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ABSTRACT 

Two crucibles with copper adhering (and one lead rivet) have been found on Yali (Nissyros) dating 
to the Final Neolithic, mid-4th millennium BCE. This is important and rare evidence for the 
earliest phase of Aegean metallurgy, now recognized as emerging in circumstances of high mobility 
and variable technological preference and practice. The finds are presented here through a study of 
their context, typology and chemical and lead isotope analysis. The results show that the crucibles 
come from the main settlement on the island; they were locally made, using a clay recipe deliberately 
tailored to the needs of metalworking. The copper was pure, with low levels of naturally occurring 
arsenic. The copper and lead came from the same source which, on current evidence, appears to be to 
Kythnos. The community on Yali was in contact with a broader Aegean where multiple 
metallurgical technologies are known. The presence of tin ore, or its product, might be indicated. 
Though small in scale, there are some parallels with the nature and technology of metallurgical 
activities in the succeeding Early Bronze Age. 
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Introduction 
 
In the wider Aegean, it is now recognized that the very end of the Neolithic is a key 
period in the evolution of communities and in the roots of changes observed in the 
succeeding Early Bronze Age. One important aspect of this change was involvement 
in metallurgy. Establishing the nature of early metallurgy could enrich our 
understanding of the processes of change at work at this time.  
 
This article presents the study of two ceramic crucibles, with copper adhering, and 
one lead rivet from a mid-4th millennium BC context in the Aegean. The aim is to 
better understand their place in the emergence of metallurgy in the region through 
a study of context, typology and chemical and lead isotope analysis. 
 
The crucibles and lead were found in the 1980’s, during rescue excavations 
prompted by the extensive industrial quarrying of the island of Yali (off Nissyros) in 
the east Aegean,1 FIGURE 1.  Evidence for occupation of Yali dates from c.4500-
c.3200 generally; the evidence for metalworking dates to c.3500 BC, specifically. 
They were found in a settlement with an occupation phase of approximately three 
hundred years.2  
 
Context 
 
The chronological and theoretical context of the evidence for metalwork within the 
broad Aegean is first briefly reviewed, followed by the spatial, depositional and use 
context of the crucibles.  
 
Concerning the chronological context, Muhly noted how, ‘the past decade has 
witnessed a transformation in our understanding of the chronology of the Neolithic 
period in Greece and Anatolia and….this has had a profound impact on our 
evaluation of the development of metallurgical technology in both areas.’3 The 
chronology of the long Final Neolithic (FN) (c.4500-3200BC) is still evolving. This 
has given rise to a range of chronological schemes, each with their own 
nomenclature. However, there is some lack of consensus amongst researchers as to 
the nature and timing of development within the region, FIGURE 2. 
 

 
1 Sampson 1988, 127, plate 38; 187, 3 and 188, 4 
2 Sampson 2008 
3 Muhly 2006, 160 



 
 
 
 
 
 
 
The chronological system devised by the excavator,4 and used for Yali, is one 
example of such schemata. It initially named the evidence for the final phases of the 
Neolithic as Late Aegean Neolithic (LAN) with later refinement of this singular 
chronology to Late Neolithic II a/ b.5 
 
To tackle the chronological disharmony between Crete and other Aegean regions, 
Tomkins6  abandoned the traditional chronological terminology there in favour of a 
system compatible with that used elsewhere in Greece and the Aegean. Greater 
chronological resolution has been achieved for the FN deposits at Knossos; these 
findings are reinforced by work at Phaistos, Crete.7 The resultant chronological 
scheme could offer a possible first step towards the, ‘single, shared standardised 
chronological scheme for the Neolithic Aegean.’ However, it would require 
researchers to adopt a ‘common understanding of chronological phasing’. In 
Anatolia, the multiple phases of the Late Chalcolithic (LCh) span the late 5th 
millennium to the 3rd millennium BC. Detailed work to refine the chronology and 
character of the 4th millennium BC in western Anatolia has been the focus of recent 
work.8 
 
In addition to the disparate terminologies, debate continues concerning the best 
aspects of material culture to investigate the range of transformations associated with 
the end of the 4th millennium BC – from pottery9 (where the question remains as, 
‘to whether only the study of ceramics together with their context and stratigraphy 
and the exploration of similarities and differences in the style of material culture are 
the most appropriate approaches to the investigation of cultural associations, social 
transformations and changes in the use and meaning of material culture’10), to 
settlement patterns, where changes in the second half of the 4th millennium BC are, 
‘most strongly seen in settlement patterns and social structures’ stimulated by outside 
influence11.  
 
In the study of the evidence for early metallurgy, in particular, there has been a move 
from provenance-orientated studies, using lead isotope analysis, to small scale site-

 
4 Sampson 1985 
5 Sampson 1987; 1988 see also Andreou et al. 2001 
6 Tomkins 2007; 2014, 351 
7 Todaro 2012, Todaro and Di Tonto 2008 
8 For example, Horejs and Mehofer 2014 
9 Manning 1995 
10 Mavridis and Tankosić 2016, 419 
11 Nowicki 1999; 2002; 2007; 2008 



 
 
 
 
 
 
 
specific archaeometallurgical studies which aim to understand the nature and 
technology of metallurgical activities in  particular contexts12 There has been 
criticism of the ‘fetishization’ of the study of metals due to its over-emphasis on 
production residues and their connection to the trade and environmental sub-system 
at the expense of causal relationships.13 By placing wider societal concerns at the 
centre of the study of technology [metallurgy], it is possible to address issues such 
as social identity, or the organisation and control of labour, thereby preventing 
internalist technological histories.14 Critics also claim such histories present 
technological development as the unavoidable consequence of social development - 
at the expense of obscuring the potential for agent-centred change, and propose 
studying the varying biographies of different classes of materials and their patterns 
of consumption to explore the relationships or ‘touching points’ between different 
aspects of material culture. Such approaches may provide an effective means to 
understand the organisation of production, process of innovation and context of 
emergence of metallurgy in the Aegean. Tomkins suggests a practice-based approach 
as a means of, ‘unpacking the residues of the archaeological record into more 
meaningful people-thing associations’ This would provide a framework for 
understanding change in small scale Neolithic societies as it affords an opportunity 
to, ‘glimpse actual identities’.15 
 
Spatial 
 
The island of Yali lies off the west Anatolian coast, between Kos and Nissyros and 
is part of the Dodecanese. The initial occupation of Yali reflects expansion into more 
marginal environments – a trend observed differentially in the entire Aegean region: 
the Cyclades islands16; western Anatolia17; the Greek mainland18;  Crete19, and 
further north, as in Bulgaria (Karanovo III)20. This process must be, ‘assessed 
contextually and relative to different forms of land use, levels of intra- and inter-

 
12 Gale and Stos-Gale 2002; 2003, for example, Georgakopoulou 2011 
13 Doonan and Day 2007, 4-6 
14 Hughes 1986 
15 2014, 348, 349 
16 Cherry 1981; 1990 Broodbank 2000 and Davies 2001 
17 For example, at Beyçesultan, Kuruçay and Kum Tepe, During 2011 and Horejs and Mehofer 
2014 
18 Sampson et al. 1999, Mavridis 2006, Georgiadis 2010 and the move to occupy some offshore 
islands, such as Kephala (Kea), Coleman 1977 and Ftelia (Mykonos) Sampson 2002 
19 Nowicki (2002; 2008), at Knossos, Tomkins 2007; 2008, Kephala Petras, Papadatos 2008 
20 Todorova 1999 



 
 
 
 
 
 
 
regional integration, and so on.’21 Movement into areas less suited to grain 
production meant greater dependence on stock rearing. This is characterized by 
seasonality, the need for households to work together, emphasis on storage and a 
diversification by interaction with neighbouring communities. 22 
 
In the second half of the 4th millennium BC, the changes have three apparent phases 
– initial occupation of marginal lands (often seasonally worked), then settlement to 
higher lands or caves (possibly suggesting a security issue). The cause could relate to 
climate23, or socio-cultural pressures.24 Marginal occupation is often short term and 
followed by abandonment. 
 
