 1998).

Given that currently so many research articles use MLA, it is important that
researchers, even if they do not apply MLA themselves, are able to understand and
critically appraise the work of others. When reading an article, we are inclined to
focus more on the substantive results and less on the methodology, to the extent that
we sometimes take the methodology for granted and skip the methods section. When
relatively new and complicated methods are used, and we can still count MLA as
such, the tendency to skip the methods section might be even stronger. However, it is
also more dangerous to do so when the methods are new (Bingenheimer 2005). With
new methods there will be no clear standards for reporting research results (see later
in this chapter), researchers may make mistakes or debatable choices in their
methodology, and reviewers are not always able to judge exactly what was done.
It is therefore important for researchers and for users of research results to develop a
way to read critically research articles that use MLA.

To help new users to read research articles critically and to understand the
multilevel design employed, we have formulated a number of questions. You can

Fig. 10.1 Number of
articles containing the term
‘multilevel’ in a Pubmed
search of the journals Social
Science and Medicine,
Journal Epidemiology and
Community Health and
European Journal of Public
Health
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use these questions when reading and abstracting research articles. We will briefly
elucidate them.

What Is the Research Question?

It might seem superfluous to draw attention to the research question. It is not, for two
reasons. Firstly, we still occasionally stumble across published research articles that
have no clear formulation of a research question or hypothesis at all. That means that
as a reader you have to reconstruct the question yourself after reading the paper.
Secondly, the research question determines the choice of method. It is therefore
important to have a clear picture of what question the authors want to answer.

Increasingly researchers formulate an objective or aim instead of a research
question. Usually an objective or aim will be less specific. Verstappen et al.
(2005) formulated their objective in the abstract as ‘To describe the variation in
the numbers of imaging investigations requested by general practitioners (GPs) and
to find likely explanations for this variation’. In the introduction to the article they
are a bit more specific without, however, making clear what the ‘likely explanations’
might be.

The present study measured the variation of imaging investigations among a large group of
GPs and investigated the influence of professional and contextual determinants at three
levels: the individual GP, local GP groups, and the region.

Compare this with an example of an explicit research question, as formulated by
Turrell et al. (2007):

What is the relation between area-level socioeconomic disadvantage and mortality before
and after adjusting for within area variation in individual level occupation? Does the
relationship between mortality and individual level occupation differ by area level disad-
vantage? What is the variation in mortality at different geographical levels?

Research questions also differ regarding how specific they are. Some research
questions ask whether there is a relationship between two variables, without spec-
ifying the direction. Others ask whether a particular relationship will be found. These
are basically hypotheses formulated as research questions. An example of this is a
study by Van Stam et al. (2014) on Sexual and Reproductive Health (SRH). They
tested the hypothesis that the relationship between educational attainment and SRH
differed according to the level of globalisation of the region where the subjects live
(effect moderation). Hence, their research question can also be formulated as: Is this
hypothesis confirmed or refuted in our data?

The combination of a research objective and a concrete hypothesis is also specific
enough to guide the remainder of an article. For example, Agyemang et al. (2009)
formulated as their objective ‘to assess the effect of neighbourhood income and
unemployment/social security benefit (deprivation) on pregnancy outcomes’. Their
hypothesis was ‘that low neighbourhood income and deprivation [are] associated
with poor pregnancy outcomes after adjustment for individual-level characteristics’.
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In a general analysis of research questions, Mayo et al. (2013) discussed the use
of language, suggesting that words such as ‘explore’ and ‘describe’ should be
avoided when formulating a research question because of the difficulty such words
pose in determining whether or not the question has been answered. They stress how
the correct formulation of the research question will assist the researcher in the
choice of the optimal design for the study.

In many cases the multilevel nature of the problem is already indicated by the
research question, such as when the question is about the relationship between
variables at different levels. An example is the research question posed by Jat
et al. (2011): what are the effects of individual, community and district level
characteristics on the utilisation of maternal health services?

Which Levels Can Be Distinguished Theoretically?

It is important to be aware of the difference between the levels that one would like to
be able to distinguish in an ideal situation and the reality with which one actually has
to work. If the research question is to explain differences between hospitals in
patients’ judgements about quality of care, the most obvious levels are probably
patients at the lower level and hospitals at the higher level. However, if we analyse
the research problem in terms of the actors involved and the opportunities and
constraints they experience (see Chap. 2), we might come to the conclusion that
the physician responsible for the treatment and the ward in which the patients are
treated are likely to be the drivers of patients’ experiences. That might imply a three-
level model of patients, physicians and hospitals, or possibly four levels with
physicians nested within wards (or a cross-classification of physicians and wards,
depending on the hospital structure).

Often the introduction of an article uses a theoretical notion of a relevant higher-
level unit, connected to a mechanism that relates this context to individual behaviour
or outcomes. The ‘data and methods’ section then moves to an operational definition
of higher-level units, often chosen for practical reasons of data availability. This
pragmatically chosen definition of the higher-level units might be different from the
units implied by the theoretical reasoning in the introduction of the article. The
results are therefore based on units that do not correspond to what was intended and
this may lead to less clear effects. Returning to the previous example regarding
patients’ judgements of quality of care, if the physician is the true driver of the
patients’ experiences but this level is unobservable, then the extent to which there
will be differences between hospitals will depend on the degree to which physicians
assessed as providing high or low quality cluster within the same hospitals. Often in
the discussion the emphasis moves back from the pragmatic context of the available
data that were used in the analysis, to the theoretical notions from the introduction.

We illustrate this with research examples that have studied the effect of
neighbourhood characteristics on health or health behaviour. Ball et al. (2007)
moved from ‘local neighbourhoods’ in the abstract to suburbs of between 4000
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and 30,000 inhabitants in the methods section, and back to neighbourhoods in the
last paragraph of the discussion. In a study on obesity in New York City, Black et al.
(2010) used United Hospital Funds areas as neighbourhoods. NYC has 34 of these
areal units. Given the population of the city (over eight million people), these must
be huge areas and it is doubtful that we could really call them neighbourhoods. The
article gives the average sample size per area, but not the number of inhabitants.
Sellström et al. (2008) studied environmental influences on smoking during preg-
nancy. Citing the importance of peer groups in adolescent smoking, they state that
social influences are apparently important in explaining why pregnant women keep
on smoking. The actual units they use in their analysis to capture these social
influences are neighbourhoods with between 4000 and 10,000 inhabitants. This is
quite far from the idea of peer group influences that they brought up in their
theoretical reasoning.

Another example of the connection between the theoretical reasoning in the
introduction of an article and the definition of spatial units in the methods section
is provided in a paper by Karvonen et al. (2008) on smoking patterns. They state: ‘An
ideal spatial context for an exploration of smoking patterns by small area would
comprise a reasonably stable and homogeneous population with relatively low
variation of disadvantage’. Subsequently in the methods section, they rationalise
their use of 107 neighbourhoods in Helsinki: ‘These areas are of the size that most
residents could walk across them in 15–20 min and have an average population of
4000’.

These examples—and there are many more—illustrate the importance of
theorising the contexts that are being used as higher-level units and of being aware
of the fact that there is often a gap between the theoretically interesting units and
what is actually available or used. This gap may be part of the explanation for the
finding that the influences of contextual variables on individual outcomes are
sometimes weak, and it is important that any such gap should be acknowledged in
the paper.

What Is the Structure of the Actual Data Used?

Apart from the issue discussed in the previous section, there are often reasons why
there is a discrepancy between the levels that would be relevant on theoretical
grounds and those actually used. One reason is that information may be lacking on
some relevant levels.

In the example of patients’ judgements about quality of hospital care that we gave
at the end of Chap. 2, the researchers might for pragmatic reasons have chosen
hospitals to be their higher level. For some indicators of quality of care this may be
appropriate (such as those that reflect hospital policies) but for others—think of
whether the treatment by hospital personnel is polite—the more appropriate level
might be wards, teams or even individual nurses and doctors. One reason to use only
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the hospital level is that there is no information available about the levels in between
(Hekkert et al. 2009; Sixma et al. 2009).

Another reason might be that the numbers at a certain level are too small. The
extreme case is when there is only one unit at one level within each higher-level unit.
The household might be a relevant level from a theoretical point of view, but if only
one member of each household has been interviewed then the household and
individual levels are indistinguishable. In the example dataset used in the tutorial
in Chap. 12, the authors collapsed four levels into two for pragmatic reasons,
concentrating on patients and GPs but leaving out the practice level (most GPs
were single-handed) and the episode of care level (most patients had only one
episode of care during the study period). Researchers might also simplify their
data structure by choosing only one observation from a (theoretically larger) dataset.
For example, Jat et al. (2011), in their study of environmental influences on
pregnancy outcomes, only chose the last pregnancy of each woman in their sample.
In so doing the level of the women who gave birth and the level of the newborn
infants collapsed into one level. Another example is Van Berkestijn et al. (1999) who
only used the first consultation in each episode of care. This meant that they could
restrict their model to just two levels: the GPs in their study and the episode of care
which coincides with the consultation.

A good reason to opt for fewer levels than are actually available is that this may
make the analysis less complicated. It is, however, important to be aware that leaving
out a higher level is less problematic than leaving out an intermediate level. In the
former case, the variation at the omitted level is simply added to that at the new
highest level. When an intermediate level is omitted, the variation will in general be
split between the higher and lower levels (see Chap. 6 and also the section on
variation at different levels later in this chapter).

Whatever the reason for omitting levels, it is important to be aware of the
difference between the levels that were theoretically postulated and the levels that
were actually used. It is elucidative to draw a simple diagram of the levels and the
numbers used at all levels. Chapter 4 on multilevel data structures gives examples of
such diagrams.

It is also important to consider the numbers at the different levels and the average
number of lower-level units per higher-level unit. The number of higher-level units
is sometimes quite small. As we pointed out in Chap. 3, the higher-level units are
treated as a sample and there should be sufficient numbers of units at this level for it
to make sense to estimate an average and variance. The number of units is also
important if authors want to include characteristics of these units in their analysis. If
so, the numbers should be sufficient to estimate the coefficients associated with these
characteristics in addition to the mean and variance. We have come across several
examples where the authors (and reviewers) were apparently not aware of this. Some
of these studies are international comparisons with the countries as higher-level units
and a characterisation of welfare state regimes in the form of a set of dummy
variables as independent variables. Even though the welfare state regime might be
seen as a single concept, it is usually operationalised as a series of dummy variables.
Eikemo et al. (2008) included 23 countries, their higher-level units, but added
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4 dummy variables at this level. Witvliet et al. (2012) had 46 countries and 6 dummy
variables for welfare state regimes. And Rathmann et al. (2015) analysed data for
27 countries and included 4 dummy variables indicating welfare state typology.

The problem of trying to include more contextual variables than the data can
support is, however, not restricted to the analysis of welfare states. Friele et al.
(2006) had one analysis with 80 hospitals and another with 40 hospitals which
included 7 independent variables at the hospital level. With a simple rule of thumb of
10 cases for each independent variable, the first analysis was reasonable but not the
second. For the estimation of contextual effects, the number of lower-level units
becomes irrelevant; the authors were attempting to estimate 9 quantities (a mean,
7 regression coefficients and a variance) from 40 contextual observations. Further
examples include Huizing et al. (2007) who had 15 wards in nursing homes and
included 6 independent variables at this level, and Nicholson et al. (2009) who
included four independent contextual variables with just 22 higher-level units.

What Statistical Model Was Used?

Most statistical models that can be run as single-level analysis can also be used in
MLA (see Chap. 4). Questioning what statistical model was used and whether this
was appropriate is therefore as relevant when reading a multilevel article as when
reading about a single-level analysis. If the authors specify the algebraic form of
their model in the article or in a technical appendix, a useful check is to see whether
the subscripts correspond to the levels that have been included.

To as great an extent as possible (within the space constraints imposed by
journals), the methods section of a paper should provide sufficient information to
enable other researchers to reproduce the analysis reported in an article. This
includes the type of model (linear, logistic, Poisson, etc.), details of the levels used
(including the specification of any which are cross-classified or multiple member-
ship), the variables included in each model in the fixed and random parts (including
interactions), and details of the software and estimation procedures used. Published
descriptions of the model used and estimation techniques are sometimes so brief that
these cannot even be deduced from the software that was used.

Some authors have compared their results of MLA with a single-level model. As
we argued in Chap. 3, in cases where the units for whom the outcomes are measured
are nested within higher-level units, MLA is the preferred approach. The examples
provided here illustrate again that using a single-level model in circumstances that
indicate that a multilevel model is appropriate may lead to false conclusions about the
effect of higher-level variables. In Chap. 3, we discussed the example of an interven-
tion study in GP practices (Renders et al. 2001) where the intervention effect was
significant in a single-level (patients) model, but not in a multilevel model. We also
referred to Mauny et al. (2004) who analysed the occurrence of the malaria parasite in
blood samples taken from people living in villages in Madagascar. In the single-level
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model, they found a significant coefficient for the size of villages which they did not
find in a MLA. This was due to the misestimated precision when the village size was
assigned to all individuals and treated as a series of independent individual-level
observations. A similar example that we have previously mentioned in this chapter is
the article by Matteson et al. (1998). In a footnote they state that, in the single-level
analysis which they initially submitted, more county variables were significant.

What Was the Modelling Strategy?

This relates to the steps that the authors say they are going to take when analysing
their data in order to answer their research question and/or to test their hypotheses.
Ideally the modelling strategy should follow on from the research question and
hypotheses. One typical sequence might be to start by examining the variation at
different levels in a null model and reporting the intraclass correlation. The next step
would be to introduce individual-level variables, evaluating the changes in variation
at all levels. A reduction in the higher-level variation at this stage indicates compo-
sitional effects. The next step may then be to introduce higher-level variables and
evaluate the decrease in variation at that level. Of course, the modelling strategy
should reflect the hypotheses that one wants to test.

It is important that the modelling strategy is a systematic and logical sequence of
steps and that the modelling strategy as described in the methods section is indeed
executed and reported in the results section. Many research papers do not include a
modelling strategy at all or else report their results in a different order to that
suggested by the strategy. Tables should reflect the modelling strategy as far as
possible; however, it is often not necessary to document every step in the tables. This
might easily lead to large and unclear tables (for example, see the four page
landscape table in Béland et al. 2002).

Examples of clear modelling strategies accompanied by results sections that
follow the steps outlined in the methods section include those presented by Van
Yperen and Snijders (2000), Ball et al. (2007) and Merlo et al. (2005).

Van Yperen and Snijders studied Karasek’s job demand-control model. The main
hypothesis of this model is that the job stress that workers experience depends on the
interaction between the demands that are made of them and the amount of control
they experience over their own job. Strong demands lead to particularly high levels
of job stress when workers have less control over their work. They test this
hypothesis and look at demand and control both at the individual level and the
group level. Removing the group effects (by including them) means that individual-
level demands and control are then relative to those experienced by co-workers.
Their modelling strategy neatly follows the hypotheses.

Ball et al. studied educational variation in walking for women and whether this
can be explained by intrapersonal and social characteristics and by perceived and
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objectively assessed facets of the physical environment. Their modelling strategy
consisted of four steps. In the first step, only education was included in the model. In
subsequent steps, environmental variables, social variables and finally personal
variables were added.

Merlo and colleagues studied differences between hospitals in neonatal mortality
for low risk and high risk pregnancies against the background of regionalisation and
concentration of services. They used four steps, starting with an empty model; they
then added characteristics of the hospitals where the deliveries took place. In step
3, maternal and delivery characteristics were added. In the final model, these
characteristics were replaced by a propensity score to take confounding by indication
into account.

A more specific issue when evaluating the modelling strategy is the completeness
of the individual-level model. This is particularly important in studies of composi-
tion and context and when forming league tables. In studies of context and compo-
sition, the researcher may wish to explore whether variation at the higher or
contextual level remains when relevant individual characteristics have been taken
into account. The range of individual variables available is often quite small,
especially when using routinely collected or register data. In a study on the use of
tranquillizers by Groenewegen et al. (1999), only the age and sex of the users were
known. In a study of the socio-economic determinants of compliance to colorectal
cancer screening (Pornet et al. 2011), the individual model consisted of only age,
sex and insurance type. The risk is then that the clustering of people with, for
example, a low socio-economic status in certain neighbourhoods leads to apparent
neighbourhood-level variation that would have disappeared if socio-economic status
had been measured at the individual level.

The completeness of the individual-level model is especially important when
creating ‘league tables’ as a measure of institutional performance. The individual
characteristics then act as a means of correcting for differences in case-mix. With
good case-mix correction, the higher-level residuals reflect, to as great an extent as
possible, the ‘true’ differences between higher-level units such as nursing homes.
Patients or their representatives can use that information to inform their choice of
care site (Arling et al. 2007).

Does the Paper Report the Intercept Variation at Different
Levels?

