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 99 

Research in context 100 

Evidence before this study 101 

Studies on hypothyroidism and hyperthyroidism implicate that adequate maternal thyroid hormone 102 

availability is required for optimal fetal growth and development. Studies on the association of mild 103 

thyroid function test abnormalities with birth weight report heterogeneous results. Some studies 104 

indicate that high FT4 concentrations are associated with lower birth weight which could have 105 

implications for the treatment target in women already on levothyroxine therapy. We searched 106 

Medline (Ovid), Embase.com, Web-of-Science, Cochrane CENTRAL and Google Scholar up to 107 

March 18th, 2018 and collected data on serum thyroid function tests and antibody status during 108 

pregnancy and birth weight from prospective cohort studies including treatment-naïve pregnant 109 

women. 110 

Added value of this study 111 

This individual participant data meta-analysis showed that subclinical hypothyroidism is associated 112 

with lower birth weight. We also identified that a higher maternal FT4, even within the normal range, 113 

is associated with lower birth weight and that isolated hypothyroxinaemia was associated with higher 114 
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birth weight. The association of FT4 with birth weight was more apparent in the second and third 115 

trimester as compared to the first trimester of pregnancy. 116 

Implications of all the available evidence 117 

There was a continuous negative association of maternal FT4 with birth weight that was most 118 

prominent in the second and third trimester of pregnancy. This implicates that there could be a 119 

potential risk of overtreatment when titrating levothyroxine to high-normal FT4 concentrations during 120 

pregnancy and emphasize the need for treatment monitoring during later pregnancy. 121 

 122 

Abstract 123 

Background Adequate transplacental passage of maternal thyroid hormone is important for 124 

normal fetal growth and development. Maternal overt hypothyroidism and hyperthyroidism 125 

are associated with low birth weight but there are still important knowledge gaps regarding 126 

the impact of subclinical thyroid function test abnormalities on birth weight, in general or 127 

during the late second and third trimester of pregnancy, remains unknown. The aim of this 128 

study was to examine associations of maternal thyroid function with birth weight. 129 

Methods For this individual-participant data meta-analysis we searched Medline (Ovid), 130 

Embase.com, Web-of-Science, Cochrane CENTRAL and Google Scholar from inception to 131 

March 18th 2018, and published open invitations to join the Consortium on Thyroid and 132 

Pregnancy, to identify prospective cohort studies with data on maternal thyroid function 133 

during pregnancy and birth weight. We excluded participants with multiple pregnancies, in 134 

vitro fertilization, pre-existing thyroid disease or thyroid medication usage, miscarriages and 135 

stillbirth. Main outcomes were small for gestational age (SGA), large for gestational age 136 

(LGA) (defined by the lowest or highest 10th population-specific percentile of birth weight 137 

standardized to gestational age and sex, respectively) and birth weight. We analysed 138 
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individual participant data using mixed-effects regression models adjusting for maternal age, 139 

body mass index, ethnicity, smoking, parity, gestational age at blood sampling, fetal sex and 140 

gestational age at birth (the latter two only in case of birth weight continuously). The study 141 

protocol was pre-registered at the International Prospective Register of Systematic Reviews 142 

(PROSPERO), number CRD42016043496. 143 

Results From 2,526 published reports, 36 cohorts met the inclusion criteria and were invited 144 

to participate of which 15 agreed and after addition of 5 unpublished datasets, a total of 20 145 

cohorts were included. After exclusions, the study population comprised 48,145 mother-child 146 

pairs of whom 1,275 (3·1%) had subclinical hypothyroidism (increased TSH with normal 147 

FT4) and 929 (2·2%) had isolated hypothyroxinaemia (decreased FT4 with normal TSH). 148 

Maternal subclinical hypothyroidism was associated with a higher risk of SGA compared to 149 

euthyroidism (11·8% vs. 10·0% respectively, adjusted risk difference 2·4% [95% CI, 0·4 to 150 

4·8]; odds ratio (OR) 1·24 [95% CI 1·04 to 1.48], P=0·015) and lower mean birth weight 151 

(adjusted risk difference -38g [95% CI -61 to -15], P=0·001) with a higher effect estimate for 152 

measurement in the 3rd trimester compared with the 1st or 2nd trimester. Isolated 153 

hypothyroxinaemia was associated with a lower risk of SGA compared to euthyroidism (7·3% 154 

vs. 10·0%, adjusted risk difference -2·9 [95% CI, -4·5 to -0·9]; OR, 0·70 [95% CI 0·55 to 155 

0·91], P=0·007) and higher mean birth weight (difference, 45g [95% CI 18 to 73], P=0·001). 156 

Each 1-SD higher maternal TSH concentration was associated with lower birth weight (-6g [-157 