The occupation and later abandonment of Yali reflects these trends. Survey and 
excavation suggest Yali was probably seasonally occupied earlier in the 
4th millennium, for example at site 2 Laimos on the coast25. Later in the 
4th millennium BC, a change occurred - the north-west part of the island became the 
focus of habitation which was, ‘organised and not accidental.’26. Overall, the higher 
lands were occupied for longer periods of time, mainly during winter, when cattle 
were grazed. This may suggest a change in the economic strategies of the islanders 
or the need to move from sea level. One associated cemetery was identified; others 
may exist. It testifies to long occupation. Unfortunately, the acidic pumice 
environment has destroyed much of the cemetery’s contents. Yali was abandoned 
by the end of the 4th millennium BC. 
 
The specific depositional context for the evidence for metalworking is securely in 
the mid-4thmillennium BC. It was found in a settlement context, in sector Z, which 
is located on a higher plateau in the north-west part of the island and extends over 
an area of 1.5 hectares, FIGURE 3. The presence of some earlier pottery, but no 
structures, suggests some use of this plateau before the mid- 4th millennium BC. 
However, the foundations of several walls and one building foundation (Z3), of 
more robust construction, date to after the mid-4th millennium BC. Survey shows 
that the  structures in this sector are of the main settlement on the island at this time; 
the settlement pattern is complete with smaller outlying homesteads scattered 
throughout the island. 

 
21 Halstead 2008, 233 
22 ibid. 234 
23 Clare and Weniger 2008 
24 Nowicki 2008 
25 Sampson 2008 
26 Sampson 1988, 257 



 
 
 
 
 
 
 
 
 
What can be determined about the nature of this settlement from the remains? The 
walls of the buildings were mainly constructed in a similar manner; the natural 
sandstone bedrock was often smoothed to form the floor which acted as the 
foundation for the walls, (e.g. in Z3, Z6 and Z7). Quarried sandstone from the 
vicinity formed the lower levels of the walls; smaller pebbles were used for the upper 
levels. It is difficult to assess the range of building sizes; there were several walls 
pertaining to different parts of buildings; those on the slopes being the least well 
preserved. Open spaces are noted between the various walls (buildings). 
 
The crucibles were found in trench Z2 with a great many predominately unpainted 
coarse ware fragments, mainly large sherds with handles on the rim, some with 
handles on the shoulder, part of a closed pot and cheese-pots.27 The assemblage was 
dated by the presence of cheese-pots. In addition, a piece of Melian obsidian, a 
fishbone, a piece of crab shell and a large millstone were directly associated with the 
metalworking evidence.  On the surface between trenches Z1 and Z2, much ceramic 
and stone material was found which mirrors that found in the settlement. 
 
The more complete foundations of a building in Z3 may suggest the type of 
buildings that occupied this elevated plateau28, FIGURE 4. Its walls, preserved to 
0,40m,  rested on natural sandstone rock. A robust central wall suggests an A-shaped 
roof.   The building has two main rooms and was dug to four levels. In the SE corner 
of the first room, a raised platform with evidence of burning (hearth) and coarse 
ware cooking vessels clearly suggests an area for food preparation.   
 
There is evidence that walls (curved in shape) were added to create storage space, 
supported by the presence of large coarse ware pieces; an alternative interpretation 
is that it acted as an animal pen. Similar curved walls are noted elsewhere in the 
settlement: e.g. Trench Z4 and Z13. Given their rough construction, the link 
between this and later apsidal buildings elsewhere is perhaps fortuitous.  
 
Certainly, the activities apparent in building Z3 appear representative of those on 
the plateau and elsewhere on the island. From the assemblage, the range of economic 
activities include: grain production (millstones); animal husbandry (determined from 
pens and nearby cave use29 rather than bones which were destroyed by the acid 

 
27 Sampson 1988, 42 
28 Sampson 1988, 45-54, 57, figure 16a 
29 Sampson 1988, 61 



 
 
 
 
 
 
 
environment); milk processing (cheese-pots); fishing (bones) and weaving (pottery 
impressions). Storage, in the form of large coarse ware pots is testified. Evidence for 
craft skills in obsidian, pottery and metallurgy all suggest specialisation and also 
engagement in external contact to procure supplies. Local and Melian obsidian was 
worked– though apparently differentially.30 
 
The actual context of use is more difficult to ascertain. The crucibles were found 
alongside a plethora of coarse ware and millstones which are noted throughout the 
settlement. They are thus located within the domestic environment of the 
settlement, not separate from it. 
 
In summary, the metalsmiths on Yali worked within the main settlement on the 
island in the mid-4th millennium BC. The community had a mixed economy and had 
a range of craft specialists.  It is not possible to assess the status of the metalsmith 
from the evidence.  
 
Typology 
 
The typology of the crucibles is now reviewed to see what light it may shed on the 
direction of contact or influence. 
 
Though very rare, the finds from Yali contribute significantly to the growing body 
of evidence for early metalworking. More attention has recently been given to the 
potential evidence for metalwork in excavations. This has led to improved detection, 
‘in the past two decades, excavation of all Greek sites...has found evidence of 
metallurgy when modern methods of recovery have been employed’.31 Whether the 
increase reflects a greater intensity of research, or better recovery techniques, or not, 
the finds may represent the ‘tip of the iceberg.’ 32  
 
The character of the two coarse ware crucibles, found with copper adhering, are 
assessed within the local pottery tradition and compared to contemporary evidence 
in terms of manufacture, design and capacity, FIGURE 5. 
 
 
 
 

 
30 Georgiadis 2008 
31 Zachos 2007, 179 
32 Sherratt 2007, 248 



 
 
 
 
 
 
 
Manufacture 
 
To prevent distortion and withstand the temperature required for metalworking, the 
potter must ensure the refractory quality of the clay fabric of the crucibles. Porosity 
and inclusions in the heat transfer from ceramic to environment, and of temperature 
development on the entire surface, are most significant.33  The characteristic voids 
in the wall structure, reminiscent of burnt out organic temper, was observed on 
visual inspection of the Yali crucibles. An awareness of specialised clay ‘recipes’ for 
metalworking operations has been previously suggested.34 
 
Crushed shell, ground obsidian (local) and pumice were used as temper in Yali 
ceramics; seven ceramics ‘recipes’ were identified, including one where non-local 
dacito-andesites were added to local Yali clay, representing an intentional 
technological choice by the potter, which would have improved wall strength and 
temperature resistance.35 Some suggest that Chalcolithic crucibles were generally 
made from clay lacking in refractory properties, though the early use of refractory 
materials has been identified in the crucible from fourth millennium Tepe Hissar, 
north-eastern Iran.36  
 
The use of such temper is clearly related to the needs of metallurgy; the deliberate 
production of refractory clays on Yali is confirmed – the crucibles were locally made 
to meet the needs of metallurgy. 
 