Sometimes researchers only report fixed effects. In this case, they are apparently
only using MLA in order to have appropriate estimates of the confidence intervals or
other measures of uncertainty around the regression coefficients. This may for
example be the case when the data are collected using a two-stage sample and the
authors want to adjust for that. Nevertheless, it would be interesting to see the extent
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to which the dependent variable clusters within higher-level units. As we discussed
in Chap. 6, an estimate of the higher-level variance is necessary for power calcula-
tions. We usually obtain these estimates from published research about similar
problems or data sets. However, some of the estimation procedures used (such as
generalised estimating equations—GEE) will only correct the standard errors of the
estimates without explicitly estimating the variance at the different levels.

Sometimes the variation is of central importance to the research question at hand;
even if this is not the case, the reporting of variation can be seen as a service to the
academic community because of its potential interest to readers of the article. As
such, the intercept variance should be reported as well as the individual variance,
enabling the reader to calculate the intraclass correlation coefficient if this was not
reported in the article. In some cases the intercept variance is reported for the empty
model, whilst in other cases it is more relevant to report the intercept variation only
after taking into account some individual-level variables. If treatment outcomes in
different hospitals are analysed, and the hospitals differ in composition according to
the age, sex and severity of illness of the patients treated, it might be more relevant to
report the between-hospital variation after these case-mix variables have been taken
into account.

If slope variance is also important, this should be reported alongside the covari-
ance between the intercept and the slope. Remember that the variance of the intercept
and the covariance are dependent upon where the slope variable has been centred, so
any non-standard centring (that is if the location has been changed so that a value of
0 on the transformed slope variable does not correspond to a value of 0 on the
original variable) should also be reported as an aid to interpretation. We provided an
introduction to random slopes in Chap. 5 along with a guide to the interpretation of
different patterns of covariance.

Cross-Level Interactions

If there is an explicit hypothesis about the interaction between variables at different
levels, this can be tested by introducing a cross-level interaction. In a more explor-
atory analysis or when the hypothesis is about variation in the slopes, one would
estimate the slope variance and the covariance between the slope and the intercept.
You will, however, have more power to test for a specific cross-level interaction than
for a random slope.

In general, interaction terms are not always easy to interpret. It may be helpful to
illustrate them using a figure. Several nice examples can be found in the published
literature; for example, see any of Turrell et al. (2007), Joshu et al. (2008), Stafford
et al. (2008) and Mohnen et al. (2012). From this last publication, we show the
interaction between neighbourhood social capital (higher level) and household
composition (individual level) on self-rated health (Fig. 10.2).

160 10 Reading and Writing



What Are the Shortcomings and Strong Points of the Article?

Try to summarise the points of criticism and try to weigh their consequences for the
value of the results of the analysis that was presented. Try also to identify a number
of positive points from the article you have been reading. The shortcomings are
important in critical reading and they are very important in forming your overall
judgement as to how confident you can be that the results of the study are indeed a
valuable addition to our knowledge. However, the strong points of an article may
help you in improving the formulation of your own research.

Writing Up Your Own Research

It is impossible to come up with a single form of presentation that will suit all types
of analysis. The information that you need to show depends on your research
question (and this is another reason for considering study design carefully before
starting). Moreover, all general advice about how to write a research paper applies to
papers that report on MLA and this will not be repeated here.

The Introduction or Background Section

The introduction or background section of your research paper should contain a
clearly formulated research question—a grammatically well-formed sentence that
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Fig. 10.2 Interaction of neighbourhood social capital and whether (black line) or not (dashed line)
there are young children in the household on self-rated health (reproduced with permission from
Oxford University Press, the European Journal of Public Health)
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ends with a question mark. In the ‘reading’ part of this chapter, we noted the
tendency of some research papers only to state an objective, which is often less
clearly specified than a research question or a hypothesis.

Previous literature, where available, should be used to develop your research
question and the hypotheses you intend to test. As an aid to focusing your arguments
when writing the introduction, it is advisable to consider using ‘what is known about
this subject?’ bullet points as required by some journals. It is important to identify
the gaps in current knowledge and not just to tread a well-worn path.

Specifically when writing an article using multilevel analysis, the introduction
should contain a theoretical argument as to why different levels or contexts are
relevant to the particular research question. We started Chap. 1 by stressing the
importance of context as an influence on people’s health, well-being, health behav-
iour and healthcare utilisation. This should be reflected in the attention that is given
to discussing the relevant aspects of the context. In some cases the context might
seem self-evident, such as in a study of health outcomes among hospitalised patients.
The relevant context would then be the hospital. Even so, health outcomes are
probably more strongly influenced by the particular department in which a patient
was treated than the hospital as a whole. In the case when the context is a geograph-
ical unit, the link between geographical scale and area type on the one hand and the
mechanism that is supposed to cause the outcome at the individual level is partic-
ularly important. If, for example, we want to analyse the relationship between social
capital and health, the way in which we conceptualise social capital and the type of
mechanism that we assume will influence the areal unit that we would want to use.
When we conceptualise social capital as the social networks of people living in the
same area, supplying each other with emotional and instrumental support, we would
require smaller areal units than for a conceptualisation of social capital in terms of
community resources, norms and trust (Moore et al. 2005). When the discrepancy
between the size of the units used and the supposed mechanism that links the units to
the outcomes is too large, it becomes increasingly difficult to draw conclusions based
on your analysis of the data.

The Methods Section

The methods section firstly makes the step from the theoretical and conceptual
discussion of context as it appears in the introduction or background to the concrete
levels actually to be used in the data analysis. Especially when you use existing data
at any of the levels, it is likely that there will be discrepancies between the theoretical
context and the levels that you use in practice. It is important to describe this
discrepancy and to discuss the consequences in the final section of the paper.

In the methods section, you should detail the units or levels used and the data
structure. These provide the rationale for the use of MLA. The relevant numbers (for
example, the population of the areas and sample drawn from these) should be detailed.

The nature of the statistical model that you use will largely be determined by the
dependent variable that you are analysing. As in any other empirical research paper,

162 10 Reading and Writing



it should be clear at what scale the dependent variable has been measured and
consequently what the statistical model will be. Software packages that handle
MLA differ and you should identify which package you have used.

In the days when MLA was relatively new to public health and health services
research, authors used to give a general algebraic formulation of their multilevel
model. Although by nowmore researchers are familiar with these models, it may still
be useful to detail the actual model used. Particularly if the model that you are using
is more complicated or in some way non-standard, providing the full formulation of
the model used either in the methods section or in an appendix will aid other
researchers understanding of your work and enhance its reproducibility.

The interpretation of the average outcome, variances and regression coefficients
sometimes depends on the point of reference taken. Meaningful interpretation can be
facilitated by centring independent variables around the mean or another relevant
value. Studies do not always state whether or not they centred the data, but this
should of course be mentioned.

An important element of the methods section is the description of the modelling
strategy. The modelling strategy gives the steps that you are going to take in order to
answer your research question or test your hypotheses. A sensible null model should
be defined, and you should detail which variables are included in subsequent models
and how these variables were selected.

The modelling strategy is not just a summary of the steps taken; it should contain
a logical line of reasoning. Chapters 7 and 9 have discussed modelling strategies and
working through the example datasets you can see modelling strategy in practice.
Snijders and Bosker (2012) give helpful guidance in developing the modelling
strategy.

The first step is the definition of your reference model. This might be either an
empty model that only estimates the variances or a model including a few basic
variables that are deemed necessary to give a fair picture of higher-level variance.
The following steps introduce individual-level and/or higher-level variables. These
steps are typically evaluated with reference to the first modelling step.

The methods section should enable the reader to replicate the study (at least in
principle if not in reality).

The Results Section

The results section reports the findings from your study. You should give the
necessary interpretation of your results, but you should also facilitate the reader’s
own interpretations. Consider, for example, that if variables are on different scales
then the interpretation may be difficult. Some variables may be dummies, for
example urbanicity may be coded as 0 (non-urban) and 1 (urban), and in the same
regression analysis the proportion of the population over 65 may be included,
ranging perhaps from 0.12 to 0.25. The coefficients for the two variables are then
not comparable; whilst one provides an estimate of the difference between outcomes
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in urban and non-urban areas, the other gives an estimate of the difference between
two non-existent contexts containing no people over the age of 65 and one
containing only people over 65.

In quantitative studies, tables play an important part. There are many very
different ways of putting the results of an analysis into a table, without a gold
standard for reporting multilevel analysis. A table (in general) should be self-
contained and give an easy overview. If you want to show several consecutive
models in the table, you might wish to avoid an empty column for the reference
model by including the variance components in a separate table or as a footnote. If
the emphasis is mainly on the higher level and you have a large number of
individual-level variables, it might not be necessary to repeat this long list for each
modelling step that only involves new higher-level independent variables. The
coefficients of the individual-level variables may be largely invariant and could be
included in a separate table or in an appendix.

The layout of any table should mirror the modelling strategy. However, it is not
always necessary to present each and every step of your modelling strategy in the
table. This is particularly the case if steps in the modelling process turn out not to add
much information; it may be better to mention that you conducted the steps as
intended but, for example, that the results or their interpretation do not differ from
other reported models. This is particularly likely to be the case for sensitivity
analyses. Again, full results may be reported in appendices or reported as being
available from the author.

You should report the variance at the different levels. Even if variation is not at
the heart of your study’s research questions, it is important for other studies’ power
calculations. It may also be helpful for readers if you report the intraclass correlation.
If your modelling strategy describes a number of subsequent models, you should
probably detail changes in variance between models. If you are using logistic
regression, you could consider converting variances to a meaningful scale (such as
the median odds ratio or MOR; see Chap. 6).

If you report cross-level interactions, it is usually very helpful to your readers if
you are able to present these graphically. An example was given earlier in this
chapter in Fig. 10.2.

As the presentation of the results in tables is such an important element in terms of
enabling your readers to follow and understand your results, we will give a few
examples of how your results could be presented in tables. The best advice we can
give is to take note when you find articles with a particularly nice presentation.

The first example is the presentation of a table for a two-level linear regression
with (for example) an index of health as the dependent variable and independent
variables at the individual level (such as age and gender) and at the context level
(perhaps neighbourhood social capital). The table columns show the coefficients of
the series of models that have been tested, starting from an empty model. The
following models are one including only the individual-level variables (model 1),
a model with only the contextual variables (model 2) and finally a model with both
individual and contextual variables (model 3). Whether or not you need this partic-
ular sequence of models depends on your research question and hypotheses and the
modelling strategy developed from your research question.
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The table rows show first of all the fixed effects, starting with the overall
intercept, followed by the regression coefficients for the variables at individual
level and the regression coefficients at higher level. The lower part of the table
shows the random part of each model. In the empty model, only the overall intercept
and the two variances are estimated. The variances are the unexplained variance in
our dependent variable. You could consider adding another row that shows the
(change in) model fit. For a linear regression model, this could be the percentage of
variance explained in subsequent (nested) models (Table 10.1).

In some cases, it might be convenient to display the random effects in a separate
table. This might be the case when your model includes random slopes. The random
part will then contain the variance of the slope and the covariance between the slope
and the intercept in addition to the variance of the intercept. In the event of a random
slope being estimated for a categorical independent variable (such as gender), a
useful option is to show the higher-level variance separately for the different
categories. Table 10.2 provides an illustration of models showing different formu-
lations of the random part. Note that if variances are shown for the different
categories, in this example for men and women, the higher-level intercept variance
is not estimated.

The Conclusion and Discussion Section

The conclusion and discussion section should start with a concise description of your
main results and, if the study tests a hypothesis, whether or not the hypothesis was
refuted. It is important to relate your results to the relevant literature, particularly

Table 10.1 Example of table layout for a two-level linear regression model

Model
0 (empty
model)

Model
1 (individual-level
variables)

Model
2 (context
variables)

Model
3 (individual + context
variables)

Fixed part

Intercept x x x x

Individual variables

(e.g.) age x x

(e.g.) gender x x

Context variables

(e.g.) social
capital

x x

Random part

Individual-
level
variance

x x x x

Higher-level
variance

x x x x
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focusing on differences in results between your study and previous studies and the
likely causes of such differences. Some journals ask for a few bullet points on ‘what
this paper adds’. Even if the journal does not ask for these, it is often helpful to come
up with these bullet points for yourself to help to focus the discussion.

This is normally followed by the strengths and weaknesses of the study; you may
want to pay particular attention to your data, study design and analytical strategy. Of
course, these should be seen against the background of the strengths and weaknesses
of other studies in the fields. The strengths and weaknesses should be balanced; there
is no reason why this should be an exercise in masochism. If there is a long list of
weaknesses and only a few strong points, the authors should probably have under-
taken a different (better) study.

It is important for you to provide an interpretation of the meaning of the study.
You may come back to your theoretical framework as set out at the beginning of the
article and you can discuss the mechanisms underlying the results that you have
found and any implications for policy or practice. Finally, it may be worth pointing
out any questions that remain unanswered and make suggestions for future research.

None of the above is specific to writing up a multilevel analysis. It is generic to
well written research articles and based on an article in the British Medical Journal
on structuring the discussion section of a research paper (Docherty and Smith 1999).

Specifically in relation to the discussion section of a multilevel study, it is
important to return to the appropriateness of units (and the question as to whether
the units that you have used are indeed relevant contexts) and the levels that you
have included and excluded.

Table 10.2 Example of table layout for the random part in different models

Random part

Model
0 (empty
model)

Model
3 (individual + context
variables) + age random

Model
3 (individual + context
variables) + gender random

Individual-level
variance

x

Higher-level inter-
cept variance

x x

Slope variance for
age

x

Covariance
between age and
intercept

x

Higher-level vari-
ance for males

x

Higher-level vari-
ance for females

x

Covariance
between males and
females

x
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Conclusions

In this chapter, we have brought two subjects together: critical reading of papers
written by others and writing up your own multilevel research. Even if you are only
using the results of other people’s research, it is important to understand the basics of
the methods used. We have developed a number of questions that can help you to get
to grips with the multilevel methods applied in published articles. As is true for our
advice about writing up your research, our advice on reading other people’s research
is only in part specific to multilevel analysis. Whatever the methods used, the
research questions should be clear and there should be a logical modelling strategy
related to the research questions and hypotheses. However, there are also specific
issues such as those related to the different levels that one may hypothesise in theory
and those encountered in the actual data. When it comes to writing up your research,
we have also given some examples of tables. However, there is also a link between
reading and writing: look for the things you like about published research, such as
understandable ways of putting complicated results into tables or concise ways of
formulating conclusions, and avoid forms of presentation on which you are not so
keen, such as a surfeit of regression models that add little to the conclusions.
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Chapter 11
Multilevel Linear Regression Using
MLwiN: Mortality in England and Wales,
1979–1992

Abstract In this chapter, the reader becomes a user. This chapter contains the first
of three tutorials that readers can work through, using the specialist multilevel
modelling software MLwiN. We introduce MLwiN as a package; this software
will also be used in the other two tutorials. This tutorial introduces practical linear
multilevel analysis. It uses data on mortality in England and Wales over time. The
dependent or outcome variable is the standard mortality ratio in a given year between
1972 and 1996, for districts which are nested within counties.

Because this is the first tutorial, we go into some detail regarding the use of
MLwiN, and how to use it to manipulate and explore the data. The tutorial starts with
the estimation of a single-level model, then moves on to a two-level and three-level
model. We begin with a random intercept model and progress to a random slope
model. Throughout the tutorial graphs are used to enable visualisation of the results
of the analyses. At the end of this tutorial, we detail an alternative analysis of the data
using a multilevel Poisson model.

Keywords Tutorial · Multilevel analysis · Linear regression · Poisson regression ·
Mortality

This chapter is based on training materials created by Leyland and McLeod (2000).
The training materials in this chapter and the two chapters that follow are designed to
be used either constituting part of a formal course or as a self-learning aid. They
provide an introduction to the ideas behind multilevel modelling and a guide to
analysis using the software package MLwiN. Further details on multilevel modelling
and MLwiN are available from the Centre for Multilevel Modelling http://www.
bristol.ac.uk/cmm/. The materials have been written for MLwiN v3.01. The teaching
version of the software is available from https://www.bristol.ac.uk/cmm/software/
mlwin/download/.

When working through the examples in this book, the user should periodically
save the worksheet. Throughout these materials the instructions to the user appear in
boxes. Selections to be made by the user appear in bold type, and variable names are
given in CAPITALS. If you have to click on a term in an equation, this is presented
in bold and italics.

© The Author(s) 2020
A. H. Leyland, P. P. Groenewegen, Multilevel Modelling for Public Health
and Health Services Research, https://doi.org/10.1007/978-3-030-34801-4_11
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Introduction to the Dataset

The data are taken from the local mortality datapack and detail deaths from all causes
in England and Wales in the period 1979–1992. These data can be found at the UK
Data Service. The raw data comprise two files: one containing information on deaths
over this time period and the other detailing the populations of the relevant areas
(districts in England and Wales) in each year. For further information on this and
other available datasets, the user should visit the UK Data Service website https://
discover.ukdataservice.ac.uk/.

Research Questions

In this tutorial, we will answer the following research questions:

1. What is happening to mortality rates over time?
2. How much variation in mortality rates is there between districts of England and

Wales?
3. Is this variation just between districts, or are there also differences between the

mortality rates of counties?
4. Does mortality vary according to the type of area?
5. What is happening to the variation in mortality rates over time?