10 to -2], per SD, P=0·003), with higher effect estimates in TPOAb-positive than TPO-158 

negative women (P for interaction=0·10). Each 1-SD higher FT4 concentration was 159 

associated with lower birth weight (-21g [95% CI -25 to -17] per SD, P<0·0001), with a 160 

higher effect estimate for measurement in the 3rd trimester compared with the 1st or 2nd 161 

trimester.  162 
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Interpretation Maternal subclinical hypothyroidism in pregnancy is associated with a higher 163 

risk of SGA and lower birth weight, whereas isolated hypothyroxinaemia is associated with 164 

lower risk of SGA and higher birth weight. There was an inverse, dose-response association 165 

of maternal TSH and FT4 (even within the normal range) with birth weight. These results 166 

advance our understanding of the complex relationships between maternal thyroid function 167 

and fetal outcomes, and should prompt careful consideration of potential risks as well as 168 

benefits of levothyroxine therapy during pregnancy.  169 

Funding This work was supported by replication studies grant 401.16.020 from the 170 

Netherlands Organization for Scientific Research.  171 
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Introduction 172 

Birth weight is an important marker of fetal growth, development, nutrition and other in utero 173 

exposures. Low birth weight or being born small for gestational age (SGA) are major risk 174 

factors for neonatal mortality and morbidity, and are associated with a higher risk of non-175 

communicable diseases in later life.1-4 In contrast, being large for gestational age (LGA) is a 176 

risk factor for caesarean section, postpartum haemorrhage, new-born hypoglycaemia and 177 

obesity in later life.5-7 Thyroid hormone regulates fetal growth and development throughout 178 

gestation. Fetal thyroid hormone availability largely depends on the placental transfer of 179 

maternal thyroid hormone, particularly during the first 18-20 weeks of pregnancy.8 Overt 180 

maternal thyroid disease such as hypothyroidism or (pre-existing) Graves’ hyperthyroidism 181 

are well known risk factors for SGA and occur in 0·2% to 1% of pregnancies.8 Milder thyroid 182 

function test abnormalities such as subclinical hypothyroidism, hypothyroxinaemia and 183 

subclinical hyperthyroidism are up to ten times more frequent. Because some studies showed 184 

that mild thyroid function test abnormalities are associated with SGA or LGA9-12 but others 185 

did not13,14, it remains to be elucidated whether, or to what extent these are risk factors for 186 

SGA or LGA. 187 

 188 

Levothyroxine is commonly prescribed during pregnancy in all parts of the world for 189 

treatment of overt thyroid dysfunction.15-19 To date, it remains common practice to titrate 190 

levothyroxine therapy to high-normal free thyroxine (FT4) concentrations and/or low-normal 191 

TSH concentrations as the potential benefits are believed to outweigh potential harms, 192 

although the evidence for this remains poor. However, some observational studies suggest 193 

that already high-normal FT4 concentrations are associated with impaired fetal growth and 194 

lower birth weight, suggesting that levothyroxine treatment comes with the potential risk of 195 

overtreatment.20-25 The guidelines of the American Thyroid Association indicate that 196 



8 
 

treatment can be considered for mild thyroid function test abnormalities such as subclinical 197 

hypothyroidism or for thyroid peroxidase antibody (TPOAb) positive women with a TSH 198 

above 2·5 mU/L, and is recommended for TPOAb positive women when the TSH is >4 mU/L 199 

and for all women when the TSH is >10 mU/L.26 Overall, previous observational studies on 200 

the association of mild thyroid function test abnormalities with birth weight show conflicting 201 

results10,26-32 and most randomized trials of levothyroxine treatment do not report any 202 

differences.33-37 Thus far, the interpretation of individual observational studies and 203 

randomized trials has been limited by the relatively small sample sizes and use of widely 204 

varying definitions of an abnormal thyroid function test. The latter, in combination with 205 

different definition of birth weight outcomes, different analysis approaches and scarcity of 206 

reporting results for isolated hypothyroxinaemia or continuous association of thyroid function 207 

with birth weight, limits the capabilities of an aggregate data meta-analysis. Furthermore, 208 

most studies have focused on early pregnancy, and both the clinical relevance of mild thyroid 209 

function test abnormalities as well as treatment aims for the second half of pregnancy remain 210 

to be elucidated.  211 

The aim of this study was to investigate the associations of maternal thyroid function tests 212 

with SGA, LGA and birth weight. 213 

 214 

Methods 215 

The Consortium on Thyroid and Pregnancy is a collaboration of prospective birth cohorts that 216 

aims to study the association of maternal thyroid function and autoimmunity with adverse 217 

pregnancy and child outcomes.38 For the current study, we followed the Preferred Reporting 218 

Items for Systematic Reviews and Meta-Analyses for Individual Patient Data guidelines and 219 

pre-registered our study protocol (PROSPERO ID CRD42016043496, appendix p3-6). To 220 

identify studies for inclusion, we conducted a systematic search of literature for the 221 
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publications on the association of thyroid function or autoimmunity with birth weight, 222 

published from inception to March 18th 2018, with no language restrictions using several 223 

databases (Medline (Ovid), Embase.com, Web-of-Science, Cochrane CENTRAL and Google 224 

Scholar, detailed search terms and strategy are in the appendix p7-8). We included cohort 225 

studies in which data was collected prospectively and that consecutively included participants 226 

from the general population and/or without active selection based on health status and had 227 

either TSH or FT4 measurements and data on birth weight available. We excluded studies in 228 

which participants received treatment based on (abnormal) thyroid function tests 229 