Design 
 
In addition to a deliberate production of clay fabric, the design of each Yali crucible 
was highly functional. The walls of both become increasingly thick towards the base. 
Neither base was flat, though B was more even than A. Both crucibles were designed 
to be placed directly on the heat source, as scorch marks on the bases suggest. This 
was facilitated by the insertion of a haft into their integral sockets, the thicker bases 
allowing for this. Essentially, the socket necks are similar in shape; their size simply 
proportionate to the overall circumference and weight of each crucible. In A, the 
socket is more rectangular; in B, squarer. The socket direction suggests  the crucibles 
were inserted horizontally – whether at ground or raised level. Heating crucibles 
from above (blowpipes?) and below (heat source?) can reduce the temperature 

 
33 Noll 1991, Hein and Kilikoglou 2007, 878-884 
34 Blitzer 1995, 504-505 
35 Katsarou et al. 2002 
36 Thornton and Rehren 2009, 2700-2712 



 
 
 
 
 
 
 
difference between the internal and external surface and this reduces thermal stress 
on the crucible wall.37 The rims are rounded off; the thickness of the rims was around 
1.0 cm. Depressions or thinning of part of the rims created a lip or spout to facilitate 
pouring the molten metal. The lip of crucible A is partially destroyed. 
 
The closest contemporary parallels, for both socketed and non-socketed crucibles 
are known from the north Aegean, at Thermi III on Lesbos,38 Chalandriani on 
Syros,39 and on the Greek mainland, in the north, at Sitagroi III,40 Sesklo,41 
Mandalo,42 and possibly Petromagoula.43 To the south, parallels are known from 
Alepotrypa44 and, in Crete, from Aghia Photia45 
 
There is no evidence that different crucible styles imply different metalworking 
technology, though the socketed variety suggests the need to remove the crucible at 
a specific point in the process. The two types coexist, in early metalworking 
traditions at this time; both styles were used for melting/smelting. The non-socketed 
crucibles produced lozenge-shaped buns of melted/smelted copper; the socketed 
crucibles produced plano-convex buns. Both styles are known at Thermi, the 
lozenge style, possibly dating to before Thermi I46 and the plano-convex style in 
Thermi III47 
 
Secure handling was necessary to extract the crucibles from the heat, given the 
weight and molten state of the copper. There is no evidence for casting; it is implied, 
and moulds would have been of sand, wood, ceramic or stone. 
 
Lack of evidence for crucible lids (clay or wood), if used, may be fortuitous. Lids 
would have preserved the temperature of the molten copper longer and protected 
the copper from debris or charcoal. Given the need for visual control, they may only 
have been used after the melt/smelt. 
 

 
37 Evely et al. 2012, 13 
38 Lamb 1936, pl. XXIV, 30, 71 
39 Bossert 1967, Fig. 3, 5 and Day 1998, 136 
40 Renfrew and Slater 2003 
41 Tsountas 1908 
42 Papaefthimiou and Papasteriou 1997, 1209, 1213, fig. 2 
43 Andreou et al. 2001, 271 
44 Papathanassopoulos 1996 
45 Betancourt and Muhly 2007, 147 
46 Lamb 1936, pl. XXIV, 30, 43 
47 Lamb 1936, pl. XXIV, 31, 71 



 
 
 
 
 
 
 
The Yali crucibles are amongst the earlier examples of socketed crucibles in the 
Aegean. The closest parallels stylistically are from the north west Anatolian littoral. 
 
Capacity 
 
Both crucible A (large) and B (small) are hemispherical with diameters of c. 9 
centimetres and c. 3 centimetres, respectively. While not equally symmetrical, the 
diameter to depth in each is approximately 3:1. The combined volume is roughly 
42.4 cms3, or c. 300 grs of copper. There is no reason to suppose that the crucibles 
were only used once, nor always simultaneously. The difference in size suggests the 
intention to separate the copper or control quantities. The amount of copper in the 
Thermi III crucible, in contrast, would have been c. 85-113grs.48 
 
Depending on the availability and quality of oxidized copper, and given that the 
average copper ore yield today is 0.29-2.29%, primitive techniques would probably 
obtain c. 1.0%. Thus, before beneficiation, at least one hundred times more copper 
was mined to render 300 grs of copper in the crucibles. 
 
The crucibles suggest the intentional production of small tools or jewelry. The scale 
of production appears small and is in keeping with other evidence for the period. 
 
Copper 
 
How the copper from the crucibles is situated in the context of the evidence for 
metalworking in the Aegean is now briefly reviewed.  
 
Though still relatively rare, early evidence for copper artefacts and copper working 
is more plentiful in central and eastern Anatolia than western Anatolia and the 
Aegean.49 From this study, the earliest finds relatively close to the east Aegean 
consists of two copper beads from Haçilar (Ia-II) dating to around 6000 BC, though 
the original place of production is uncertain50. Other early evidence also comes from 
an easterly direction - the copper objects and a crucible from Orman Fidanliği, dating 
to the late fifth millennium BC51; weapons from the cemetery at north central 
Anatolia at Ilipinar (Phase IV), dating to the first half of the fourth millennium BC,52 

 
48 Lamb 1936, Branigan 1974, 71 
49 Mehofer 2014, 469, Fig. 4 
50 Yalçin 2000, 19, tab 2 
51 Ay-Efe 2001, 139, 157, pl. 3d-e, Zimmermann 2011, 300 
52 Roodenberg 2008, 329, figs. 8.5-7; 10.6-7; 12.6-8 



 
 
 
 
 
 
 
and a flat axe dates c. 3,800 BC from Barçin Höyük, in the same area,53 though 
shown not to be made of local ores.54 Crucible fragments and slag are well-attested 
at Çamlibel Tarlasi in north-central Anatolia dating towards the mid- 4th millennium 
BC.55 
 
South-west of the central Anatolian plain, the earliest finds, after the Haçilar Ia-II 
finds, come in the form of copper artefacts and crucibles from Beyçesultan (level 
XXXIV)56 and Kuruçay, (layer 6A, 6, 4),57 with metalworking paraphernalia and 
copper artefacts known further south from Bağbaşi.58 Along the west Anatolian 
coast, come finds from Bakla Tepe,59  Liman Tepe,60 Çukuriçi Höyük61 and, though 
slightly further north, from Yeşiltepe (but in an unsecured context). A fragment of 
a ring is also known from Emborio (Chios), layer IX-VIII.62 Collectively, these sites 
rendered pipes, crucible fragments, furnace remains, slags and metal artefacts, all 
dating to the second half of the fourth millennium BC and thus roughly 
contemporary with the Yali material.63 
 
In the Greek mainland and west Aegean, the earliest finds of copper and gold 
artefacts come from Dimitra (Thessaly).64 Fourth millennium BC finds on the Greek 
mainland are known further the north, as ‘by-products’ of copper working at 
Sitagroi,65 with slightly later examples (c.4800-c.4500) from Mandalo,66 where 
slag from a crucible found at Mandalo is reported to contain tin and tin bronze,67 