Introduction to MLwiN

Opening a Worksheet

MLwiN files are known as worksheets and these store all the data and model settings
from the last saved version. We will start by opening the file ‘lmdp.wsz’—an
MLwiN worksheet that has already been prepared for analysis.

In MLwiN, go to the File menu
Select Open worksheet
Navigate to the folder containing the data file
Open the worksheet called lmdp.ws

The name of the current file appears in the bar at the top of the MLwiN window.
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Names Window

We can view a summary of this worksheet using the Names window. This will
automatically appear when a worksheet is opened in MLwiN; at other times, the
Names window can be called up as follows:

Go to the Data manipulation menu
Select Names

This shows a list of all the variables stored in the worksheet together with some
summary information. The worksheet contains 8 variables; these are at the beginning
of the worksheet in columns number 1–8. Each column contains 5639 data points
and no missing values. Each data point (observation) corresponds to the annual
number of deaths in a given district in England and Wales for 1 year in the period
1979–1992. COUNTY, DISTRICT and REGION are area identifiers; there are
403 county DISTRICTs (coded from 101 to 6820) which are nested within
54 COUNTYs (coded from 1 to 68), and these in turn lie within 1 of 10 REGIONs.
The data cover 14 YEARs from 1979 to 1992 inclusive. Note that there are only
5639 data points rather than the 5642 that might be expected (403 DISTRICTs with
an observation for each of 14 years); 3 data points have been removed because
extreme outlying values made them implausible. The next two columns show the
number of DEATHS observed in each district at each time point—ranging from
16 to 12,775—and the number that would be EXPECTED. The EXPECTED
number of deaths has been calculated on the basis of the age and sex structure of
that area’s population in each year by applying the 1992 national age- and
sex-specific mortality rates. This worksheet has been constructed using the two
raw data files contained in the local mortality datapack—the number of deaths and
the populations. The OBSERVED and EXPECTED deaths are combined to form
the standardised mortality ratio (SMR) for each year in each district. This is
calculated as

SMR ¼ observed deaths
expected deaths

� 100

and reflects the excess deaths in an area, standardised for age and sex, over the
national average mortality rate in 1992 (average ¼ 100). The standardisation means
that differences between areas in the age and sex structures of their populations are
taken into account. The range from 75 to 179 implies a minimum mortality rate for
one area in 1 year 25% below the 1992 average and a maximum 79% above the
average. Finally, the variable FAMILY is a classification of districts into six groups
devised by the UK’s Office for National Statistics: 1—Inner London, 2—Rural
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areas, 3—Prospering areas, 4—Maturer areas, 5—Urban centres, 6—Mining and
industrial areas. All of the remaining columns are empty; the default name for such
columns is ‘C’ followed by the column number.

Data Window

The data may be viewed and edited in a spreadsheet format.

Go to the Data manipulation menu
Select View or edit data
Alternatively, the Data window may be accessed from the Names window:
In the Names window, highlight columns 1–8 (use the shift or control keys to

highlight multiple columns)
Click the View button in the Data section at the top of the Names window

The view button at the top of the Data window can be used to change or extend
the selection of variables shown; simply select the desired variables from the drop-
down list.

All windows can be re-sized by clicking on the borders and dragging; also the
scroll bars at the bottom and on the right-hand side can be used to view more of the
selected data.
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The first 13 observations are made on DISTRICT 101, COUNTY 1, REGION
3. The 13 observations on this DISTRICT can be seen to correspond to 13 YEARs of
data; there is no observation for 1980. The estimated SMR in this district ranges from
75 in 1988 to 141 in 1982. The district classification (FAMILY) was group 1—Inner
London.

Graph Window

Before starting to model the data, we may wish to examine them in a graph.

Go to the Graphs menu
Select Customised Graphs

The graphical output in MLwiN is separated into three components. A display is
what can be displayed on the computer screen at any one time and up to ten different
displays may be specified. The pull-down menu at the top left-hand corner of the
customised graph window corresponds to the display function—this currently shows
D1 denoting display 1. Each display can contain a number of graphs. A graph is a
frame with x and y (horizontal and vertical) axes showing lines, points or bars, and
each display can show an array of up to 5 � 5 graphs. The position tab towards the
top right of the customised graph window is used to specify the layout—the position
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of the graphs in the display. Finally, each graph can plot one or more datasets, each
one consisting of a set of x and y coordinates selected from the worksheet columns.
Different datasets may be specified by clicking on different rows in the table under
the ds# heading shown at the left-hand side of the customised graph display.

To obtain a scatter plot of SMRs by year, ensure that the plot what? tab is
selected and

Select the y variable to be SMR from the drop-down list
Select the x variable to be YEAR from the drop-down list
Click the Apply button
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It is clear that there have been considerable reductions in SMR over these
14 years; nearly every district had an SMR greater than 100 in 1979. (The fact that
standardisation was to 1992 means that the overall SMR—for the whole of England
and Wales—was 100 for that year.)

To change this graph to a line plot with a line for each district:

In the Customised Graph window, select group to be DISTRICT
Change plot type to line
Select the plot style tab
Change colour to rotate
Click the Apply button

It is possible to identify points on the graph: point and click anywhere on the
graph and the Graph options window will appear with details of the closest data
point. Also included in the Graph options window are facilities for adding titles to
the graph and axes, and for making other changes to the display including the scales.

Closing Windows

At any time you may wish to close or minimise windows to prevent your screen from
becoming too cluttered. You may do this, as with any other Windows package, by
clicking on the X or _ buttons respectively in the top right corner of each window.
Alternatively, you may go to the Window menu and select close all windows.

This section has covered data exploration using:
Names window—data summaries

(continued)
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Data window—spreadsheet
Graph—scatter plot
Graph—line graph

Model Specification

Creating New Variables

A number of functions are available in MLwiN that allow the creation of new
variables or amendments to existing variables. In order to include a constant or
intercept term in a model using MLwiN, we need to create a column of 1’s that spans
the entire data set. This variable will also be used to model the variance at each level
in a multilevel model. We use the Generate vector window to create a column
containing 5639 occurrences of the value 1.

Go to Data manipulation menu
Select Generate vector
Select Type of vector to be Constant vector
Select C9 to be the Output column
Enter 5639 (the number of data points) beside Number of copies
Enter 1 beside Value
Click the Generate button

Returning to the Names window, column C9 now contains 5639 data points each
with the value of 1. We can give this new variable a name:
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Click on C9 in the Names window
Click on the Name button in the Column section at the top of the window
Type CONS and press <return>

We can also use the Generate vector window to create a unique identifier for
every data point or observation.

In the Generate vector window:
Select Type of vector to be Sequence
Select C10 to be the Output column
Enter 1 beside Start number
Enter 5639 (the number of data points) beside End number
Enter 1 beside Step value
Click the Generate button

In the Names window, column C10 should now contain 5639 data points with a
minimum of 1 and a maximum of 5639. We will name this variable:

Click on C10 in the Names window
Click on Name at the top of the window
Type ID and press <return>

Equations Window

Specifying models in MLwiN is done mainly via the Equations window.
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Go to Models menu
Select Equations

The terms in red are those which must be defined before a model can be fitted to
the data. We begin by specifying our outcome:

Click on either of the y terms
Select SMR as the dependent variable

The structure of the hierarchical model is also specified at this stage, first by
stating the number of levels the model will have and then by specifying what the
levels of the hierarchy are using the appropriate identifier variables. We will start by
fitting a single-level (Ordinary Least Squares—OLS) model. The level 1 units, our
observations, are identified by the variable ID.

Select 1 � i for N levels
Select ID for level 1(i)
Click on Done

The red response variable y has been replaced by the term smri, the black colour
indicating that this term has been defined; moreover, the addition of a subscript
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i indicates that this is a single-level model. In a similar manner, we can define
CONS—the column of 1’s that we just created—to be an independent variable.

Click on the β0x0 term
Select CONS from the drop-down list

The check boxes indicate in what part of the model each variable is to be
included; by default, CONS has been added to the fixed part of the model and its
coefficient will provide an estimate of the intercept. The other option in this window
relates to the random part of the model. We allow for random error at level 1 by
setting the CONStant term to be random at this level.

Click on the check box by i(ID)
Click on Done

Note that the term β0 changes to β0i, denoting the fact that it is random at level
1 (between occasions).

To expand this model to see the distributional assumptions and error structure,
click twice on the ‘+’ at the bottom of the Equations window.
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This shows our assumption of a normal distribution for the residuals e0i �
N 0, σ2e0
� �

. At any time we can toggle between the representation of the model that
includes the names of all of the variables and a purely algebraic representation;
simply click on the Name button at the bottom of the Equation window.

Note that the names of the specified dependent and independent variables, SMR
and CONS, have been replaced by y and x. If you click on the Estimates button, you
can see that two terms in the model are blue: the grand intercept β0 and the level
1 variance σ2e0 . The fact that they are blue indicates that these terms are to be
estimated; when the model converges, the blue will change to green.

Clicking on the Estimates button again will replace these two terms with their
current estimates (both the default value of 0.000 because no model has yet been
estimated). Since our variable CONS is just a column of 1’s, the above equation is
just fitting the SMR of the ith observation using a mean β0 and a residual or error
term e0i. We are going to begin by assuming that these e0i are independent and
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identically distributed. This means that if the SMR in a particular DISTRICT is
higher than the mean one YEAR, we believe that the SMR in another YEAR is just
as likely to be below the mean as above. In other words, we are fitting a model that
assumes that there will not be certain DISTRICTs with persistently high SMRs and
others where mortality is consistently below the mean.

In addition to the mean, we will add year as an independent variable in the fixed
part of the model in order to answer our first research question.

Click on the Add Term button
Select YEAR from the drop-down list under variable in the Specify term

window
Click Done

The third term to be estimated, β1, is the regression coefficient (slope) associated
with YEAR and this will estimate the trend in SMRs during the study period.

Fitting the Model

The model is now ready to be estimated.

Click the Start button on the tool bar at the top left-hand corner of the MLwiN
screen

After two iterations (the iteration number is given at the bottom of the MLwiN
screen), the model converges; the blue estimates in the equation window turn green,
indicating that they have converged.

Model Specification 185



The parameter estimates are shown with their estimated standard errors in
brackets. Our intercept is about 282, and the SMR has been decreasing at 1.982
per year. This decrease is highly significant in comparison with its standard error; a
95% confidence interval around this decrease would range from
1.982 � 1.96 � 0.039 ¼ (1.906, 2.058). The variance of all of the observations
around this fitted trend is 137. This means that the standard deviation is
√137.283 ¼ 11.717 and so 95% of observations lie within �22.965 of the mean in
any given year. The current model has a single term to describe the variation around
the mean and is therefore just an ordinary least squares (OLS) regression model, but
it is a starting point for our multilevel analysis. The value �2�loglikelihood is
provided as an aid to model comparison and selection.

Before continuing, consider the interpretation of the intercept term. This is the
predicted value of the SMR in all districts when the variable YEAR takes the value 0:
in other words, in 1900. Since the data do not cover this period, it is not sensible to
make any inference about the SMR at this time, and we can change the origin to
something more meaningful. Explanatory variables are frequently centred around an
average value; in this case, however, we will set the origin at the first year for which
we have data (1979). We can use the Equations window to change this to a new
variable which takes the value 0 in 1979 and 13 in 1982.

In the Equation window, click on the term yeari in the equation
Select Modify term in the X variable window
In the centring section of the Specify term window, check around value and

type 79 in the corresponding box
Click Done

You will notice in the Equationswindow that the term yeari has been replaced by
(year � 79)i. As the model has changed the estimates have changed from green to
blue, indicating that we need to re-estimate this model. Note also that the new
variable appears in column 11 in the Names window. Rather than click on the
Start button again to estimate this model, click on the More button in the top left-
hand corner of the MLwiN screen to continue estimation from the current values.
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The estimated slope has not changed and nor has the variance. There is, however,
a big change in the intercept. In 1979, the average SMR was therefore about 126.

We can store the results of successive models to allow easy comparison.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. Trend

1-level
Click OK

This section has covered data manipulation using:
Generate vector window—creating a constant
Generate vector window—creating a sequence
Name window—naming variables
This section has also covered model set-up using:
Equations window—defining the response (dependent variable)
Equations window—adding an intercept (CONS)
Equations window—adding an explanatory (independent) variable
Equations window—modelling random error at level 1
Estimating a model—the Start and More buttons
Equations window—modifying a term in the regression model
Centring the data to assist model interpretation
Equations window—storing results

Variance Components

All of the variance in the current model is at the lowest level of observation; this is
just an ordinary least squares (OLS) regression equation. This model may be
expanded by including the level of DISTRICT in the model, enabling us to partition
the variance into that which is attributable to random variation between DISTRICTs
and that which arises due to fluctuations between observations (YEARs) within
DISTRICTs.

A 2-Level Variance Components Model

In the Equations window, we want to specify that our model has two levels,
identified by DISTRICT (at level 2) and ID (at level 1).
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Click on either smri term
Change N levels to 2 – ij
Select DISTRICT from the drop-down list by level 2(j)
Click Done

We now need to fit a random intercept across DISTRICTs. We do this by
allowing the coefficient of the CONStant to vary randomly across DISTRICTs as
well as at level 1.

Click on β0i
Check the box by j(DISTRICT)
Click Done

The intercept term now has an additional subscript (j), indicating that it varies
across DISTRICTs as well as across YEARs. The intercept now has three parts: the
overall fixed part intercept for 1979, the error term e0ij and a term u0j which is
specific to DISTRICT j. The u0j are random effects at level 2 and are assumed to be
normally distributed. The intercept for the jth district in 1979 will be given by
β0 + u0j. The parameter estimates have again changed from green to blue, indicating
that the model has changed and must be estimated again.
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Sorting the Data

Before fitting a multilevel model, the data need to be sorted within their hierarchy
(in this example by DISTRICTs and then by ID within DISTRICT). If your data are
not sorted, then MLwiN will produce estimates but these will not be correct. Failure
to sort your data when using MLwiN is a common reason for getting ‘strange’
results!

Go to Data manipulation menu
Select Sort
Increase the Number of keys to sort on to 2
Select DISTRICT as the first Key code column and ID as the second
Select all named variables, from COUNTY to (YEAR-79), under the heading

Input columns
Press Same as input button to overwrite current columns with sorted data
Press Add to action list and then Execute

This model may now be fitted by clicking More.
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If we store these results, we can then make a comparison with the OLS estimates
previously obtained.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. Trend

2-level
Click OK
Go to the Model menu
Select Compare stored models
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There is little change in the estimates of the intercept and slope between the two
models. However, in the random part most of the variation has moved up to level
2, indicating that there is substantial variation between DISTRICTs rather than year-
on-year variation within DISTRICTs. The total variance in our second model is
obtained by summing the variances between and within DISTRICTs (σ2u0 þ σ2e0); the
label ‘CONS/CONS’ in the first column indicates that these terms are the variances
of the intercepts (remembering that we created and used the variable CONS to model
the variance at each level). The total variance in our ‘Trend 2-level’ model is
137.390, very close to the estimate of 137.283 obtained for σ2e0 in our ‘Trend
1-level’ model. The proportion of the total variance which arises due to differences
between DISTRICTs is 112.897/(112.897 + 24.493) or 82.2%. This figure is known
as the intra-unit or intraclass correlation, and indicates that the correlation between
two observations made in different years on the same DISTRICT is 0.822. The level
1 variance may be interpreted as the variation between years within DISTRICTs. So,
in answer to the second research question, it would appear that the majority of the
variation in mortality is due to between-district differences rather than year-on-year
fluctuations.

Note that the addition of a single variance term has produced a substantial
reduction in the value of �2�log(likelihood) from 43758 to 35724. This reduction
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has been brought about by the addition of a single parameter—the variance σ2u0—to
our single-level model. Changes in the value of �2�log(likelihood) for nested
models (that is, for models that differ only by having terms added) are assessed
using a chi-squared distribution with the number of degrees of freedom equivalent to
the number of additional parameters. Since the reduction in �2�log(likelihood) is of
the order of 8000, we can dispense with the formal hypothesis testing (which will be
covered later in this chapter) and conclude that the full model—that including the
level of DISTRICT—is a significant improvement on the single-level model.

Predictions and confidence envelopes
At this stage, you may wish to look at the section Predictions and confidence
envelopes at the end of this chapter. This compares the precision of estimates
from the 2-level model with those from a single-level model. The work is in a
section at the end of this chapter because it covers predictions, a subject which
is given more attention later in this tutorial. You may read through this section
or work through the example, in which case you will be prompted to save your
worksheet at the current point. Alternatively, you can save the worksheet now
as, for example, lmdpapp1.wsz and return to this section later.

The Hierarchy Viewer

We can view the data structure using the Hierarchy viewer. This will tell us how
many lower-level units are in each high level unit.

Go to Model menu
Select Hierarchy Viewer
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The box in the top left corner provides a summary of the data hierarchy: there are
403 DISTRICTs at level 2 and up to 14 observations at level 1 (defined by ID) within
each DISTRICT, with a total of 5639 observations. Every level 2 unit (DISTRICT)
has a box in the grid in the main part of the Hierarchy viewer screen; the first level
2 unit has identifying code 101 and has 13 level 1 units (observations). The second
DISTRICT has identifying code 111 and so on. (These identifying codes are those
found in the column DISTRICT.) The Hierarchy viewer is a useful tool to check
that your data structure is correctly specified; failure to sort the data, for example,
may lead to a data structure containing too many high level units.

Adding a Further Level

We can add COUNTY as a third level to the model and examine the relative
importance of these large areas compared to the smaller DISTRICTs. First sort the
data again according to this new hierarchy of COUNTY then DISTRICT then ID.

Go to Data manipulation menu
Select Sort
Increase the Number of keys to sort on to 3
Select COUNTY as the first Key code column, DISTRICT as the second and

ID as the third
Select all named variables under the heading Input columns
Press Same as input button to overwrite current columns with sorted data
Press Add to action list and then Execute
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Now return to the Equations window. We are going to add COUNTY in at level
3 and make the coefficient of CONS, the intercept, random across COUNTY (as well
as DISTRICT and ID).

Click on either smrij term
Change N levels to 3 – ijk
Select COUNTY from the drop-down list by level 3(k)
Click Done
Click on β0ij
Check the box by k(COUNTY)
Click Done

The intercept term now has an additional subscript to indicate that it varies across
COUNTY as well as across DISTRICTs and ID. The terms v0k are level 3 random
effects and are again assumed to arise from a normal distribution. We can check the
data structure using the Hierarchy viewer:

Go to Model menu
Select Hierarchy Viewer

We still see 5639 observations and 403 DISTRICTs, but these are nested in
54 COUNTYs. The first COUNTY has 33 DISTRICTs and a total of 461 observa-
tions at level 1.
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Click More to estimate the new model

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. Trend

3-level
Click OK
Go to the Model menu
Select Compare stored models
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The fixed part is more or less unchanged as is the level 1 (between years within
DISTRICTs) variance. However, the higher-level variance has been partitioned
further into that attributable to COUNTYs and that due to differences between
DISTRICTs within COUNTYs. About 53% (75.800/[75.800 + 42.851 + 24.494])
of the total variation can be seen to be between COUNTYs with 30% between
DISTRICTs and just 17% due to year-on-year fluctuations.

This section has covered multilevel model set-up using:
Equations window—adding additional levels
Equations window—random intercepts (CONS) at different levels
Sort window—sorting the data by the hierarchy
Hierarchy viewer window—viewing the data structure
Results table window—comparing a series of models
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Interpreting the Model

Residuals

In an ordinary least squares (OLS) regression equation, the residual or error term is
the difference between the observed and fitted values. In the above model, the
equation may be written as

yijk ¼ β0x0 þ β1x1ijk
� �þ v0kx0 þ u0jkx0 þ e0ijkx0

� �
The terms inside the first set of brackets comprise the fixed part of the model,

i.e. the fitted values for all data points. The terms inside the second set of brackets
comprise the random part of the model and describe the departures from the fitted
values at each level of the hierarchy. Thus, the difference between the observed and
fitted values is comprised of residuals at three levels—the v0k, u0jk and e0ijk in the
regression equation. (Remember that x0 is the variable CONS, i.e. it takes the value
1 for every observation.) Each set of residuals is assumed to follow a normal
distribution and this assumption may be checked using similar residual diagnostics
as those that would be appropriate if using OLS. First we will consider the residuals
at level 1.

Go to the Models menu
Select Residuals
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There is a variety of options which allow a range of standard diagnostic checks to
be carried out—for example, to check the normality of the data or to look for outliers.
By default all nine functions are calculated and the results are stored in columns
c300–c308; this can be changed by entering a different number in the box by
start output at. The drop-down box in the bottom left corner specifies the level at
which the residuals are calculated; the default is level 1. We will calculate the
residuals at level 1—the e0ijk—and plot the standardised residuals against their
normal scores.

In the Residuals window, click on the Set columns button
Click Calc
Select the Plots tab at the top of the Residuals window
Select the first option standardised residual x normal scores
Click Apply

The points in the resulting graph should lie on a straight line; the fact that they do
not suggests that there is some departure from normality. For the moment we will
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ignore this and look at the residuals at level 2 (DISTRICT), calculating these and
1.96 times their standard deviation (so that we can examine 95% confidence
intervals).

Click on the Settings tab in the Residuals window
Select 2:DISTRICT to be the level at which the residuals are calculated
Change the multiplier in the box by SD(comparative) of residual to 1.96
Click on Set columns
Click Calc

Select the Plots tab
Choose a plot of residual +/-1.96 sd x rank
Click on Apply
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This plot shows the residuals or random effects for each of the 403 DISTRICTs,
ordered from those with the smallest residuals on the left to those DISTRICTs with
the largest residuals on the right. The range of values is from a reduction in the SMR
of 16 points to an increase of 27 points. Since there is another level above DIS-
TRICT, that of COUNTY, the residuals do not represent differences from the
national average but from the COUNTY average. (We could add the residual for
each DISTRICT to that of the appropriate COUNTY and plot these composite
residuals v0k + u0jk.) The residuals are accompanied by error bars of half-width
1.96 S.D.; a DISTRICT whose error bar does not cross the horizontal line through
zero has an SMR which is significantly different from the COUNTY average.

Finally, consider the residuals at level 3 (COUNTY).

Click on the Settings tab in the Residuals window
Select 3:COUNTY to be the level at which the residuals are calculated
Ensure the multiplier in the box by SD(comparative) of residual is set to 1.96
Click on Set columns
Click Calc
Select the Plots tab
Choose a plot of residual +/-1.96 sd x rank
Click on Apply
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The range of values of the COUNTY residuals is from a reduction in SMR of
15 points to an increase of 17 points. Although this is not as great as the range that is
apparent among the DISTRICTs, bear in mind that there are considerably fewer
COUNTYs than DISTRICTs (54 as opposed to 403). Thirty-three of the COUNTYs
have residuals which are significantly different from zero. Note that not all DIS-
TRICTs within these COUNTYs need to have SMRs which are significantly differ-
ent from 100; a COUNTY with a positive residual may contain DISTRICTs with
negative residuals because the components of the composite random part—u0jk and
v0k—are assumed to be independent.

Predictions Window

A number of different predictions may be made from a multilevel model depending
on whether one includes fixed effects only or a combination of fixed and random
effects. For example, prediction lines for COUNTYs are derived from the fixed part
of the model together with the residuals from the COUNTY level (the v0k).

Go to the Model menu
Select Predictions

The elements of the model are arranged in two columns in the bottom half of the
Predictions window, one for each explanatory variable. Initially, all the terms are in
grey indicating that none has been selected and that they are not included in the
prediction equation at the top of the Predictions window. The prediction equation is
built by selecting the appropriate terms; clicking on the variable name at the head of
the column (cons or (year� 79)ijk) selects all the terms in that column (turning them
black), whilst clicking on individual terms (such as β0 or v0k) toggles that term in or
out of the prediction equation. To make predictions for the 54 COUNTYs at level
3, we need to include the fixed part and the level 3 residuals.

Click on cons and (year � 79)ijk
Click on u0jk and e0ijk to remove these terms from the prediction
In the drop-down list by output from prediction to select C12
Click on Calc
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The results from this prediction are now in C12. (You may need to click on the
Refresh button in the Window section at the top right-hand corner of the Names
window to see the values that have been put in this column.) The COUNTY level
predictions range from 85.3 to 143.6. Use the Names window to name this variable
PRED3 to indicate that it is a prediction including the level 3 (COUNTY) random
effects. Then plot the predicted values for each COUNTY against YEAR.

In the Names window, click on C12
Click on Name in the Column section at the top of the Names window
Type PRED3 and press <return>
Go to the Graph menu
Select Customised Graph

Note that details of earlier graphs are still held. D1 contains plots of the crude data
whilst D10 contains the plot of residuals carried out in the previous section. To create
a new graph

Select D2 from the drop-down box in the top left-hand corner
Select the y variable to be PRED3
Select the x variable to be YEAR
Select group to be COUNTY
Select plot type to be line
Click the Apply button
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This produces a plot of 54 parallel lines, one for each COUNTY. We will
superimpose on this graph the prediction of the fixed part of the model, the mean
line given by

byijk ¼ bβ0x0 þ bβ1x1ijk
This means that we only wish to include the fixed part of the model—all of the

residual terms in the equation window should be grey.

Return to the Predictions window
Click on v0k to remove it from the prediction equation
In the drop-down list by output from prediction to select C13
Click on Calc

In the Names window, change the name of C13 to PREDFP to indicate that it is a
prediction from the fixed part only. We will plot the predicted values from the fixed
part as dataset number 2 in display 2, plotting the mean over the prediction for each
COUNTY.

Open the Customised Graph window
Ensure D2 is selected
Under ds # (dataset number) click on number 2
Select the y variable to be PREDFP
Select the x variable to be YEAR
Select plot type to be line
Click the plot style tab
Change the colour to green
Change the line thickness to 3
Click the Apply button
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The national mean SMR is highlighted in green with the predicted mean for each
COUNTY shown around it. The lines are all parallel since the effect of each
COUNTY, v0k, is assumed to be the same throughout the study period. This residual
is the horizontal distance between the national intercept and the COUNTY-specific
intercept; a positive value of v0k indicates the COUNTY mean SMR is greater than
the national mean.

Now look at the predicted means for DISTRICTs within a specific COUNTY.
First we need to generate the predicted values for each DISTRICT by including all
terms apart from the level 1 residuals e0ijk:

byijk ¼ bβ0jkx0 þ bβ1x1ijk
Return to the Predictions window
Click on v0k and u0jk to add them to the prediction equation
In the drop-down list by output from prediction to select C14
Click on Calc
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In the Names window, change the name C14 to PRED2 to indicate that these
predicted values include the level 2 (DISTRICT) random effects.

We can look at these three sets of predictions using the View or edit data
window.

Go to the Data Manipulation menu
Select View or edit data
Click on view to see a choice of variables
Select COUNTY, DISTRICT, YEAR, SMR, PRED3, PREDFP and PRED2

(multiple columns can be selected using the Control key)
Click on OK
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The variable PREDFP contains just the values from the fixed part of the model—
the intercept and slope. These values change across YEAR—the slope—but are
constant (in the same YEAR) across DISTRICTs and COUNTYs. PRED3 contains
the predicted mean for each COUNTY and although they vary from one YEAR to
another they are the same for all DISTRICTs in the same COUNTY. PRED2
contains predictions for each DISTRICT within each COUNTY. The slope is
constant across time and does not vary between DISTRICTs or COUNTYs; for
any of our three predictions, the difference between the predictions in neighbouring
years is 1.984 (the coefficient of YEAR in our current Equations window).

To illustrate the different prediction lines in a single chart, select a single COUNTY,
e.g. COUNTY number 1. (You can use theHierarchy viewer to see which COUNTY
codes exist; for example, there is no COUNTYwith code between 2 and 10 inclusive.)
To create an indicator for COUNTY number 1, for example, we use the logical
function¼¼ (two equals signs) meaning ‘is equal to’ in the Calculate window:

Go to Data manipulation menu
Select Calculate
Select the empty column C15 from the list of variables and press the right

arrow button near the top of the Calculate window
Click on the = button on the window’s keypad
Select COUNTY from the list of variables and press the right arrow button
Use the window’s keypad to enter ==1
Press Calculate
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This will create a dummy variable with the value 1 if the data are from COUNTY
number 1, 0 otherwise.

Go to the Names window and change the name of C15 to COUNTY1. Then, in
the Customised Graph window we can filter out all COUNTYs apart from the one
that we have chosen.

Return to the Customised Graph window
Ensure D2 is selected
Highlight data set number 1 under ds #
Select the filter to be COUNTY1 under the plot what? tab
Click on the plot style tab
Change the line thickness to 3
Click the Apply button

The resulting graph now has just two lines—one for the national mean and one for
the selected COUNTY. To plot the predicted lines for the DISTRICTS in COUNTY
number 1, we again need to use the filter; we can plot the DISTRICT predictions
in red.

Return to the Customised Graph window
Select ds # 2
Select the filter to be COUNTY1
Click the Apply button
Under ds # click on number 3
Select the y variable to be PRED2
Select the x variable to be YEAR
Select the filter to be COUNTY1

(continued)
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Select group to be DISTRICT
Select the plot type to be line
Click the plot style tab
Change the colour to red
Click the Apply button
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In addition to the national mean (green) and COUNTY mean (blue), the graph
now displays the DISTRICT predictions for the selected COUNTY. The vertical
distance between the green and blue lines is the level 3 (COUNTY) residual v01 (the
subscript k is replaced by the number of the COUNTY). The fact that the COUNTY
mean is below the national mean indicates that this residual is negative. The vertical
distance between each DISTRICT mean and the COUNTY mean is the level
2 (DISTRICT) residual u0j1. The vertical distance between each DISTRICT mean
and the national mean is then the composite residual v01 + u0j1. You may note that,
despite the average for this COUNTY being below the national average, some of the
DISTRICT means still lie above the national average (the green line) because the
composite residual v01 + u0j1 is greater than zero.

This section has covered model diagnostics and interpretation using:
Residuals window—checking normality at level 1
Residuals window—higher-level residuals with confidence intervals
Predictions window—predictions from the fixed part of the model
Predictions window—predictions including residuals
Graph—plotting predicted values
Graph—overlaying (multiple) graphs
Calculate window—creating a new variable

Model Building

Adding More Fixed Effects

The models fitted so far include only an intercept term (CONS) and a trend
coefficient (YEAR) in the fixed part. Now consider the addition of further variables.
Firstly, we add a quadratic term in year since the assumption of a linear trend may be
too simplistic. We can use the ^ (to the power of) function in the Calculate window
to raise our trend variable (YEAR-79) to the power of 2.

Go to Data manipulation menu
Select Calculate
Select the empty column C16 from the list of variables and press the right

arrow button
Click on the = button on the window’s keypad
Select (YEAR-79) from the list of variables and press the right arrow button
Use the window’s keypad to enter ^2
Press Calculate
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In the Names window, change the name of C16 to (YEAR-79)^2. We can add
this term in the Equations window and re-estimate the model:

Return to the Equations window
Click on Add Term
Select (YEAR-79)^2 from the drop-down list under variable in the Specify

term window
Click Done
Click on the More button to re-estimate the model

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M4
Click OK
Go to the Model menu
Select Compare stored models
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The reduction in �2�log(likelihood) is 5.476 from 1 degree of freedom—com-
fortably greater than the critical value of 3.84—so this term has significantly
improved the fit of the model. The addition of this term has, however, done nothing
to reduce the variance at any of the three levels in the model.

The next covariate we can consider adding to the fixed part of the model is the
variable FAMILY, a classification of the DISTRICTs into different types. Before
adding this to the model, we can see how mean SMRs differ across the categories of
family. We do this using the Tabulate window:

Go to Basic statistics menu
Select Tabulate
In the Output mode section at the top right of the Tabulate window, select

Means
From the drop-down list next to Variate column, select SMR
From the drop-down list next to Columns, select FAMILY
Click Tabulate
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The output window opens containing the table of means and SDs:

This shows lower mean SMRs in categories 3 and 4 (prospering and maturer
areas) and higher SMRs in mining areas (category 6). To add a categorical variable
such as this to our model, we first need to specify that it is categorical; we do this
using the Names window.

In the Names window, click on the variable FAMILY
Click on the Toggle Categorical button in the Column section at the top of

the Names window
Click on the View button in the Categories section
With family_1 highlighted, click Edit and type LONDON
Highlight family_2, click Edit and type RURAL
Highlight family_3, click Edit and type PROSPER
Highlight family_4, click Edit and type MATURE
Highlight family_5, click Edit and type URBAN
Highlight family_6, click Edit and type MINING
Click on OK
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We can now add the variable FAMILY to the model. As with any categorical
variable, we fit one fewer dummy variable than the number of categories; for this
reason, we need a reference category against which all comparisons will be made.
We will use LONDON as the reference category.

In the Equations window, click on the Add term button
Select FAMILY from the drop-down list under variable in the Specify term

window
Check that LONDON is selected as the Reference category
Click Done
Click on the More button to re-estimate the model

We have created five dummy variables named RURAL, PROSPER, etc., which
take the value 1 for a DISTRICT if it is of that type, 0 otherwise. These variables can
be seen in the Names window in columns 17–21.