 
53 Gerritsen 2010, 198, 224, fig. 2 
54 Mehofer 2014, 470, footnote 42 
55 Schoop 2011; 2015, 47-68 
56 Lloyd-Mellaart 1962, 19, 21, 112 
57 Duru 1994; 1996, 56, 125, pls. 159-161, Zimmermann 2011, 300-301 
58 Erkanal 2008, 168 
59 Kaptan 2008 
60 Keskin 2011, 145 
61 Mehofer 2011, 471, Horejs 2014 
62 Hood 1981, 657, 664, fig. 295.17 
63 Mehofer 2014, 471 
64 Grammenos 1984, pl. 56 
65 McGeehan Liritzis and Gale 1988, Renfrew and Slater 2003 
66 Kotsakis et al. 1989, 682-30 
67 Papaefthimiou-Papanthimou and Pilali-Papaseteriou 1997, 146 



 
 
 
 
 
 
 
Dikili Tash,68 Limenaria (Thasos),69 Mikrothives,70 and Palioskala.71 A little further 
south, copper finds from Makriyialos are reported72. From Thessaly/central Greece, 
a copper and a gold artefact are known from Dimini,73  with copper from Sesklo,74 
Pevkakia,75 and possibly Mesolonghi76A copper awl from Aghia Triada, Euboea77 
and recent finds from Sarakenos Cave78, Boeotia add to this list. 
 
From southern Greece, though in less secure contexts, axes from Athens, Euboea 
and Marathon79, compliment the more secure finds Aghia Irini, Kephala copper and 
copper product from Kephala, (Kea) 80and Kitsos cave81 with evidence for copper 
exploitation at Spata in Attica,82 Koropi,83 with smelting crucibles from the same 
site,84and Merenda.85 In the Peloponnese, the disputed finds from Alepotrypa, of 
copper, silver and gold, may date to this time.86 The same may be true of the axe 
from Spata, 87 and copper artefacts from possibly Aghios Dimitrios, Peloponnese.88 
 
In the Aegean, finds date to c. 5300-4800 BC, and come in the form of small copper 
artefacts, copper product and a gold artefact from Ftelia, (Mykonos).89 Roughly 
contemporary with the finds from Yali are copper and gold artefacts from Zas 

 
68 Seferiades 1992, 115 
69 Nerantzis et al. 2016 
70 Adrymi-Sismani 2007 
71 Toufexis 2016 
72 Pappa and Bessios 1999, 117 
73 Tsountas 1908, 354, Volos Museum no. 2364 and 2565 
74 Tsountas 1908, pl. 4.4 and 4.5, Figure 291-3 
75 Theocharis 1973, Fig. 125 
76 Phelps 1979, Branigan 1974, McGeehan Liritzis 1996 and Zachos 2007; 2010 
77 Mavridis and Tankosić 2016, 429 
78 Currently being studied by VM 
79 Phelps et al. 1979 
80 Coleman 1977, 108, Appendix 1, Conophagos 1977 
81 Lambert 1981 
82 Zachos 2010, figs. 6-4 
83 Kakavoyiannis et al. 2009 
84 Amzallag 2009 
85 Kakavoyiannis et al. 2008 
86 Papathanassopoulos 1996 
87 Phelps et al. 1979 
88 Zachos 1987, 81-82 
89 Sampson 2002, Maxwell et al. 2018, 155 



 
 
 
 
 
 
 
(Naxos),90 and copper from Strofilas (Andros).91 There is also a copper axe from 
Knossos,92 evidence for copper working from Kephala Petras (Crete),93 and possibly 
contemporary copper artefacts Chrysokamino.94  
 
Overall, copper was worked and used on both sides of the Aegean at the same time 
as on Yali and the general character is one of varied technological preferences and 
practices in a context of high mobility. 
 
Lead 
 
How the lead rivet from Yali is situated in the context of evidence for lead (and 
silver) working in the Aegean is now briefly reviewed.  
 
One lead rivet was discovered at the settlement on Yali in association with the 
ceramic crucibles. No evidence for lead working was found, though, ‘if lead is found 
in early archaeological contexts, it is by itself evidence for the smelting of ores’.95 
Extraction of lead silver and copper from Siphnos  began in the 4th millennium96 and 
also on Kythnos.97 
 
The presence of the rivet confirms lead could be acquired. Its use as a rivet suggests 
it was a low value item - finer pots were obviously considered of more value, 
materially, aesthetically or culturally. 
 
The lead from Bakla Tepe98 and the silver from Beyçesultan99 are the closest relevant 
geographical and chronological artefacts here. The closest example for copper and 
lead working comes from Çukuriçi Höyük in the fourth millennium BC.100 Indeed, 
the copper silver alloy at Çukuriçi Höyük is taken to fill the gap between the 

 
90 Zachos 1987 
91 Televantou 2008 
92 Evans 1964 
93 Papadatos 2007, 154 
94 Betancourt 2006, 57 
95 Pernicka 2014, 448 
96 Wagner and Weisgerber 1985, Gropengiesser 1987 
97Hadjianastasiou and MacGillivray 1988, Stos-Gale 1989, Hadjianastasiou 1998 and Papadatos 
2007 
98 S ̧ahoğlu 2014, 17 
99 Lloyd and Mellaart 1962, 280-283 
100 Horejs 2014, 23, Mehofer 2014, 463-90  



 
 
 
 
 
 
 
appearance of this alloy in the Balkans and eastern Anatolia.101 Both lead and copper 
from Çukuriçi Höyük has the same lead isotope (thus, geological) age. Analysis may 
show that the same is true for the copper and lead form Yali. 
 
Overall, evidence for copper and lead working exists in the Aegean region from the 
middle of the fourth millennium BC.  Evidence for each increases in the Early 
Bronze Age.102  The finds from Yali confirm the island had access to copper and 
lead; there is increasing evidence for polymetallism in the fourth millennium BC.103 
 
Analyses 
 
The chemical analysis of the copper from both crucibles and lead isotope analysis 
(LIA) of the coppers and the lead are presented here. The chemical reanalysis is 
justified to help resolve the question of possible early presence of tin in earlier 
analysis of the copper. 
 
Chemical Analysis 
 
To determine the technological nature of metalwork at the site, the oxidised copper 
product from both crucibles underwent Inductively Coupled Plasma- Optical 
Emission Spectroscopy (ICP-OES) by Professor R. M. Ellam of the Scottish 
Universities Environmental Research Centre. The methodology is described in 
Appendix I (a). Previous Atomic Absorption Analysis (AAS) of the copper from 
crucible A, by Dr. K Assimenos of the National Museum of Athens in the 1980’s 
had identified traces of tin in the copper, FIGURE 6.  In the AAS results, the 
analytical total for the corroded/oxidised copper in crucible A is under 22.5%. When 
normalised, to suggest the plausible composition, the errors are enormous. Warnings 
have been given regarding extrapolation from such low percentages.104   
 
The AAS results suggested the presence of arsenic and tin in the copper. Arsenical 
copper with tin is very rare, especially at this time – certainly atypical of the Anatolian 
metal industry generally.105As any use of tin indicates a technological watershed, the 
copper was re-examined. The issue of tin is reviewed further in Appendix II. 