In the Equations window, note that the dummy variables representing the
categories of FAMILY have subscripts jk as opposed to the variables (YEAR-79)
and (YEAR-79)^2 which have subscripts ijk. This is because the FAMILY variable
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is measured at the DISTRICT level—it remains constant for each DISTRICT from
one year to another.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M5
Click OK
Go to the Model menu
Select Compare stored models

The intercept or coefficient of the CONS term has changed as this is now the
estimated mean in 1979 for areas in Inner London (the reference category). There has
been a significant reduction in �2�log(likelihood) with the loss of just 5 degrees of
freedom. The total variance has been reduced by 36.6% from 143 to 91; whilst the
year-on-year (level 1) variation has changed little, the between DISTRICT (level 2)
variance has been reduced by 29% and the between COUNTY (level 3) variance by
53%. The addition of a level 2 variable has then had the greatest effect on the
apparent variation between level 3 units, indicating that to a large extent there is
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homogeneity of the type of DISTRICT found within each COUNTY. (This is not
surprising; as an example, consider the fact that all of the DISTRICTs classified as
being Inner London must lie within the same COUNTY, i.e. London.)

We can calculate the explained variance (R2 ¼ 1� bσ2=s2y) at any time by making

a comparison of the variance in our current model, bσ2 , and the variance in the
original data, s2y . (See, for example, Gelman and Hill 2007.) From M5 in the table

above, we have bσ2 ¼ 90:695. To obtain s2y we could refit the first model—labelled
‘Trend 1-level’ above—excluding the trend variable (YEAR-79) from the fixed part.
Alternatively, we can use the Averages and Correlation window to obtain the SD
of the dependent variable SMR.

Go to the Basic Statistics menu
Select Averages and Correlations
Ensure that Averages is selected in the Operation section
Select SMR from the drop-down list
Click Calculate

In the output window, we can see that the variable SMR has a mean of 112.79 and
a standard deviation of 14.182, giving a variance of 201.129. So the R2 for M5 is
0.550.

Intervals and Tests Window

So far the change in likelihood has been used to assess improvement in the fit of the
model to the data. It is also possible to carry out hypotheses tests for either fixed or
random parameters using the Intervals and tests window. To illustrate how tests are
formulated, consider the following two hypotheses. Firstly, if we are interested in
testing whether SMRs in urban DISTRICTs are the same as those in Inner London
then, since Inner London is the baseline category, this is equivalent to testing
whether the coefficient for URBAN is significantly different from 0, i.e.

Hypothesis1 : β6 ¼ 0

We are not limited to single parameter tests but can also formulate significance
tests involving a function of two or more parameters, as well as joint significant tests
involving two or more functions of the model parameters. For example, consider a
test of the hypothesis that SMRs in rural, prospering and mature DISTRICTs are the
same, i.e.
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Hypothesis 2 : β3 ¼ β4 ¼ β5 or equivalently

β3 � β4 ¼ 0ð Þand β3 � β5 ¼ 0ð Þ implying β4 � β5 ¼ 0ð Þ

The Intervals and tests window gives us a choice of testing contrasts among the
fixed or random parameters; in this case, we want to test the fixed parameters.

Go to the Model menu
Select Intervals and tests
Select fixed at the bottom of the window

The # of functions relates to the number of functions or contrasts of the parameter
estimates being tested under a single hypothesis; for hypothesis 1 only one function
is necessary whilst two functions are required for hypothesis 2. The boxes beside
each fixed parameter are used to enter the function of the parameters to be tested,
whilst the constant (k) contains the value to which the function is compared which, in
both of the following cases, is the default value zero. So for hypothesis 1:

Select the box beside fixed : urban
Type 1
Press Calc
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Note that the function f is a single multiple of the URBAN parameter and so
equals β6, and because k ¼ 0, ( f � k) also equals the parameter β6. The test statistic,
based on Wald’s Test, appears at the bottom of the window, joint chi sq test(1df)
= 1.261, and this may be compared to a chi-squared distribution to either accept or
reject the hypothesis that β6 ¼ 0. In this instance we can see that the p-value of 0.261
is greater than the conventional threshold of 0.05 and, as such, we do not reject the
hypothesis that the mean SMR is the same in Inner London and urban DISTRICTs.

Now to formulate a test for Hypothesis 2 (if the Intervals and tests window is
still open, close it down and open it again to erase details of the previous test), we
need to set up the two tests corresponding to RURAL � PROSPER ¼ 0 and
RURAL – MATURE ¼ 0. (The third test, corresponding to PROSPER –

MATURE ¼ 0, is implied by the other two tests.)

Ensure fixed is selected at the bottom of the Intervals and tests window
Change the # of functions to 2
In the first column, enter a 1 beside fixed:rural and a –1 beside fixed:prosper
In the second column, enter a 1 beside fixed:rural and a –1 beside fixed:

mature
Press Calc

Each column specifies a function of the parameters which is compared to
constant (k) equal to zero; for example, in column 1, the function is
(1 � β3) � (1 � β4) ¼ 0 (i.e. β3 ¼ β4).
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This time we are jointly testing two functions and therefore base the test on two
degrees of freedom. The resulting p-value of 0.122 indicates that we cannot reject the
hypothesis that the mean SMRs of categories RURAL, PROSPER and MATURE
are the same.

In practice at this stage we might want to collapse the variable FAMILY into just
three categories: a baseline category comprising Inner LONDON and URBAN areas
and a combination of RURAL, PROSPERing and MATUREr areas, which would
involve creating a new variable using the Calculate window and replacing the
variables RURAL, PROSPER and MATURE in the model with this new variable.
However, we will continue for now with all six categories.

This section has covered model building using:
Equations window—adding an explanatory (independent) variable
Tabulate window—tabulating variable means across categories
Names window—declaring categories for a variable
Averages and correlation window—obtaining the mean and standard devi-

ation of a variable
Intervals and tests window—testing hypotheses involving single and multi-

ple parameters
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Random Coefficients

We now consider another important class of multilevel model: random coefficients
(also known as random slopes). In variance components models only the intercept is
considered random; however, in the following model we will also allow the slope to
vary across higher levels.

Random Slopes

The following section considers the possibility that the rate at which the SMRs have
been decreasing may vary from one COUNTY to another. The models fitted so far
have contained random intercepts for both COUNTY and DISTRICT; however, the
following model will also consider random slopes across the level 3 units
(COUNTYs). This is achieved in the Equations window by specifying that we
want the coefficient of (YEAR-79) to vary randomly across COUNTYs.

Return to the Equations window
Click on (year 2 79)ijk and check the box by k(COUNTY)
Then click Done
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The coefficient of (year 2 79)ijk has changed from β1 to β1k indicating that this
parameter now varies randomly across COUNTYs. The estimate of β1k is now given
as a mean β1, common to all COUNTYs, plus a level 3 residual v1k, unique to the kth
COUNTY. The level 3 residuals v0k and v1k now have a joint multivariate normal
distribution with variances σ2v0 and σ2v1 respectively and covariance σv01. Click on
More to estimate this model.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M6
Click OK
Go to the Model menu
Select Compare stored models
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Note that should you want you can select a subset of stored models to compare by
going to the Manage stored models window in the Model menu.

There is little change in the fixed part of the model, nor in the level 1 or level
2 variances. There has, however, been a large reduction in the value of �2�log
(likelihood). Therefore, the addition of random slopes has improved the overall fit of
the model. (If the covariance between the intercept and slope at the COUNTY level
does not show up in the results table then go toManage stored models in theModel
menu, ensure that the box by covariance in the Metric section is checked, and click
on the Compare button.) The three random terms at level 3 now refer to the variance
of the intercept (CONS) for COUNTYs—σ2v0, the variance of the slope (YEAR79)
for COUNTYs—σ2v1 , and the covariance between the two, σv01. Whilst the two
additional random terms appear large compared to their standard error, it is possible
to test this formally using the Intervals and tests window. This time we are testing
contrasts on two random parameters.

Go to Model menu
Select Intervals and tests
Select random at the bottom of the window
In the box beside # of functions type 2

There are two functions to test; our hypothesis is
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Hypothesis 3 : σ2v1 ¼ σv01 ¼ 0 or

σ2v1 ¼ 0 and σv01 ¼ 0

In the first column, enter a 1 beside county:year79/cons
In the second column, enter a 1 beside county:year79/year79
Press Calc

The value of 19.330 is highly significant when compared with a chi-squared
distribution with two degrees of freedom ( p < 0.001); we therefore reject the
hypothesis that the two random terms are not significantly different from 0. In
general, when testing the significance of random parameters (variances and covari-
ances), using either the likelihood ratio test (comparing values of �2�log(likeli-
hood)) or the Wald test (using the Intervals and tests window), we need to halve the
p-value. This is essentially because variances are non-negative and the alternative
hypothesis is therefore one-sided. For a more detailed explanation of this issue, the
reader is referred to Snijders and Bosker (2012).
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The level 3 variance is now more complex and more difficult to interpret;
however, the Variance function window can be used as an aid.

Variance Function Window

Go to Model menu
Select Variance function

The purpose of this window is to display and calculate the variance function at any
level of the current model. The variance function for level 1 is shown by default; this
only involves one term because the current model assumes that the level 1 variance is
constant for all observations. (Remember that x0 is our CONStant and takes the
value 1 for all observations.) To view the level 3 variance function:

In the drop-down list by level in the bottom left-hand corner, select 3:
COUNTY
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The current model has two terms random at level 3, the intercept and the slope, so
the level 3 variance is a function of two random variables. The function shown is the
variance of the sum of the two random terms v0kx0 and v1kx1ijk. Since x0 is just the
CONStant term, taking the value 1, the level 3 variance is a quadratic in x1ijk
(YEAR-79). We can use the Variance function window to calculate this function
and use the Graph window to plot it. This will tell us how the variance between
COUNTYs has been changing over time.

Note that the columns in the table in the Variance function window named cons,
(year-79), result and result se allow us to estimate the variance function at specific
values of (YEAR-79). However, rather than enter the values from 0 to 13 it is simpler
to estimate the function for all data points.

In the drop-down menu by variance output to, select C22
Click calc

In the Names window name C22 VARF3. To plot the level-3 variance across the
observed values of YEAR79:

From the Graph menu, select the Customised Graph window
Select a new display D3
Highlight ds # 1
Select y to be VARF3
Select x to be YEAR
Click Apply

The level 3 (between COUNTY) variance has steadily decreased from a high of
57.2 in 1979 to a low of 24.6 in 1992. It therefore appears that absolute differentials
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between COUNTYs have been decreasing over time. Another way of examining this
change is by looking at the prediction graphs. First calculate the predicted values
using the random intercepts and slopes at COUNTY level:

Choose the Predictions window from the Model menu
Click on cons, (year 2 79)ijk and (year 2 79)^2ijk to ensure that they are

included
Click on u0jk and e0ijk to remove them from the prediction but ensure that v0k

and v1k are included
Select PRED3 for output from prediction to
Click Calc

Next re-calculate the predicted values using the fixed part of the model only:

Click on v0k and v1k to remove these terms from the prediction
Select PREDFP for output from prediction to
Click Calc

We have ignored the categories of the FAMILY variable indicating the type of
each DISTRICT. This is because we are only interested at the moment in seeing how
mortality has changed over time in each COUNTY, and not how mortality varies
according to FAMILY. (The inclusion of the categories of FAMILY would give us
up to six lines for each COUNTY, corresponding to the different DISTRICT types
within each COUNTY.) We can plot these new level 3 predictions using the
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Customised graph window, overlaying the national mean in green on top of the
COUNTY-specific slopes.

Return to the Customised Graph window
Select a new display D4
Highlight ds # 1
Select y to be PRED3
Select x to be YEAR
Select COUNTY as the group
Change plot type to line
Click Apply
Highlight ds # 2
Select y to be PREDFP
Select x to be YEAR
Change plot type to line
Under the plot style tab, set colour to green
Set line thickness to 3
Click Apply

The plot shows the individual predicted trends for each COUNTY plotted around
the mean trend line shown in green. The fact that the COUNTY lines are converging
towards the mean line over time demonstrates the decrease in level 3 variation
over time.
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Higher-Level Residuals

There are now two sets of residuals at the COUNTY level; we can look at these using
the Residuals window.

Under the Model menu, open the Residuals window
Click on the Settings tab
Select the level to be 3:COUNTY
Change the multiplier to 1.96 for the SD (comparative) of residual
Click on Set columns

Each of the output items now requires two columns: the first column relates to the
intercept CONS and the second to the slope YEAR79. For example, C300 will store
the residual for CONS and C301 the residual for YEAR79. We can plot both sets of
residuals, together with 95% confidence intervals:

Click Calc
Select the Plots tab
Select residual +/- 1.96 sd x rank
Click Apply
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These plots can be used to examine how many COUNTYs have slopes which
differ from the average as well as how many have intercepts which differ from the
average. Note that a COUNTY’s rank for the intercept residual will not necessarily
be the same as its rank for the slope residual. To see how the intercept and slope
residuals are correlated between COUNTYs:

Return to the Plots tab in the Residuals window
Under the pairwise heading, select a residuals plot
Click Apply

This shows the strong negative correlation between the two sets of residuals.
Those in the top left quadrant refer to those COUNTYs with negative intercept
(CONS) residuals and positive slope (YEAR-79) residuals. This suggests that those
COUNTYs which had lower than average SMRs in 1979 experienced a more
gradual decrease in SMR over the 14 YEARs. Similarly, the COUNTYs featured
in the bottom right quadrant are those which had above average SMRs in 1979
(positive CONS residual) but which experienced mortality decreasing at a faster than
average rate (negative (YEAR-79) residual).

Complex Level 1 Variation

The multilevel framework allows variables to be random at any level so, for
example, we may wish to extend the previous model such that trends in SMR not
only vary across COUNTYs but also vary across DISTRICTs at level 2. However,
random variables at level 1 have a slightly different interpretation; this concerns the
effects of heterogeneity (i.e. non-constant variance). In this example, we may
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consider whether the variation between observations is constant throughout the
14 years or whether it changes. We do this by making the coefficient of the variable
YEAR79 random across observations (ID—our level 1 identifier).

Return to the Equations window
Click on (year 2 79)ijk
Check the box at i(id)
Click Done

Now estimate this model by clicking on the More button.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M7
Click OK
Go to the Model menu
Select Compare stored models
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There is evidence of heterogeneity with a substantial reduction in �2�log(like-
lihood). This means that the degree of scatter of individual observations about the
predicted DISTRICT (level 2) means is not constant over time; it appears to have
been decreasing. We can use theVariance functionwindow to estimate the variance
at each level, creating two new variables VARF2 and VARF1 and plotting these
three variables against YEAR in the Graph window.

Open the Variance function window under the Model menu
Ensure that 1:ID is selected to be the level
In the drop-down menu by variance output to, select C23
Click Calc
Select 2:DISTRICT to be the level
In the drop-down menu by variance output to, select C24
Click Calc
Select 3:COUNTY to be the level
In the drop-down menu by variance output to, select VARF3
Click Calc

In the Names window name C23 VARF1 and C24 VARF2. We can plot all of
these variance functions on the same scale across the observed values of YEAR; this
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will show us how the variance at COUNTY, DISTRICT and YEAR level have been
changing over time.

Go to the Customised Graph window
Select display D3
Highlight ds#1
Select y to be VARF3
Select x to be YEAR
Select the plot type to be line
Under the plot style tab, select the line thickness to be 3
Click Apply
Under the plot what? tab, select ds#2with VARF2 as the y variable, YEAR as

the x variable, and the plot type to be line
Under the plot style tab, select the colour to be red and the line thickness to

be 3
Click Apply
Under the plot what? tab, select ds#3with VARF1 as the y variable, YEAR as

the x variable, and the plot type to be line
Under the plot style tab, select the colour to be light magenta and the line

thickness to be 3
Click Apply
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We have not fitted any random effects at level 2, so the variation between
DISTRICTs within COUNTYs is assumed to be constant. The variation between
COUNTYs decreased steadily between 1979 and 1992; however, the level 1 variance
decreased from 1979 to 1988 but may have increased slightly since then. (This may
also be an ‘edge effect’.) The total variation has decreased from 123 in 1979 to just
76 in 1992. In a similar manner it is possible to explore the extent to which the level
2 variation (between DISTRICTs) has also been changing over time.

By this stage the user has become familiar with the basics of model fitting for
continuous (normally distributed) responses. The fixed part of the model can be built
up as with an ordinary least squares (OLS) regression model, including any combi-
nation of continuous and categorical variables and interactions between them. The
significance and effect of variables can be examined through changes in the likeli-
hood or through comparisons of the parameter estimates with their estimated stan-
dard errors.

The difference between such models and OLS regression is the ability to separate
the variance into the different levels in the model—COUNTY, DISTRICT and the
yearly observations within DISTRICTs in this example—and then to model this
variance by considering other variables to be random at any of the levels. At higher
levels this has the interpretation of fitting random slopes; at the lowest level this is
modelling heterogeneity (non-constant variance) within the data. We are again able
to test for the significance of any of these random terms.