 
101 Mehofer 2014, 467, footnote 20 
102 Georgakopoulou 2013 
103 Moorey 1994 
104 Craddock 1980 
105De Jesus 1980, Wagner et al. 1986, Craddock and Meeks 1987, Palmieri et al. 1992 
and Özbal et al. 2000 



 
 
 
 
 
 
 
 
The ICP-OES results: where elements were detected, or looked for, quantified 
concentrations are provided: the original, pre-normalised, results - the raw intensity 
- data and the normalised data are both given in FIGURE 7. Given the much higher 
percentage of copper determined, extrapolation of constituent elements is more 
valid, though previous warnings must still be considered. 
 
As there were no standards, much of the shortfall in the heavily oxidised copper for 
Yali 2 (Crucible A), 71.3% analysed, appears to be Fe and Mn whereas for Yali 3, 
(Crucible B), the copper, though still oxidised, is purer at 95.6% with much lower 
Fe.  The arsenic levels suggest the use of a copper deposit which naturally contained 
arsenic.106 Some contend that intentional arsenical copper alloys may have resulted 
from the use of an iron arsenide,107 as early as the EMI at Poros Katsambas. Others 
suggest the use of the speiss to explain the presence of arsenic in copper artefacts 
from Çukuriçi Höyük.108  The appearance of low arsenic in early copper is indicative 
of the use of a copper source with naturally occurring low arsenic content which is 
the most probable explanation for the Yali copper. 
 
To ascertain if the copper was itself the product of smelting in an earlier phase of its 
biography, the chemical criteria for minor/trace elements would have to be 
observed. However, the state of preservation does not really allow this.  What can 
be said about the nature of the copper used on Yali is that the copper was pure, it 
contained traces of arsenic natural to the source. No tin was found in the reanalysis. 
 
Lead Isotope Analysis 
 
The copper and lead from Yali underwent lead isotope analysis to ascertain the 
geological age of the material used to make them. This is then related to sources of 
lead and copper for which data exists. Not all potential sources have been analysed 
or characterised in this way. Issues with the method and the interpretation of results 
persist and are reviewed briefly here prior to the discussion of the results themselves.  
 
Even without the complex ore geology of Greece and the Aegean, there are limits 
to lead isotope analysis on its own. The issue of provenance and issue of mixing of 
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coppers has engendered much debate.109 Mineralogical work and progress in the 
resolution of ore fields are significant in encouraging confidence in interpretation of 
results. 110 
 
The best way to plot, interpret and discuss representations of lead isotope analyses 
also remains contentious, as a comparison of arguments will confirm.111 
Archaeologists come under fire for not understanding the limits of the method; 
scientists come under fire for not always fully appreciating the archaeological 
implications. Knapp112 argues that lead isotope analyses can never be used to assign 
specific provenance to artefacts, only to exclude certain provenances. However, 
Gale and Stos Gale 113 justify the use of their results in this way. They quote the work 
by the originators of the technique114 as well as the practice of other laboratories that 
use the exclusion principle115 
 
What is the possibility that local sources exist on Yali? Even though Yali is placed 
within the Attic-Cycladic belt, its geology does not support the presence of copper 
or lead ores. Within the Aegean, successive stages of the tectonic and metallogenetic 
evolution of the Attic- Cycladic belt during the Miocene has resulted in the 
formation of numerous lead-silver-zinc-copper and gold deposits and mineral 
occurrences.116 Dispersions of secondary copper minerals, like malachite and azurite, 
can be seen in Laurion, Siphnos, Kythnos, Kalianou (south-east Euboea) and Kea. 
They were sites of intense exploitation in ancient times. 
 
There are possible ore occurrences on Kos, where chalcopyrite is reported for 
Dikaion Mountain. Copper deposits are known from Serifos, at Auyssalos and 
Kephala117 and there is archaeometallurgical evidence on Syros at Chalandriani and 
Kastri though exploitation of the source has not yet been proved.118  Sources near 
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Bakla Tepe in the Izmir region have been verified119 A local polymetallic source is 
known near Çukuriçi Höyük120and it may have supplied that local industry.121 Copper 
is known at Kalithies on Rhodes where a copper chisel dating to the fifth millennium 
BC is known from nearby.122 
 
The copper and lead used on Yali was not local; they could have come from sources 
on either side of the Aegean.  The copper would reach the island in the form of pre-
smelted copper, beneficiated copper mineral or possibly even as a previous artefact. 
Comparing the lead isotope results for the Yali copper and lead and the geological 
and lead isotope data currently available for sources in the region may help ascertain 
the most likely source which supplied the islanders.  
 
Two sets of lead isotope results for the copper are available for the Yali coppers. 
These are the earlier determinations of the copper product from both crucibles by 
Professor N.H. Gale, Oxford University, dating to the 1990’s, FIGURE 8 and for 
this paper, determinations on further copper samples from each crucible, in addition 
to the lead rivet by Professor R. M. Ellam, FIGURE 9. 
 
The method used to determine and interpret the lead isotope data at SUERC is the 
same as that used at Oxford.123 The specific procedure followed at SUERC is 
outlined in Appendix I (b). 
 
The LIA confirm the close geological age of the copper from both crucibles and the 
lead rivet which suggests exploitation, originally, of one source which was 
polymetallic in character. There are parallels for this on both sides of the Aegean. 
 
The LIA determinations for Yali were compared with current, yet incomplete, lead 
isotope data on Greek, Aegean, Balkan and Anatolian sources, mainly catalogued in 
OXALID124, together with mineralogical data on sources or contemporary artefacts, 
FIGURE 10. 
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The north-west Anatolian field has been determined.125 These sources have been 
identified as polymetallic, in copper and lead. Though generally discrete, the 
southern extent of the field does overlap in part with the Greek mainland source at 
Laurion (also polymetallic in copper, lead and silver). Early evidence that north-
western sources were accessed early by communities in north-west Anatolia comes 
from Beşiktepe, Poliochni and Thermi.126 Copper sources further south along the 
central Anatolian coast, in the Izmir region, are known and copper working is 
verified there in the Late Chalcolithic, in the lead and copper finds from Bakla 
Tepe127 where pending analyses may help clarify sources accessed.128  Recent lead 
isotope and chemical results for material dating to the end of the long Late 
Chalcolithic phase (start of the 3rd millennium BC) at Çukuric ̧i Höyük confirm that 
it accessed north-western Anatolian sources, or sources of a similar geological age129 
 
Çukuriçi Ho ̈yük is the closest  metalworking site geographically to Yali, though it 
had access to a different source for copper and lead. While the copper from crucible 
A and B does overlap slightly with the southern extent of the north-west Anatolian 
‘field’ (which is less precise), they plot distinct from the Çukuric ̧i Höyük material 
which rests more firmly within that field.130 Further, the mineralogical character of 
the finds from Çukuric ̧i Höyük is smelted copper with higher arsenic (use of speiss 
suggested).131 The closest artefactual evidence to Yali comes from Beyçesultan, 
phase XXXIV where copper and a crucible are known.132 However, lead isotope 
results for this material is not currently available. 
 