The example used has been illustrative of the methods employed when fitting a
multilevel model; it is not, however, the way in which we would normally model
such data. The following section goes on to consider a generalised linear model for
these data; however, before proceeding to the more complex modelling it is impor-
tant to have a good understanding of the basics covered up to this point.
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This section has covered random coefficients using:
Equations window—making a variable random at different levels
Intervals and tests window—testing hypotheses about random parameters,

e.g. the significance of a random slope
Variance function window—calculating a non-constant variance
Graph window—plotting random slopes
Predictions window—predictions including random intercepts and random

slopes
Residuals window—plotting intercept and slope residuals with confidence

intervals
Residuals window—pairwise comparisons of intercept and slope residuals
Equations window—modelling heterogeneity at level 1

A Poisson Model: Introduction

The model that we have fitted assumes that the standardised mortality ratio follows a
normal distribution. We found that the variance decreased over the period
1979–1992; over this time the standardised mortality ratio also fell. This suggests
that there may be a link between the variance in a particular year and the average
mortality rate in that year. We have also attached equal importance to every area and
in every year; this is probably not sensible since the size of areas in terms of their
populations and the number of deaths observed varies considerably both across areas
and over time. One possibility would be to weight each observation according to the
population of the district in that year; this requires weighting at each level of analysis
and would ensure that areas from which we have the most information—the largest
areas in terms of their populations—are afforded the most weight. In this section, we
adopt an alternative approach.

The local mortality datapack is based on counts of deaths. Instead of modelling a
transformation of this response—the SMR—we can consider modelling the actual
counts of deaths. Such data are discrete rather than continuous—you cannot observe
fractions of deaths—and they also tend to be extremely skewed (see histogram
below). Therefore, the assumption of a normal distribution is usually not
appropriate.
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Instead we can fit a generalised linear model and approximate a Poisson distri-
bution for the data. This is the basis of the analysis conducted by Leyland (2004) on
data including these.

Setting Up a Generalised Linear Model in MLwiN

First open the original worksheet lmdp.ws again.

Go to the File menu
Select Open worksheet
Navigate to and open the worksheet called lmdp.ws

We use the Generate vector window to create a constant and a unique identifier
for every data point or observation.

Select the Generate vector window from the Data Manipulation menu
Select Generate vector
Select Type of vector to be Constant vector
Select C9 to be the Output column
Enter 5639 (the number of data points) beside Number of copies
Enter 1 beside Value
Click the Generate button
Select Type of vector to be Sequence

(continued)
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Select C10 to be the Output column
Enter 1 beside Start number
Enter 5639 (the number of data points) beside End number
Enter 1 beside Step value
Click the Generate button

In the Names window name C9 CONS and C10 ID. Then go to the Equations
window. We will set DEATHS to be the response variable in a 3-level model: ID
(observations) in DISTRICTs in COUNTYs.

Click on either of the y terms
Select DEATHS as the dependent variable
Select 3 – ijk for N levels
Select COUNTY for level 3(k)
Select DISTRICT for level 2(j)
Select ID for level 1(i)
Click on Done

So far we have simply repeated the steps for the 3-level model in the introductory
tutorial with the response variable being DEATHS rather than SMR. We now have
to amend the default distribution for the response. In the Equations window, we will
specify a Poisson distribution with a log link.

Click on the N that defines the normal distribution
Check the box marked Poisson
Click on Done

These steps have specified the response to be a Poisson random variable, which
defines the lowest level variance function, and the linearising function of the
response (the relationship between the response variable, DEATHS, and any of
our explanatory variables) is taken to be the natural logarithm.

Setting Up a Generalised Linear Model in MLwiN 237



Now return to the Equations window and add CONS to the fixed part of the
model only.

Click on β0x0
Select CONS from the drop-down list
Click on Done

This time you may notice that there was no possibility to make the CONStant
random at the lowest level (ID). This is because we have already defined the error
structure at the lowest level when we specified that the data had a Poisson distribu-
tion. MLwiN automatically generated a new variable—which it called BCONS.1—
which it will use in the estimation. This new variable can be seen in the Names
window.

We are using the CONStant in the fixed part of the model to estimate the intercept
or mean. We are going to fit a single-level Poisson model to start with, ignoring any
variation between DISTRICTs and COUNTYs. As in the introductory tutorial, we
will fit a quadratic in YEAR centred around 1979.

Go to Data manipulation menu
Select Calculate
Select the empty column C12 and press the right arrow button
Click the ‘¼’ button on the keypad
Select YEAR from the list of variables and press the right arrow button
Use the window’s keypad to enter –79
Press Calculate
Clear this calculation using the backspace or delete buttons on your keyboard

or by pressing the Clear button in the Calculate window
Next, select the empty column C13 and press the right arrow button
Click the ‘¼’ button on the keypad
Select C12 from the list of variables and press the right arrow button
Use the window’s keypad to enter ^2
Press Calculate

Use the Names window to name C12 and C13 YEAR79 and YEAR79^2,
respectively. Next, return to the Equations window to add both terms to the fixed
part of the model only.

Click on the Add term button
Select the variable YEAR79 from the drop-down list
Click on Done

(continued)
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Click on the Add term button
Select the variable YEAR79^2 from the drop-down list
Click on Done

The Equations window should now look like this (remember you can use the
Name,Estimates and + buttons to display more information about the current model
in the Equations window):

The response, DEATHs, is assumed to follow a Poisson distribution with param-
eter πijk. The predicted number of deaths is then estimated by taking the log of πijk
(i.e. linearising the response) and setting this equal to the linear predictor on the
right-hand side. This linear predictor is estimated as a quadratic function of time and
the intercept in the predictor, β0, does not vary across COUNTYs or DISTRICTs
since we have included no random effects at these levels. This model will provide
estimates of how the average number of deaths has changed over time (the fixed part)
allowing just for random fluctuations from one year to the next (the random part).

The Offset

The model described above will fit the observed number of DEATHS in an area
using just a mean and a linear and quadratic term in YEAR. However, unlike the
SMR this response variable has not been scaled. That is, the SMR of an average
DISTRICT in 1992 should be 100; the number of DEATHS in that DISTRICT may
be 10 or 10,000 depending on the size of the population. All that an SMR of 100 tells
us is that the observed number of DEATHS is the same as the EXPECTED number;
we are now trying to fit that observed number and so need to account for the
EXPECTED number in our model. We will do this by including it as an offset
term. We can think of this as modelling the log of the ratio of the predicted deaths
πijk to the EXPECTED deaths Εijk as
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log πijk=Eijk

� �
¼ β0x0 þ β1x1ijk þ β2x2ijk

In terms of the predicted number of deaths, this can be rewritten as

log πijk
� � ¼ log Eijk

� �þ β0x0 þ β1x1ijk þ β2x2ijk

In other words, the logarithm of the EXPECTED number of deaths in each area,
based on population size and age-sex composition, is entered into the regression
equation but its coefficient is fixed at 1 rather than being estimated freely, as is the
case with the covariate coefficients for CONS, YEAR79 and YEAR79^2. MLwiN
provides a facility to do this; the variable to be offset must be named OFFS. We
can create a variable containing the logarithm of the expected count using the LOGE
function in the Calculate window.

Go to Data manipulation menu
Select Calculate
Select the empty column C14 and press the right arrow button
Click the ‘¼’ button on the keypad
Select LOGE from the list of functions and press the up arrow button
Click the ‘(’ button on the keypad
Select EXPECTED from the list of variables and press the right arrow button
Click the ‘)’ button on the keypad
Click the Calculate button

In the Names window, name C14 OFFS. This variable is now included in all
subsequent Poisson models unless it is renamed.

Non-linear Estimation

As mentioned above, generalised linear models are approximated in MLwiN using a
linearising function based upon an expansion of the Taylor series. Specialist knowl-
edge of this approximation is not necessary; however, users should be aware of the
following options which are available when using non-linear estimation.

Click the Nonlinear button at the bottom of the Equations window

A window appears and provides details of the options for three settings:

• Distributional assumptions give us the options of Poisson or extra Poisson
variation at level 1. A Poisson distribution has an equal mean and variance such
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that E(yijk)¼ Var(yijk)¼ πijk. However, it may be that such a distribution does not
fit the data well; the most common situation is one in which the tail of the
observed distribution is too heavy. We can sometimes obtain a better approxi-
mation to the data by allowing extra Poisson variation; the mean remains
unchanged but we fit the variance as Var yijk

� � ¼ πijkσ2e . Poisson (distributional)

variation can then be seen to be a special case of this in which σ2e ¼ 1.
• Linearisation gives us the choice of using a first order or second order

approximation to the Taylor series.
• Estimation type gives us the option of using marginal quasi-likelihood (MQL)

or penalised quasi-likelihood (PQL).

The latter two options affect the way in which coefficients are estimated. Bias in
parameter estimates tends to be lower when using second order approximations and
PQL estimation; however, there is an associated cost in as much as estimation may
take longer. The PQL estimation procedure is also somewhat less robust and you
may experience problems with convergence. A guideline is often to use first order,
MQL when exploring the data and to use second order, PQL to test the model and
obtain final estimates.

We will begin by using the default settings, assuming Poisson variation and a
first order, MQL estimation procedure. These options may be set by clicking the
Use Defaults button in the Nonlinear Estimation window and then clicking Done.

This section has covered setting up a GLM using:
Equations window—changing the distributional assumptions
Calculate window—using arithmetical functions
Adding an OFFSet to a Poisson model
Equations window—non-linear estimation options

Model Interpretation

Press the Start button to estimate the model.
To view the estimates, it will be helpful to change the precision of the display.

Go to the Options menu
Select Numbers
Increase the # digits after decimal point to 4
Click Apply and then Done
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By clicking on the Estimates button in the Equations window, the following
should appear:

The parameter estimates are now on the log scale and should be treated as such
with the OFFSet term included; for example, the predicted number of deaths in 1979
(when both YEAR79 and YEAR79^2 equal 0) has been fitted as 1.272 (¼e0.2403)
times the expected number of deaths. Since the expected number of deaths varies
from DISTRICT to DISTRICT, so will the predicted number of deaths. Note that
MLwiN does not give values of �2�loglikelihood for generalised linear models.

We can now consider the effects of COUNTY and DISTRICT by letting the
intercept or mean CONS vary at random across these two levels.

Return to the Equations window
Click on CONS
Click on the check box by j(DISTRICT)
Click on the check box by k(COUNTY)
Click on Done
Click on the More button to re-estimate the model

The parameter estimates in the fixed part are little changed; what is clear,
however, is that there is variation over and above the Poisson variation in the counts
that we might expect from one year to the next. Of the higher-level variation, about
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64% (0.0059/[0.0059 + 0.0033]) is at the COUNTY (as opposed to the DISTRICT)
level; this figure is very similar to that obtained from the 3-level variance compo-
nents model of the SMR.

We can see what is going on more clearly using the Graph window. First of all
we will get Predictions by DISTRICT and output these to C15.

Go to Model menu
Select Predictions
Click on cons, year79ijk and year79^2ijk to include all terms in the Predic-

tions equation
Select C15 for output from prediction to
Click Calc

In the Names window, change the name of C15 to PRED2. In a similar manner
we can put the predicted values for the fixed part in c16 and the level 3 predictions in
c17.

Return to the Predictions window
Click on v0k and u0jk to remove them from the Predictions equation
Select C16 for output from prediction to
Click Calc
Click on v0k to include it in the Predictions equation
Select C17 for output from prediction to
Click Calc
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Name the variables C16 and C17 PREDFP and PRED3, respectively. You will
note from the summary statistics in the Names window that these prediction
equations are on the log scale; they also do not include our OFFSet term. As such,

we really have the predicted values log by=Eijk

� �
.

We can very easily convert these to predicted SMRs by taking the EXPOnents in
the Calculate window:

Go to Data manipulation menu
Select Calculate
Select the PRED2 and press the right arrow button
Type ¼100� using the keypad
Select the function EXPOnential from the list and press the up arrow button
Click the ‘(’ button on the keypad
Select PRED2 from the list of variables and press the right arrow button
Click the ‘)’ button on the keypad
Click the Calculate button

Repeat this process for the variables PREDFP and PRED3. We can now plot the
predicted SMR against the observed values; PRED2 includes DISTRICT and
COUNTY effects but assumes that the year-on-year fluctuations are part of a Poisson
process.
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The variability in the predicted SMRs (range 82–178) is slightly less than in the
observed SMRs (range 75–179). However, some of the points on this graph are a long
way from the diagonal (if a point lies on the diagonal, then the observed and predicted
SMRs are equal).We can identify some of the points that lie further from the diagonal
by clicking on those points in the graph. Some of those in the lower right-hand
quadrant—where observed SMRs are considerably larger than the predicted—can be
identified as belonging to district 2835 in county 28. It may be worth examining some
of these points in more detail using the View or edit data window, clicking the view
button to select the required variables and resizing the window if necessary:
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For most years in district 2835 there were more deaths than expected; however,
the expected number of deaths (and therefore the population) was rather small (range
16–29). The observed SMRs for this district show considerable disparity, ranging
from 174 in 1981 to 99 in 1986. The values in PRED3 suggest that county 28 as a
whole has an SMR which is slightly below average, the value of 97 in 1992 being
lower than the fitted average in PREDFP of 101. PRED2 contains the predicted
SMRs based on the fixed part of the model—containing just an intercept and a linear
and quadratic term in YEAR—and the residuals at levels 2 (DISTRICT) and
3 (COUNTY). Since both sets of residuals have been shrunk towards zero, the
predicted SMRs are also known as shrunken estimates. (This name may seem
confusing, since the estimates for individual years are not always closer to the
average in PREDFP. For example, in 1982 the observed SMR of 122 is nearer to
the average of 120 than the shrunken estimate of 127. This is because the shrunken
estimate for any one year is derived from data for all years in that district—and,
indeed, for all districts and all counties—and in this sense is thought to be a
closer approximation to a ‘true’, underlying relative risk of mortality.) Note that
the values of the predicted SMR are much closer to the observed values for the
previous DISTRICT, 2830, reflecting the larger number of expected deaths and the
consequent increase in confidence that the observed rate is close to the ‘true’
mortality rate.

We can also plot the predicted values at national and COUNTY level by YEAR:
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This graph illustrates the convergence of SMRs that we noted in the previous
analysis even though we have not included a random slope; this is to be expected
since the assumption of Poisson variation means that we can expect the variance to
decrease as the number of DEATHS decreases.

You can continue to build up the model as before, entering random effects where
appropriate. The plots of predicted SMRs can be broken down into the three area
groupings—urban areas and inner London (URBANL), rural, prospering and
maturer areas (RUPRMA) and MINING using the layout option of the Graph
window. These might look as follows.
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These graphs indicate that there are clear differences between the three types of
area in terms of their mean SMR, with MINING areas tending to have the highest
SMRs. One of the RURAL districts—DISTRICT 4820—appears to be outlying with
the highest predicted SMR over the period.

This section has GLM interpretation using:
Equations window—interpreting parameter estimates
Calculate window—converting predicted values back to SMRs

Predictions and Confidence Envelopes

Compare the parameter estimates obtained from the basic 1-level and 2-level models
with YEAR79 as the sole covariate. Note particularly the standard errors in the fixed
part of the two models; whilst the standard error associated with the intercept
(CONStant) has increased with the addition of another level, as we might expect,
that associated with the slope (YEAR79) has actually decreased from 0.0387 to
0.0164. One of the reasons for fitting a multilevel model is that single-level models
tend to underestimate the standard errors in the fixed part, so what is the cause of this
counter-intuitive result?

To understand this apparent anomaly, it is necessary to consider the confidence
that we have in any predicted value byij ¼ bβ0 þ bβ1x1ij. The variance of our predicted
value byij is given by

248 11 Multilevel Linear Regression Using MLwiN: Mortality in England and Wales. . .



var byij� � ¼ var bβ0� �
þ x21ijvar bβ1� �

þ 2x1ijcov bβ0,bβ1� �
From the current (2-level) model, we have estimates of var bβ0� �

and var bβ1� �
as

(0.5439)2 and (0.0164)2, respectively. However, there is no estimate of the covari-
ance in the Equations window. This parameter is stored by MLwiN, but we will
have to find it.

Columns C1096–C1099 are used by MLwiN to store, respectively, the random
parameter estimates, their estimated covariance matrix, the fixed parameters and
their estimated covariance matrix. Both covariance matrices are stored in lower
diagonal form. Take a look at these four columns in the Data window.

Go to Data Manipulation menu
Select View or edit data
Click on the view button
Scroll down and highlight C1096, C1097, C1098 and C1099
Click the OK button and resize the window if necessary

Looking at columns C1098 and C1099 we find the estimated distribution of the
fixed parameters to be

bβ0bβ1
" #

� N
125:6982

�1:9845

� �
,

0:2958

�0:0017 0:0003

� �� 	

Our estimates of the two parameters are therefore not independent; we find a
negative correlation of about �0.2 between the intercept and the slope. We can use
the Predictions window to plot the predicted line and a 95% confidence envelope.
First save the data so that we can return to the current model when we have finished
our exploration.

Go to File menu
Select Save worksheet as. . .
Type lmdpapp1.ws as the new filename
Click the Save button
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The Predictions window is described in more detail when it is used later in this
tutorial. At this stage we will do little more than detail the commands. To start with
we will obtain the predicted values of the SMR for each COUNTY, DISTRICT and
YEAR based on the fixed part of the model alone, together with 1.96 times the
standard error of these estimates. (A 95% confidence interval can be constructed as
the estimate � 1.96 standard errors.) At the moment, the fixed part of the model just
contains the intercept and the time trend YEAR79.

Go to Model menu
Select Predictions
Click on β0 and β1
In the drop-down list by Output from prediction to select C12
Edit the multiplier of S.E. to 1.96
In the drop-down list by S.E. of select Fixed
In the drop-down list by Standard Error output to select C13
Click on Calc

C12 now contains our predicted regression line and C13 contains 1.96 times the
standard error of the fixed parameters. We can plot these using the Customised
Graph window, plotting the predicted values against YEAR as a line graph.

Go to the Graphs menu
Select Customised Graph(s)
Select the second dataset, D2, from the pull-down list at the top left of the

window
From the drop-down list by y select C12
From the drop-down list by x select YEAR
Change the plot type to line
Click the Apply button
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This produces a line graph of the predicted mean SMR. We can add confidence
intervals around this line using the y errors feature on the error bars tab:

In the Customised Graph window, click on the error bars tab
Select C13 to be the y errors + and the y errors –
Change the y error type to lines
Click on Apply

This is the predicted regression line together with 95% confidence intervals. We
will now compare this with the single-level model. We start by removing CONS
from the random part of the model at level 2 and then we re-estimate the model.

In the Equations window, click on u0j
Remove the tick by j(district)
Click on Done
Click on More

This returns us to the single-level model that we had fitted previously. We can
now use the Predictions window again to obtain the predicted values of the SMR
based on the fixed part of the model, together with appropriate multiples of the
standard errors of these estimates.
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In the Predictions window, ensure that both fixed terms are included but not
the random terms

In the drop-down list by Output from prediction to select C14
Edit the multiplier of S.E. to 1.96
In the drop-down list by S.E. of select Fixed
In the drop-down list by Standard Error output to select C15
Click on Calc

We can plot the estimates from this single-level model alongside those from the
2-level model using the position feature of the Customised Graph window.

In the Customised Graph window, click on row 2 under ds #
From the drop-down list by y select C14
From the drop-down list by x select YEAR
Change the plot type to line
Click on the error bars tab
Select C15 to be the y errors + and the y errors –
Change the y error type to lines
Click on the position tab
Click in the box on row 1, column 2
Click on Apply
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(Note: the above graphs have added titles.) We can see that the confidence
envelope around the predicted mean is much tighter under the 1-level model than
the 2-level model. We can confirm this by looking at the variables C12–C15 in the
Names window:

C13, 1.96 times the standard error under the 2-level model, varies between 1.046
and 1.066; C15, 1.96 times the standard error under the single-level model, takes
values ranging between 0.308 and 0.581. The single-level estimates show signs of
‘misestimated precision’—ignoring the data hierarchy leads to a confidence enve-
lope that is too tight.

Retrieve the saved worksheet before returning to the section on the hierarchy
viewer:

Go to File menu
Select Open worksheet
Choose lmdpapp1.ws as the filename
Click the Open button
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Chapter 12
Multilevel Logistic Regression Using
MLwiN: Referrals to Physiotherapy

Abstract This chapter contains a tutorial for analysing a dichotomous response
variable in multilevel analysis using multilevel logistic regression.

After introducing the multilevel logistic regression model, we move on to the
example data set that will be used. This concerns variation in referral rates of general
practitioners (GPs) to physiotherapists. The outcome or dependent variable is
whether or not a patient was referred to a physiotherapist, something that may be
influenced by characteristics of both patient and GP. We briefly discuss the theoret-
ical model that the authors of this study applied to formulate hypotheses to explain
the apparent variation in referrals.

The data were collected in the late 1980s in the Netherlands. The structure of the
data was that consultations for problems with the locomotive system (the main
reason for referral to physiotherapists) were nested within GPs.

In the chapter we describe the analysis of these data using MLwiN.

Keywords Tutorial · Multilevel analysis · Logistic regression · Physiotherapy ·
Referral

Many research problems involve a response variable which is dichotomous; for
example, a patient has a good or a poor outcome following surgical intervention.
Such data are often assumed to arise from a binomial distribution and may be
modelled using logistic regression. More generally, data may be in the form of a
proportion (such as the proportion of GP consultations resulting in a referral to
physiotherapy) and may be modelled in a similar manner. This chapter shows how a
multilevel logistic regression model is formulated for binomial data clustered within
higher-level units. We then introduce the example and the data set used. This is
followed by an application within MLwiN. Further details on multilevel modelling
and MLwiN are available from the Centre for Multilevel Modelling http://www.
bristol.ac.uk/cmm/. The materials have been written for MLwiN v3.01. The teaching
version of the software is available from https://www.bristol.ac.uk/cmm/software/
mlwin/download/.
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Multilevel Logistic Regression Model

Let yij denote a binary response (0 or 1) for the ith individual in the jth unit, and let πij
denote the probability of a ‘success’ (i.e. yij ¼ 1). The binomial distribution is
characterised by two parameters: the probability of success πij and the number of
‘trials’ n. So if the outcome were the proportion of GP consultations that resulted in
physiotherapy, the denominator n would be the total number of relevant consulta-
tions. For a logistic regression model, when each data item refers to an individual
response with a dichotomous outcome rather than a proportion, the denominator is
always equal to one. This means that we have

yij � Binomial 1, πij
� �

In a random intercept multilevel logistic regression model, we then model the
transformed probability πij as a linear combination of a series of covariates or
explanatory variables xpij together with a random effect for each higher-level unit
u0j so that we can write

logit πij
� � ¼ log

πij
1� πij

� �
¼ β0 þ β1x1ij þ � � � þ u0j

As for the multilevel linear regression model, we make an assumption about the
distribution of the higher-level residuals u0j

u0j � N 0, σ2u0
� �

Alternative link functions to the logit link can be employed for dichotomous
outcomes; common alternatives are the probit and complementary log-log links. The
logit link has the advantage that the parameter estimates βp can be interpreted as log
odds ratios (and so, when exponentiated, they can be interpreted as odds ratios). For
further details of link functions, the reader is referred to general works such as that by
McCullagh and Nelder (1989).

Example: Variation in the GP Referral Rate
to Physiotherapy

Until recently, patients in the Netherlands (from where the data used in this example
are drawn) had to be referred by a GP before they could visit a physiotherapist. GPs
are still the major source of referrals to physiotherapists in primary healthcare.
Patients are predominantly referred to physiotherapists when they have complaints
relating to the locomotive system. Of all patients that present their problem to their
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GP, a varying proportion is referred to a physiotherapist. The aim of the original
study was to explain the variation between GPs in physiotherapy referrals (Uunk
et al. 1992).

The authors followed the logic that was explained in Chap. 2. The average referral
rate of the GPs in their sample for patients with complaints related to the locomotive
system was 24%. This percentage varied between GPs from a low of 11% to a high
of 45%. So some GPs referred only one out of ten patients with problems in the
locomotive system to a physiotherapist, whilst at the other end of the scale almost
half of another GP’s patients were referred. The authors constructed an explanatory
model based on social production function (SPF) theory (again see Chap. 2;
Lindenberg 1996).

The GPs could either treat the patients themselves, including the use of a ‘wait
and see’ policy, or they could refer patients to a physiotherapist. The dependent
variable is therefore dichotomous. Following SPF theory it was assumed that GPs
have two goals: improving their patients’ health and increasing their own well-being.
It was further assumed that both GPs and patients had resources that they could use
to reach their goals. The theoretical model is given in Fig. 12.1.

Starting from the right-hand side of Fig. 12.1, the dependent variable is whether a
patient is referred to physiotherapy or not. Preceding this are two boundary condi-
tions: firstly, patients have to visit their GP with health complaints for which referral
to a physiotherapist is a relevant alternative. The authors restricted the data to
patients with complaints of the locomotive system. Hence this condition was
fulfilled. The separate diagnoses were used in the analysis to take the case-mix of
different GPs into account. The second condition is that there are physiotherapists to
whom patients can be referred. That condition is always fulfilled globally, but there

Fig. 12.1 Theoretical model to explain variation in referrals to physiotherapy
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is variation in the local availability of physiotherapists within the practice area of the
GPs. This variable was therefore used as a control variable.

The assumption was that GPs want to improve their patients’ health. Whether
they can realise this goal by referring a patient to physiotherapy might depend on
their knowledge of and experience with physiotherapy. As the authors did not have a
direct measure of this, they used the number of years of experience that each GP had
working as a GP. It is also assumed that GPs want to achieve personal goals: well-
being and social approval (from patients, colleagues and physiotherapists). Their
workload and the way they were paid (depending on whether a patient was publicly
or privately insured) were both assumed to influence well-being. The type of practice
was considered a potential influence of sources of social approval: in single-handed
practices, GPs depend more on their patients for social approval. The authors had
information on whether GPs had physiotherapists in their social network. They
interpreted this information in two ways: either this might influence the possibility
of acquiring social approval through the referral of patients to physiotherapists, or it
might relate to their knowledge of physiotherapy. Finally, it was assumed that
patients themselves might want to visit a physiotherapist and that those patients
who had achieved a higher educational level would be better able to put their point
forward when discussing this issue with their GP. Patient characteristics such as age
and sex were used as control variables. In the example dataset, we will use a less
extensive set of variables for the sake of simplicity. However, you will still be able to
explore the data and test your own ideas.

The data were collected in 1987 as part of a large national survey of general
practice (Van der Velden 1999). The starting point was a sample of 100 GP practices
in the Netherlands. The following data are relevant to this example:

• GPs in these practices recorded all contacts with their patients over a period of
3 months, including the diagnosis and whether a patient was referred to a
physiotherapist.

• GPs filled in a questionnaire.
• All patients on the list of each practice were sent a short questionnaire to collect

social and demographic background variables.

The contacts of the same patients for the same health problem were combined into
care episodes. This is especially relevant in the case of referrals where patients might
first have a consultation, presenting their problem, and their GP might advise them to
wait for a couple of weeks and come back if their complaints did not disappear. If we
calculated the referral rate using separate contacts instead of the care episodes, we
would therefore tend to find much lower referral rates. Consequently, the data have
five levels: the practice, the GPs, the patients, the episodes and the contacts. In this
example, we only use two levels: GPs and episodes (most GPs were single-handed at
that time and the majority of patients only had one episode during the 3-month
period). The data therefore form a two-level strict hierarchy of episodes nested
within GPs. Patient characteristics, such as age, are simply distributed over episodes.
The outcome of interest is a binary indicator of whether the patient was referred to a
physiotherapist or not.
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The Data

The data are contained in the MLwiN worksheet ‘fysio.wsz’. When you open the
worksheet, you will see the Names window providing an overview of all of the
variables. Patients (as previously mentioned, these are not strictly speaking patients
but episodes) are identified by PATID and GPs by GPID. Columns 3–8 contain data
information relating to the patient. PATAGE is the patient’s age in years, ranging
from 18 to 98. This variable is subsequently categorised in PAGEGRP. This variable
has been declared as a categorical variable; click on the variable name PAGEGRP in
the Names window and then on the View button in the Categories section at the top
of the Names window to display the category names. The categories used are 18–34,
35–44, 45–54, 55–64, 65–74, 75–84 and 85–98. PATSEX is also a categorical
variable denoting the patient’s sex—1 for male and 2 for female. Similarly,
PATINSUR takes the value 1 if the patient is publicly insured and 0 if they are
privately insured. The extent of the patient’s education is contained in the variable
PATEDU; this variable has four levels (1 for no formal education, 2 for those with
only primary education, 3 for secondary and lower/middle vocational education and
4 for higher vocational and university education).

The variable DIAG contains the primary diagnosis resulting from the care
episodes. These diagnoses are in 13 mutually exclusive categories:
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• diag_1: symptoms/complaints neck
• diag_2: symptoms/complaints back
• diag_3: myalgia/fibrositis
• diag_4: symptoms of multiple muscles
• diag_5: disabilities related to the locomotive system
• diag_6: impediments of the cervical spine
• diag_7: arthrosis cervical spine
• diag_8: lumbago
• diag_9: ischialgia
• diag_10: hernia nuclei pulposi
• diag_11: impediments of the shoulder
• diag_12: epicondylitis lateralis
• diag_13: tendinitis/synovitis

The variables in columns 9–13 relate to the GP. Their experience was measured
by the number of years they had worked as a GP; we have rescaled this by dividing
by 10 so that GPEXPER, a continuous variable, ranges from 0 to 3.3 indicating that
the range of experience was from 0 to 33 years. Also at the level of GP we have
workload (GPWORKLOAD), a continuous variable, containing the total number of
contacts in the 3-month registration period, measured in thousands of patients, and
ranging from 0.277 to 4.649 (i.e. from 277 to 4649 patients). The type of practice,
PRACTYPE, is a categorical variable distinguishing between single-handed prac-
tices, partnership practices, group practices and health centres. The variable LOCA-
TION differentiates between four categories of practice location: rural, suburban,
urban and big city. Finally, the variable GPPHYSIFR indicates whether the GPs
have physiotherapists in their social network (taking the value 1 for yes, 0 for no).

REFERRAL is the response variable with 0 indicating that the patient was not
referred to a physiotherapist and 1 indicating that they were. (Note the use of 0 and
1 for the responses, not the 1 and 2 used by convention in some other software
packages.) Finally, CONS is a column of 1s used to model the intercept in the fixed
part of the model; for a random intercept model, this variable will also model the
random variation across GPs.

Model Set-Up

Open the Equations window and the default unspecified model should appear.
Declare REFERRAL to be the response, specify a two-level model and set the
level 1 and 2 identifiers to be PATID and GPID, respectively. Next click on the
N corresponding to the default (normal) distribution for the response and change this
to binomial. Accept the default suggestion of a logit link to fit a logistic regression.
The window should appear as follows:
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In addition to asking for the model specification—the red β0x0 term—MLwiN
requests the denominator nij. We can use the binomial distribution to model pro-
portions in which case nij would be the number of ‘attempts’. Since our data refer to
individuals, and the response is whether or not an individual patient is referred to
physiotherapy, the nij that we require is just another column of 1s. Click on the nij,
select CONS from the drop-down list and click on Done.

Now we can specify the fixed part of the model and the level-2 variance
component. It is sensible to start with a mean model to estimate the probability of
being referred and see how this varies between GPs. Add CONS as an explanatory
variable to estimate the mean probability and let this mean vary across GPs at level
2. The window should now appear as follows (you may need to press the + button at
the bottom of the Equations window to expand the model that is shown).
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The constant β0 will estimate the log odds of referral by the average GP and the
GP residuals u0j, which are assumed to be normally distributed, will estimate the GP
deviations from the mean log odds. The lowest level variance is a function of πij, the
probability of individual i being referred to a physiotherapist by GP j; this is
determined by the fact that we are assuming a binomial distribution and we do not
estimate this variance explicitly.

Non-linear Settings

Before estimating the model, we need to specify the settings for non-linear
estimation. There are three options that can be set, and this is done by clicking on
the Nonlinear button at the bottom of the Equations window. The first option
covers the distributional assumption and this relates to whether we wish to assume
the variation at level 1 is binomial. For binary data we should assume that this is
true rather than testing for over- or under-dispersion (Skrondal and Rabe-Hesketh
2007). The second and third options relate to the estimation procedure used by
MLwiN. The estimation procedure is iterative and involves transforming the data
and fitting a linear model. The linearisation option relates to the Taylor series
expansion, which approximates a linear form for the model, and the options are
either a first or second order expansion. The linearising expansion uses predicted
values from one iteration to estimate the parameters at the next iteration, and
estimation type relates to whether these predicted values are calculated from the
fixed part of the model only (MQL) or from both the fixed and random parts of the
model (PQL). The simplest estimation procedure (first order MQL) tends to under-
estimate the random parameters (variances), although it is computationally more
robust than second order PQL estimation (Goldstein and Rasbash 1996; Rodríguez
and Goldman 1995). A rule of thumb is to start with the simpler estimation
procedure and, once a model of interest has been established, switch to second
order PQL. To start with we shall use the default settings: a binomial distribution
with a first order MQL estimation procedure. This can be selected by clicking onUse
Defaults and then Done.

Once these options have been selected, we can estimate the model by clicking on
the Start button at the top of the MLwiN window.