The Yali results are now compared to known Aegean and Greek mainland sources.133 
It is apparent that there is a slight difference between the determinations of Gale 
and Ellam when plotted. Gale’s copper from crucible A and B rest on the border of 
the Laurion and Kythian ‘fields’  - as does Ellam’s result for crucible B copper. The 
result for the copper from crucible A and the lead rivet fall more firmly within the 

 
125 Begemann et al. 1994, 204, 193, table 4, Pernicka et al. 1997, Begemann et al. 2003, 193, table 
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Kythnian field which was known to have been exploited.134 Given the possibility of 
some overlap at the southern end of the north-west Anatolian field, it is technically 
possible that the copper and lead found at Yali could have come from either side of 
the Aegean – the most convincing probability is that the copper came from Kythnos, 
or from a polymetallic source with a similar geological age which is currently not 
known geographically. The Balkan sources are quite distinct. The Yali metals are 
distinct from the copper and lead used at Çukuriçi Ho ̈yük. This is perhaps the 
earliest evidence for the exploitation of the source at Kythnos. 
 
If indeed the community on Yali acquired its copper from the west Aegean, mobility 
is a key characteristic in raw materials acquisition and knowledge exchange at the 
end of the Neolithic. On current evidence, Laurion copper reached as far north as 
Sitagroi (Macedonia) and Dimini (Thessaly) in the fourth millennium BC.135 In the 
south, it seems to have been accessible to early 4th millennium BC communities on 
Kephala (Kea)136 later 4th millennium BC Zas (Naxos)137 and, amongst other sources, 
early in the 5th millennium BC on Ftelia (Mykonos).138  Further, several communities 
involved in metalwork at the end of the Neolithic are known to have had access to 
more than one source of copper: Sitagroi accessed three; Dimini accessed two, 
Sesklo accessed at least two,139  Zas accessed two,140 and Ftelia accessed at least 
three.141  
 
Overall, no copper source is known to exist on Yali; the copper and lead were 
imported, and they came from the same, polymetallic source. There are sources close 
to Yali on the Anatolian littoral and the Dodecanese, yet Kythnos appears to be the 
most probable source and the results from Yali confirm its early distribution in the 
east Aegean. Procuring metals from a distance was facilitated by developments in 
sea transport and this suggests metallurgical emergence in circumstances of high 
mobility. Variety in the Aegean at this time suggests variable technological 
preferences and practices in the mid-4th millennium BC. 
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Conclusions 
 
Yali is geographically located in a region of the Aegean active in metalworking at the 
end of the 4th millennium BC. The evidence for metalworking was found in the main 
settlement on the island at this time – a settlement practicing a range of crafts 
underpinned by a mixed economy.  
 
The crucibles demonstrate cultural links with the east Aegean. The copper and lead 
come from the same source (Kythnos) confirming links with the west Aegean. This 
is evidence for the early use of the Kythnos source. There is only one verifiable 
instance of copper smelting in the FN, Kephala (Kea)142 The metals were imported 
and transported by sea. There is growing evidence for a range of sea transport at this 
time.143 The longboat is verified from the end of the 4th millennium BC.144 and may 
be operating in the Aegean when the community at Yali were trading. involvement 
in trade or exchange networks active in the Aegean is clearly demonstrated in the 
acquisition of Melian obsidian and pottery as well as metals. Exactly how 
procurement was organised is more difficult to assess, but knowledge of where to 
acquire copper was shared and resources (in labour, time) assigned.  
 
The distribution of copper artefacts and the evidence for metalworking at the end 
of the Neolithic in the Aegean appears often to bear little or no immediate 
relationship to the copper resources themselves. Indeed, the inception, reception 
and exchange of metalworking knowledge appears to have more to do with drivers 
other than the availability of copper itself and to this end, we should assess issues 
such as the availability of fuel, water, cultural preferences or individual agency. 
Involvement was socially driven.  
 
The fact that the crucibles can be situated within the local pottery tradition of the 
island confirms knowledge sharing between potter and metalsmith, suggesting a 
possibly link in their social identities. Pyrotechnological skills underpin the 
technological context of emergence, a ‘touching point’ between two different aspects 
of material culture. It is difficult to further assess the status of the metalworker from 
the evidence, however. 
 
There is no evidence to suggest that production was for other than local 
consumption, though this did not appear to include burial. 
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Regarding scale, the preparation of the ceramics of this size implies a preconceived 
understanding of the amount to be worked and the intention of producing small 
tools or jewelry. Tools would enhance other craft specialisations on the island – 
lapidary, pottery, or textiles. Jewelry would have had symbolic or aesthetic 
significance.  It is unlikely that this would be the only example of modification of 
pottery to suit metallurgy; the crucibles could also have been used repeatedly. Given 
the context of rescue excavations, it is likely that more evidence for metalworking 
formerly existed at the site. 
 
A key difference between metalworking in the 4th millennium BC and in the 
succeeding Early Bronze Age is scale. In assessing the nature and technology of 
metallurgical activities, in context, in the southern Aegean, Georgakopoulou focused 
on the issue of how mobility is manifested within the first stages of metal production 
and also how technological variability and homogeneity present themselves.145 From 
this, some parallels between the nature of the FN (as on Yali) and EBA industry in 
the Aegean can be drawn: evidence for the lack of relationship between source and 
place where metal is worked (that is, scarcity of metal resources bears little 
relationship to involvement of communities in metalworking); the ceramics used and 
metal produced shows much technological variability suggesting a range of different 
practices coexisting at the same time, and, the clear relationship between mobility 
and metallurgy. Pryce et al. have also shown that, ‘there was much local variation in 
metallurgical practices in the Early Bronze Age Aegean.’146 This appears to be the 
case at the end of the Neolithic, too, despite the claim that there are, otherwise 
cultural ‘indicators of fourth millennium connectivity’.147 It appears that these 
communities across both periods had agency. 
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APPENDIX I 
 
 

(a) Methodology – ICP-OES and LIA 
 

Chemical Analyses at SUERC: 
ICP-OES Methodology 
Sub samples were analysed for a range of metals using Inductively coupled plasma 
– optical emission spectroscopy (ICP-OES).  

To prepare samples for ICP-OES analysis, the established method used in the 
SUERC ICP-MS/OES laboratory was used. 0.1 g sub-samples of dried, ground 
homogenised peat were refluxed for 8 hours in 2 ml of an aqua regia solution (Aristar 
grade 12M HCl: 16M HNO3, 50:50) in a covered Teflon beaker. The refluxed 
solutions were then diluted to 10 ml with Milli Q (R=18.2 Mohms.cm@25oC) water 
and filtered through a Whatman 542 grade hardened ashless filter paper to separate 
from the peat residue, the residues rinsed with Milli Q water and the combined 
filtered solutions and rinsings made up to a final volume of 100 ml with Milli Q 
water in an A -grade volumetric flask. Blanks and a Certified Reference Material, 
CRM049-050 (metals in soil- RTC, Laramie, WY 82070- used in house for inter-
comparison of various soil matrices) were also analysed in the same manner.   The 
resulting solutions were analysed for Pb, Zn, Fe, Mn, Cu, Ni, Cr, Cd, Ca and Mg 
using a Perkin Elmer 5300DV ICP-OES instrument, with a Scott style spray 
chamber and gem tip cross flow nebuliser under the conditions in the following 
Table. 

 

 

The spectroscopic lines used for analysis of each element are detailed in the next 
Table. 

Torch gas 
flow rate  

Auxiliary 
gas flow 
rate  

Nebuliser 
Gas flow 
rate 

RF power 
Watts 

Viewing 
distance  

Plasma 
view 

Sample flow     

15 l min-1 0.2 l min-1 0.8 l min-1 1300 watts  15mm Axial 1.5ml min-1 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

Peak area was integrated over 3 points with a 2-point background correction. 
Calibration of the instrument was carried out using 0.1, 1.0 and 10.0 mg l-1 standards 
prepared from NIST traceable Alfa Aesar Specpure® 1000 mg l-1 standards for each 
of the metals under analysis. For quality control purposes the validity of the method 
was assessed by analysis of a Certified Reference Material- CRM049-050 (Metals on 
Soil) with results detailed in the following Table.   

 

 

For Mn, Ni, Cr and Cd the average measured value (n=4) for the Certified Reference 
Material fell within the Confidence Interval range, while for Pb, Fe, Cu, Ca and Mg 

Analyte                        
Element 

Atomic 
Spectroscopic 
Line (nm) 

Pb 220.353 
Zn 206.200 
Fe 238.204 
Mn 257.610 
Cu 327.393 
Ni 231.604 
Cr 267.716 
Cd 228.802 
Ca 317.933 
Mg 285.213 

CRM049-050 Metals on Soil             Units: mg kg-1 (n = 4) 
Element Certified 

Reference  
value 

Standard 
Deviation 

Confidence   
Interval 

Prediction 
Interval 

Average 
measured      
value  

Standard 
Deviation 

Pb 111 6.69 109 – 112 97.5 - 124 118 7.12 
Zn 542 28.9 534 – 549 485 - 599 616 41.0 
Fe 9170 774 8950 - 9380 7630 - 10700 8791 391 
Mn 636 37.7 625 – 646 561 - 710 628 33.3 
Cu 88.5 5.39 87.1 - 89.8 77.8 - 99.1 83.4 4.87 
Ni 344 19.9 339 – 349 304 - 383 349 28.4 
Cr 355 20.7 350 – 360 314 - 396 355 13.7 
Cd 80.0 4.28 78.9 - 81.0 71.5 - 88.4 80.3 4.25 
Ca 4790 392 4680 – 4910 4020 - 5570 5126 682 
Mg 899 61.4 881 – 916 777 - 1020 842 38.1 



 
 
 
 
 
 
 
the value fell outwith the Confidence Interval range but within the Prediction 
Interval. For Zn, the value fell outwith both of these ranges suggesting a blank 
problem. 

(b) LIA Methodology at SUERC 

Analytical Methods and Instrumentation 
 
     The MC-ICP-MS data was determined using the Tl-doping method.148 Samples 
were prepared with a single anion column pass to achieve a sufficiently pure Pb 
separation top yield intense ion beams. Separated samples were diluted to 50ppb Pb 
in 5% HNO3, that was doped with 5 ppb of NIST SRM997 Tl. 
     The Pb isotope compositions were measured on a Micromass IsoProbe MC-ICP-
MS using an Elemental Scientific Inc 100 μl min -1 PFA nebulizer and Glass 
Expansion Pty microconcentric spray chamber. 208-Pb beam intensities were of the 
order of 10 Pa and each measurement consisted of 5 blocks of 20 ratios (5 s 
integrations) collected in static multi-collection mode. Each measurement consumed 
about 50 ng of Pb (roughly 10% of the separated Pb for the most Pb-rich samples). 
Mass bias was corrected using the doped Tl assuming an exponential law and 205-
Tl/203Tl=2.3871. Baselines were measured on peak for 45 s in blank 5% HNO3 
prepared with the same Milli-Q 18.2 M Ω water and 2xTeflon sub-boiling distilled 
concentrated nitric used to dilute samples. A solution of 5% HNO3/2% HF was 
introduced into the ICP_MS for 2 min between samples and was found to limit the 
build-up of Pb memory to ‹3 Mv at mass 208 during the course of an analytical 
session of several hours. Several standards were measured during each analytical 
session and the mean of these used to correct for small inaccuracies using the triple-
spiked TIMS data as reference composition (all 2 s.d. N-79). The major cause of 
inaccuracy is probably due to failure of Tl-normalisation to estimate mass bias of the 
Pb isotopes. In common with other studies,149 this phenomenon manifests as 
decreased accuracy with increasing mean mass of the isotopes forming a particular 
ration, e. g. 208Pb/204 is less accurate than 206Pb/204Pb. However, other sources 
of inaccuracy may include (i) incomplete correction of Hg interference on mass 204 
which would arise if molecular species contribute to masses 202 and 201 used to 
monitor Hg; (ii) differences in Faraday collector efficiency; and (iii), variations in ion 

 
148 Rehkämper et al. 1998, Belshaw et al. 1998 and White et al. 2000 
149 Ibid. 139 



 
 
 
 
 
 
 
energy across the focal plane of the mass spectrometer. The errors quoted in the 
results (previous Tables) are given with standard errors.150 
       Overall, the procedure used at SUERC determine the lead isotope ratios of the 
copper artefacts, ore and lead ores from Yali follows that undertaken in at Oxford and 
other laboratories and this permits comparison of results. In each the procedure to 
plot the results are as follows: firstly, the Euclidean distances in the three-dimensional 
space with axes defined by the three LI ratios are calculated between each of the 
artefact’s LI ratios and all currently available LI data points for ore and slag samples. 
Software such as TestEuclid sorts out the data in the order of increasing Euclidean 
distances. The LIA ratios of the artefact and an ore sample are regarded as identical 
if all three ratios for both are within the analytical error for the each of the three LI 
ratios. Next, the geochemical, geographical and historical (archaeological) 
information is considered. Finally, the data points are compared in two-dimensional 
graphical plots of LI ratios of the artefacts and ores selected in the previous two 
steps. The two –dimensional scatter plot was selected over multi-variate statistical 
analysis of LIA151 in this instance, because it affords comparison with the plethora 
of earlier data and the results. 
 