262 12 Multilevel Logistic Regression Using MLwiN: Referrals to Physiotherapy



Model Interpretation and Model Building

The mean model should appear as follows:

Taking the antilogit function of the intercept (i.e. exp(β0)/[1 + exp (β0)]) gives
the probability of being referred by the average GP to be 0.203. There is a great deal
of variation between GPs and we can use this estimate to calculate a 95% confidence
interval for the proportion of patients receiving a referral from their GP, again using
the antilogit function. Thus, in 95% of GPs the probability of referral is between
antilogit �1:366� 1:96

ffiffiffiffiffiffiffiffiffiffiffi
0:232

p
,�1:366þ 1:96

ffiffiffiffiffiffiffiffiffiffiffi
0:232

p� � ¼ 0:090, 0:396ð Þ.
In Chap. 6, we considered ways of examining the magnitude of the variance for

multilevel logistic regression models. Firstly, the intraclass correlation coefficient
can be approximated as

ρI ¼
σ2u0

σ2u0 þ 3:29

suggesting that 6.6% of the variability in whether a patient is referred to a physio-
therapist can be attributed to differences between GPs. Secondly, we can calculate a
median odds ratio (MOR) as
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MOR ¼ exp 0:954
ffiffiffiffiffiffiffi
σ2u0

q� �

This suggests that the median of all pairwise comparisons between GPs gives an
odds ratio of 1.58. There is therefore considerable variation between GPs and we can
go on to see how much of this variation can be explained by differences in patient
populations. Firstly, add the two control variables, age and sex, as explanatory
variables to the current model: PAGEGRP and PATSEX. As reference categories
use women in the youngest age group. Then add the diagnoses contained in the
variable DIAG, with the first category (symptoms or complaints of the neck) as the
reference category. Now estimate this new model to obtain:

Note that MLwiN does not provide an estimate of �2�loglikelihood for logistic
regression models. This is because the estimation procedure used is not maximum
likelihood but pseudo-likelihood. There has been a change in the estimate associated
with the intercept β0. This is now an estimate of the log odds of referral by the
average GP for a patient with the baseline characteristics, in this case a female aged
18–34. All of the covariate estimates are on the log odds scale and thus represent the
change in log odds associated with a unit increase in each explanatory variable. By
taking the exponential of these estimates, we can obtain estimates of the odds ratio
(OR) of referral relative to an appropriate baseline group. The OR for referral for
patients aged 35–44, relative to those aged 18–34, is exp(0.055) or 1.06; 95%
confidence intervals are given by exp(0.055 � 1.96 � 0.055) or (0.95, 1.18). The
95% confidence interval contains 1 suggesting that the odds of referral to a physio-
therapist are not significantly different between the 18–34 and 35–44 age groups.
The parameter estimates suggest a non-linear relationship with age and, relative to
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the younger patients, older patients (those aged 65 and over) are less likely to be
referred to a physiotherapist. Relative to the youngest group, the OR of referral is
0.69 (0.59, 0.81) for those aged 65–74, 0.45 (0.37, 0.56) for those aged 75–84 and
0.31 (0.20, 0.49) for those aged 85 and over. Men are less likely to be referred than
women, although this is of borderline significance (OR¼ 0.92; 95% C.I. 0.85, 1.00).

After taking account of differences in patient populations and diagnoses, we see
that the between GP variation has remained virtually unchanged. This is quite
uncommon, as often a large part of the apparent variation between high level units
is due to differences between individuals. It is, however, also possible for the
variance between higher-level units to increase in multilevel models following the
addition of variables at the lower (in this case patient) level. Snijders and Bosker
(2012) provide an explanation as to why this is likely to happen in multilevel logistic
regression models. In essence, since the variance in a binary outcome yij is
constrained to be equal to πij(1� πij) (see Chap. 6), the addition of a level 1 variable
will tend to result in an increase in the level 2 variance so that the proportion of
unexplained variation at level 1 will decrease.

We can now check for the effect of the other patient variables; add both PATEDU
and PATINSUR to the current model, using the lowest educated and those with
private insurance as the reference categories.

These two new covariates offer further insight into the pattern of referrals: there is a
steady increase in the probability of referral with increasing educational level of those
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patients who present with complaints of the locomotive system. Relative to those with
no education, those with higher education have more than twice the odds of being
referred for physiotherapy (OR ¼ 2.34; 95% C.I. 1.59, 3.45). The type of insurance
(and thus the way GPs are remunerated) does not significantly affect the chance of
being referred; those with public insurance show a small and insignificant increase in
the odds of referral (OR¼ 1.08; 95%C.I. 0.98, 1.19). Once again, the addition of these
patient characteristics makes no difference to the variance between GPs.

Finally we add the five GP-level variables: GPEXPER, GPWORKLOAD,
PRACTYPE (reference: single-handed practices), LOCATION (reference: rural)
and GPPHYSIFR (reference: those GPs who do not have friends who are
physiotherapists).

We have now built our final model. GPs working in joint practice and those in
health centres (which usually include physiotherapists) refer slightly more patients
than those in solo practice. The odds of referral are increased among GPs working in
one of the big cities (OR ¼ 1.85; 95% C.I. 1.23, 2.76) and GPs who have physio-
therapists as friends or acquaintances are also more likely to refer patients
(OR ¼ 1.25; 95% C.I. 1.04, 1.50). Neither the experience of the GP nor their
workload appears to influence the likelihood of referring patients to physiotherapy.
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Altogether the GP characteristics have reduced the variation between GPs from
0.230 in the previous model to 0.196 (a reduction of about 15%). Although we
would expect the introduction of variables at the GP level to decrease the variance
between GPs, calculation of the intraclass correlation coefficient shows that 5.6% of
the unexplained variation in patient referrals is attributable to differences between
GPs. The median odds ratio for this model is 1.52.

A Note on Estimation

The current estimation procedure, first order MQL, is known to produce biased
estimates (Goldstein and Rasbash 1996; Rodríguez and Goldman 1995) although it
is a reasonable tool for model building. In practice, we recommend that you obtain the
final results that you wish to report using second order PQL estimation. (There are
alternative methods of estimation available in MLwiN including the parametric
bootstrap and Markov chain Monte Carlo or MCMC. Some other packages also
include the option of maximum likelihood estimates obtained using numerical inte-
gration.) The screenshot below replicates our final model using second order PQL.
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These estimates differ markedly from those obtained using first order MQL. The
level 2 variance estimated using second order PQL is considerably larger giving an
intraclass correlation coefficient of 0.061 and a median odds ratio of 1.56. There are
also changes in the fixed part of the model; for example, the estimate of the odds ratio
associated with the practice being located in a big city (compared to rural practices)
has increased to 1.90 (95% C.I. 1.25, 2.90).

As for a linear multilevel model, we can calculate residuals for multilevel logistic
regression models. The residuals from our final model are shown below for the
158 GPs.

These residuals are now on a log odds scale; patients attending the GP with the
largest residual (1.046) have an odds ratio of 2.85 (95% C.I. 1.94, 4.17) of being
referred to chemotherapy relative to the average GP after taking patient and GP
characteristics into account. Note the varying magnitude of the 95% confidence
intervals around the GP residuals; those GPs about whom we have more data
(i.e. those with more patients) have smaller confidence intervals.

Further Exercises

Explore the random slope variance for variables such as the insurance status of the
patients. It was expected that privately insured patients would be referred less often.
We did not find such an effect, but it might still be the case that some GPs are less
likely to refer privately insured patients (depending on some measured or
unmeasured GP variables).
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Look at the GP residuals to check for outliers and explore the effects any outliers
may have on the current model.
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Chapter 13
Untangling Context and Composition

Abstract This chapter contains a tutorial that helps to untangle contextual and
compositional effects. We start from a typical, empty table and then proceed to fill
this table. The example data set concerns patterns of incidence of cardiovascular
disease in small areas in Scotland. The outcome or dependent variable is whether or
not a survey respondent had self-reported doctor-diagnosed cardiovascular disease.
The first step in the analysis is to estimate a null model. We then estimate the fixed
effects of two individual-level variables, social class and smoking status, one by one.
The final model looks at the fixed effects of all three variables. With these steps the
empty table can be filled and we can interpret the results in terms of context and
composition.

In this chapter, we describe the analysis of these data using MLwiN.

Keywords Tutorial · Multilevel analysis · Compositional effect · Contextual
effects · Cardiovascular disease

As we pointed out in Chap. 7, there is frequent debate in the literature over the
relative contributions of composition and context in the statistical explanation of
individual-level outcomes, such as self-reported health and the incidence and prev-
alence of disease or mortality. This tutorial provides an application of the insights
from Chap. 7. In this tutorial we will be looking at the patterning of the prevalence of
cardiovascular diseases in Scotland. In particular, we consider whether the preva-
lence of disease is related to an individual social determinant (occupational social
class), an individual biological determinant (current smoking status) or an area-based
social determinant. As an area-based social determinant we used area deprivation
measured by the Carstairs score, a Census-based variable derived from the social
class of the heads of households, male unemployment, lack of car ownership and
overcrowding (Carstairs 1995; Carstairs and Morris 1990). As with the previous two
chapters, the software used in this chapter is MLwiN. Further details on multilevel
modelling and MLwiN are available from the Centre for Multilevel Modelling http://
www.bristol.ac.uk/cmm/. The materials have been written for MLwiN v3.01. The
teaching version of the software is available from https://www.bristol.ac.uk/cmm/
software/mlwin/download/.
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The Data

The data are contained in the worksheet ‘CVD-data.wsz’ and are taken from the
1998 Scottish Health Survey, and the analysis is related to a published paper
(Leyland 2005). The data refer to 8804 respondents aged between 18 and 64. The
outcome considered is a self-report of a doctor-diagnosed cardiovascular disease
(CVD) condition (angina, diabetes, hypertension, acute myocardial infarction, etc.).
This is a binary response, whether (1) or not (0) respondents have CVD condition.

The independent variables at individual level on which we focus in the tutorial are
social class and smoking status. Occupational social class is used in three categories:
high social class (1 and 2: professional and managerial), intermediate (3: skilled
workers), and low (4 and 5 and missing: semiskilled and unskilled manual workers
and those for whom social class was missing). Smoking has been categorised as
never smoked, light smokers (<10 cigarettes per day), moderate (10–19) and heavy
(20+) smokers as well as former smokers. Age and sex are used as control variables
in all analyses. At the area level the Carstairs index is used as a continuous variable.

The survey was cluster-sampled, with respondents clustered within 312 small
areas (postcode sector, average population about 5500).
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Structure of the Analysis

As a first exploratory step in the analysis, examine the mean Carstairs score by social
class and current smoking, and also smoking patterns by social class, to see the
dependency between the variables.

After that, we are going to examine a series of models with a view to determining
the relationship between the prevalence of CVD diseases and individual social class,
current smoking and area deprivation. We will conduct these analyses with a table in
mind, filling in the table as we progress (see Table 13.1).

Estimating the Null Model

The first model to fit is a null model. We will adjust all of the models we fit for age
and sex, but we are not going to report the estimates associated with these factors;
these are ‘nuisance variables’ and we are going to control for differences between
areas in their age and sex composition.

We then set up a two-level model with the response variable CVDDEF and with
levels defined by AREA and ID. This is a binomial response with a logit link
function and with the denominator given by the constant CONS. We will add
CONS to the fixed part of the model and allow for random intercepts across areas
by letting the coefficient of CONS vary at random at level 2 (i.e. across areas). It is
important that we have a well-fitting model at individual level, otherwise
unmeasured individual effects might appear as contextual effects. We have used
fractional polynomials in age (Royston et al. 1999) together with interactions with
sex to find a parsimonious model that adequately controls for age and sex; these are
already included in the model that can be found in the Equations window. We can
start off by fitting this model using the first order MQL approximation but then move
on to the second order PQL approximation. This is then the null model on which we
base subsequent analyses.
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We can estimate the ICC from this model using the approximation that the
individual-level variance is given by π2/3 (¼ 3.290). So a level 2 variance of
0.043 gives an ICC of 0.013; just over 1% of the variation in the prevalence of
CVD diseases is attributable to differences between areas.

A useful diagnostic measure is the R-squared which indicates how much of the
total variation has been explained by the fixed part of the model. For multilevel
logistic regression, we approximate the explained variation by the variance of the
linear predictor (that is, the variance of the fixed part of the model which is on a log
odds scale) and get the total variance by adding the variance of the linear predictor to
the variance at the higher levels plus our estimate of the variance at the individual
level. In other words,

R2 ¼ VLP= VLPþ σ2u0 þ π2=3
� �

where VLP is the variance of the linear predictor. We can calculate the linear
predictor using the Predictions window and including all variables in the fixed part
(but not the random part).
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We can use the Averages and correlations window to estimate the standard
deviation of this prediction as 0.921. The variance is the square of the standard
deviation; this gives VLP ¼ 0.848 and so R-squared ¼ 20.3%.

The values of the ICC, VLP and R-squared can be obtained for any two-level
multilevel logistic regression model by running the macro ‘modeldiag.txt’. (To run
the macro make sure that the output window of the Command interface is open,
then open the macro using the File menu and click Execute.)

Fixed Effects

The first model that we want to fit is the model containing individual social class
(variable SC). There are three categories of social class; we will fit two dummy
variables keeping social class 1 and 2 as the reference category.
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The parameter estimate for social class 3 is a log odds ratio; we can convert this to
an odds ratio by exponentiating: exp{0.100} ¼ 1.105, so the odds of CVD diseases
are 10.5% higher in social class 3 than in social classes 1 and 2. Similarly we can
obtain 95% confidence intervals as exp{0.100 � 1.96 � 0.064} ¼ (0.975, 1.253).
Since the 95% confidence interval for this odds ratio includes 1, it suggests that the
odds ratio for social class 3 is not significantly different from that for social classes
1 and 2.

Odds ratios and 95% confidence intervals can be obtained for all parameter
estimates from any logistic regression model by running the macro ‘or.txt’.

Although the odds ratio for social class 3 is not significantly different from that
for social classes 1 and 2, that for social classes 4 and 5 is significant (the 95%
confidence intervals do not include 1). Since we would expect the social class effect
to increase across social class categories—CVD prevalence is likely to be higher in
social class 3 than in social classes 1 and 2, and higher still among social classes
4 and 5 than in social class 3—we test for a linear trend in the social class variable.
We do this by removing the categorical social class variable from the model, fitting
social class using a continuous variable created for this purpose (i.e. with values 1, 2
and 3) and testing for the significance of this single variable. This can be done using
the Intervals and tests window from the Model menu.

We can now continue by fitting models containing just smoking and just depri-
vation (again including age and sex as these were contained in the null model).
(Click on a variable in the Equations window and choose Delete term to remove it
from the current model.)
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Compared to the reference group of never smokers, the prevalence of CVD
diseases is no higher in any of the smoking categories but is significantly higher
among the ex-smokers. As a prevalence study this may reflect an increased likeli-
hood of giving up smoking once a respondent has been told by a doctor that they
have a cardiovascular disease. The categories of smoking are not ordered and so
testing the significance of this variable involves testing the significance of differ-
ences between categories rather than a test for trend.

Area deprivation is coded with positive values indicating areas of higher depri-
vation and negative values indicating areas of lower deprivation. The effect of
deprivation is clearly significant; we can consider whether the effects of social
class and smoking are significant after controlling for area deprivation. At the
same time we will see whether the effect of area deprivation remains significant
once individual factors are taken into account. The significant effect of individual
social class is attenuated and becomes non-significant when area deprivation is taken
into account whilst area deprivation remains significantly related to the prevalence of
CVD diseases. The effect of individual smoking status remains insignificant follow-
ing adjustment for area deprivation.

Basically, with these models we can complete Table 13.1 such that it becomes
Table 13.2. This presents a neat summary of the fixed and random parts of the
models that we have fitted. The strong influence of the context can be seen through
the persistent significance of the area deprivation score even after adjustment for
individual factors.
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Additional Models

There are a variety of other models that we may wish to fit. One of the reasons for the
closer relationship between the Carstairs score and the prevalence of CVD diseases
may be because the Carstairs score is a continuous variable—indicating a broad
range of deprivation—whilst our measure of occupational social class is categorical
with just three categories. To satisfy our curiosity that this is not just a measurement
issue, we can categorise the deprivation measure into three approximately equal
groups and fit some of these models again.

As we discussed in Chap. 3, contextual variables may be direct observations
made on areas detailing, for example, the provision of services. They may be derived
from alternative data sources (as in this case: the Carstairs score is based on Census
variables). Another possibility is to create contextual variables through the aggrega-
tion of individual variables collected in the study. Think about creating a contextual
variable describing the social class of the neighbourhood. A simple example would
be the proportion of the survey respondents in each area who were in social classes
4 and 5; an alternative might be the difference between the proportion in social
classes 4 and 5 and the proportion in social classes 1 and 2. Such variables can be
created using the Multilevel data manipulations window found under the Data
manipulation menu. These variables permit further examination of the relative
importance of composition versus context, given that both descriptors are derived
from the same source, but also illustrate how an important contextual descriptor can
be created within the data set in the absence of an externally validated measure such
as the Carstairs score.

The aggregation of an individual variable to an area level can change its inter-
pretation. We can construct an area-based smoking score to illustrate this. If an
individual is given a score of 3 for a heavy smoker, 2 for a moderate smoker, 1 for a
light smoker and 0 for an ex-smoker or a non-smoker, then the average of this score
at an area level provides information about current smoking behaviour in an area in
terms both of smoking prevalence and dose. The relationship of such a variable to
the prevalence of CVD diseases is different to the relationship between individual
smoking behaviour and CVD disease prevalence; the area smoking score—just like
the area social class score—acts as a marker of area deprivation.
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