 

APPENDIX II 
The Issue of Tin 

     Clearly, the chemical results (AAS and OES) do not agree on the issue of tin in 
the copper from the Yali crucibles. In the OES results, where the figures for 
constituent elements are not readily converted, tin (Sn) was one of the elements that 
was standardised, so the concentration for Yali 2 (Crucible A) of 118 ppm (0.0118%) 
and, for Yali 2 Crucible B) of 885 ppm (0.0885%) should be reliable. These 
percentages are different, but still lower than would be expected if tin had been 
deliberately added. It does suggest that the copper source had tin minerals associated 
with it and that the copper from Yali does not represent a copper-tin alloy. 
     Reviews of the problem of tin availability have concluded that tin, as cassiterite, 
is rare in the Aegean and alloys made from tin ore come from a later date.152 
Some153 assert that since copper and tin minerals rarely occur together, the 
intentionality of tin bronze is not contentious, and the introduction of tin bronze 

 
150  To calculate these = (1SE%/50) x the relevant ratio e g 18.809 +/- 0.0080% = 
18.809 +/- ((0.0080/50)*18.809) = 0.003.  The various ratios are expressed to the 
same number of decimal places as the errors. 
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thus represents a technological horizon.   In this horizon, cassiterite, or tin ore, needs 
first to be made into a concentrate (by panning or vanning154). Pronounced 
segregation can be a problem in the interpretation of small samples.155 The 
concentrate is smelted by heating with charcoal.  The tin metal is then added to the 
molten copper oxide, in the furnace or even in the crucible.156 Allowing for 
segregation and the absence of iron, is it likely that the tin ore product was knowingly 
added to copper at Yali? If this technological level was reached, what form did the 
tin take? 
     Though rare, tin minerals, just as arsenical minerals, do occur in sectors of copper 
ore bodies in the Aegean.  Based on extensive geological fieldwork,157 it has been 
convincingly argued that some potential outcrops of tin mineralisation should be 
considered as potential tin sources in the Aegean. A ‘tin oxide’ or ‘hydrous tin oxide’ 
compound, corresponding to the minerals romanarchite and hydromarchite 
respectively, is produced at the oxidation zone of supplied mineralisations, 
comprising tin-bearing mineral special of the sulfosalt group (e.g. stannite, 
keosterite).  In epithermal-type ores, copper-arsenic and copper-tin sulfosalts can 
occur.   Epithermal mineralisations are widespread in the Aegean and adjacent areas, 
being part of a Tertiary metallogenetic belt extending from the southern and north 
eastern Aegean islands.  Localised outcrops are noted on Tinos and Syros in the 
Cyclades in particular.158 On Tinos, for example, tin bearing sulfosalts and minor 
cassiterite has been identified;159 on Syros, oxidisation is pronounced, and stannite 
has been identified.160 There are reports161 of tin ores on Skyros similar to that 
located near Sitagroi (Macedonia): Sitagroi IV had the first instance of tin in copper 
in the broader Aegean.162 
     The argument presented for the unintentional mixing of tin salts with copper 
suggests one possible way, possibly accidental way that early very low tin ‘bronzes’ 
mere produced. It has been suggested that stannite may be the source of the tin in 
low tin bronzes.163 Others have noted the presence of stannite near early 
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cassiterite.164. It could enter through a gossan flux.165 Small traces of tin may be 
characteristic of some Anatolian copper deposits.166 As we shall see, none of these 
are of the same geological age as the copper used on Yali. 
     Such mineralisation could account for early (low) tin bronzes and this may have 
led to an increased interest in cassiterite. Arsenic mineralisation may have similarly 
encouraged interest in arsenic rich copper. The use of arsenide at EBA Poros 
Katsambas may be yet another example of experimentation.167 It could represent 
progression in the use of arsenical coppers in an effort to attain consistency. Overall, 
however, the presence of tin at this inception stage in metallurgy should not be 
ignored. 
     The occurrence of tin in copper in the Aegean at this time is relatively rare but 
does exist.  There is much regional variation.  In the north, some examples include 
the 5.9% and 2.3% percentages of tin in two pieces of copper from Sitagroi IV (EBA 
I), thought to be the earliest in the Aegean.168 Contemporary with the Yali finds is 
the crucible with copper slag and evidence for tin come from phase II at Mandalo, 
northern Greece.169 This site had strong ceramic connections with both the 
Rachmani culture of Thessaly and the Maliq II culture of Albania.170 The lead isotope 
analysis of the Mandalo copper plots the source and artefacts into a distinct southern 
part of the Laurion ‘field’.171 
     In the Balkans, where tin in copper appears later than at Sitagroi, levels ranged 
from 6-10% and represent the use of tin ore, for example at sites such as Eneolithic 
Karanovo172 and Gomolava Pločnik D1 during the Vinča period.173  
     In the east Aegean, a Thermi I pin, with 13.1%,174 must certainly have been made 
from tin ore, as would its successor from this site: a tin bangle from Thermi (III?) 
and a punch from Thermi IV with 1.65% tin.175 Before this, the Mersin conical  
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headed toggle pin, dating to the Late Chalcolithic (c. 4,300 BC), has 1.3% tin and 
1.15% arsenic.176 
     Closer to Yali, most of the earliest finds are located either in north western or 
western Anatolia or in the offshore islands of the east Aegean. The quantities of tin 
imply use of tin ore. If one accepts the tin results for Yali, it may be considered an 
early instance of this group 
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Figure 1: Yali in the Context of the Aegean, with some key sites noted. 
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Figure 2:  Chronological Relationship of Yali to 4th Millennium BC Communities in the Wider Aegean 
 



 
 
 
 
 
 
 
 

                   
 
 
 

Figure 3: Spatial Context of Yali – the island › the higher plateau › the location of 
the main settlement with findspot of the crucibles in Z2. 
 



 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

Figure 4: The Apsidal Features in a building on Yali, 
(After Sampson (1988, 54, 16a)) 
 



 
 
 
 
 
 
 

 

 

 

 Figure 5. The Yali Crucibles 



 
 
 
 
 
 
 

 

 

 

 

 
Element Amount detected Percentage Equivalent 
      
Copper  21.4  96.5  
Lead  0.014  0.063  
Tin  0.476  2.14  
Arsenic  0.285  1.28  
Iron  Trace    
Zinc*      
Nickel*      
Cobalt*      
      
* tested for but not found    

 

 

 
 

 
 

 

 

 

 

 

Figure 6. Chemical Composition of Copper in Crucible A (AAS), 
(After Dr K. Assimenos, National Museum of Athens) 
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Figure 7: Chemical Composition of Copper in Crucibles A and B 
(Optimal Emission Spectroscopy Results of Two Copper Products 
from Yali Crucibles (normalised data (a) and raw data (b)), after 
Professor R. M. Ellam, Scottish Universities Research and Reactor 
Centre). 
 



 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 208Pb/206Pb 207Pb/206Pb 206Pb/204Pb 
No. 
Figs.  

Crucible A-Large  2.06197  0.83196  18.864  1 

Crucible B - Small  2.06438  0.83241   18.8616  
2 
  

Figure 8. Lead Isotope determinations of Copper from Crucibles A and B. (After 
Professor N. H. Gale, Laboratory for Archaeometry, University of Oxford, 
www.oxalid.ox.ac.uk)  

http://www.oxalid.ox.ac.uk/


 
 
 
 
 
 
 

  208Pb/206Pb 207Pb/206Pb 206Pb/204Pb No. in Fig. 8,9 
Crucible A - Cu 2.065928  0.833934  18.96532  3  
Crucible B - Cu 2.067907  0.833972  18.99244  4  
Rivet – 
Pb  2.063687  0.832466  18.99888  5  

 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 9: Lead Isotope Determinations of Copper from Crucibles A and B and Lead 
Rivet, (after Professor R. M. Ellam, Scottish Universities Research and Reactor 
Centre, University of Glasgow) 
 



 
 
 
 
 
 
 

 

 

 

Figure 10: Lead Isotope Results (After Gale and Ellam. Samples 1 and 2 = Gale’s 
analyses for Crucible A and B; Samples 3, 4 and 5 = Ellam’s analyses for Crucible 
A and B and lead rivet, respectively, as they relate to the Kythnos field (determined 
by Gale and Stos Gale (1986). 
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