(predominantly hospital-based cohorts) or studies that only included women with (overt) 230 

thyroid disease. Possible studies for inclusion were independently assessed for suitability by 231 

two authors (TIMK and PNT) and any disagreement was resolved by discussion with a third 232 

author (RPP). Investigators from each eligible study were invited to join the consortium using 233 

the contact details on the identified reports; if unsuccessful we used contact details of other 234 

published studies, contacted their co-authors or department. Upon participation, we collected 235 

individual-participant data using a standardized codebook. Quality of the studies and risk of 236 

bias was assessed using the Newcastle-Ottawa scale. All cohorts were approved by a local 237 

review board and acquired participant informed consent or had been granted exemption from 238 

it by the local Ethics Committee. All participants with a measurement of TSH, FT4 or TPOAb 239 

(first available) and birth weight were included; any data on thyroglobulin antibodies (TgAb) 240 

was collected upon availability. We excluded participants with a miscarriage/stillbirth, pre-241 

existing thyroid disease or thyroid-interfering medication usage, IVF treatment or twin 242 

pregnancies. See appendix p8 for more details on methods. 243 

Exposures 244 

Exposures included subclinical thyroid function test abnormalities, continuous thyroid 245 

function test measurements (TSH and FT4), TPOAb and/or TgAb positivity. Overt 246 
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hyperthyroidism was considered as a subclinical disease entity, considering the transient 247 

nature and lack of indication for treatment with anti-thyroid drugs of this biochemically 248 

defined entity. We did not have data on TSH receptor antibodies or undiagnosed Graves’ 249 

disease, however, we considered this unlikely to affect our results given the prevalence of 250 

approximately 0.05%. We did not study the association of overt hypothyroidism with birth 251 

weight because treatment for this disease entity is non-controversial, and because the very low 252 

prevalence in combination with a relatively large number of women excluded because of pre-253 

existing thyroid disease indicates that women with true overt hypothyroidism are only 254 

selectively represented in the included studies. Thyroid function test abnormalities were 255 

defined according to cohort-specific 2·5th and 97·5th percentiles for TSH and FT4, in cohorts 256 

with TPOAb data, after exclusion of TPOAb positive women. Subclinical hypothyroidism 257 

was defined as TSH above the 97·5th percentile and a FT4 within the normal range (2·5th-258 

97·5th percentile). Overt hyperthyroidism was defined as TSH below the 2·5th percentile and a 259 

FT4 above the 97·5th percentile. Subclinical hyperthyroidism was defined as a TSH below the 260 

2·5th percentile and a FT4 within the normal range. Isolated hypothyroxinaemia was defined 261 

as a FT4 below the 2·5th percentile and a TSH within the normal range. TPOAb and TgAb 262 

positivity were based on cohort-specific cut-offs. For continuous TSH and FT4 concentrations 263 

as exposure variables, concentrations for all cohorts were log-transformed and then converted 264 

to population-specific standard deviation (SD) scores after removal of outliers (+/- 4 SD from 265 

the mean) to enable comparison between different cohorts and assays. 266 

Outcomes  267 

The primary outcomes were SGA, LGA and birth weight (as a continuous variable). To define 268 

SGA and LGA, birth weight was standardized according to gestational age at birth and fetal 269 

sex per cohort. SGA was defined as a standardized birth weight below the 10th cohort-specific 270 

percentile, and LGA as a standardized birth weight above the 90th cohort-specific percentile, 271 
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according to the definition of the World Health Organization.39 Secondary outcomes were low 272 

birth weight (LBW; birth weight below 2,500 grams) and macrosomia (birth weight above 273 

4,000 grams).  274 

 275 

Statistical analyses 276 

Datasets were merged and all analyses were performed according to the protocol, unless 277 

stated otherwise (appendix p8-9). We used linear mixed effect regression models with a 278 

random intercept for each cohort to study the association of thyroid function test 279 

abnormalities (compared with euthyroidism), TSH, FT4 concentrations or TPOAb, TgAb 280 

positivity with birth weight. We used generalized logistic mixed regression models with a 281 

random intercept for each cohort to study the association of thyroid function test 282 

abnormalities (compared with euthyroidism), TSH, FT4 concentrations or TPOAb, TgAb 283 

positivity with SGA, LGA, LBW and macrosomia. All analyses of primary outcomes were 284 

also performed using a two-step approach with random-effect models according to 285 

DerSimonian and Laird to pool estimates of the cohorts and assess heterogeneity across 286 

studies using the I2 statistic and 95% confidence interval. We evaluated for potential 287 

publication bias using funnel plots and Egger tests. All models were adjusted for maternal 288 

age, BMI, ethnicity, smoking, parity, gestational age at blood sampling, fetal sex and 289 

gestational age at birth (the latter two in case of birth weight, LBW and macrosomia outcomes 290 

only). To assess the effects of potential confounding, we ran crude models for the primary 291 

analysis. Risk differences and corresponding 95% CIs were calculated according to 292 

Newcombe and Bender, taking into account baseline risk imprecision calculated using the 293 

Wilson score method, and were adjusted for covariates and could thus deviate from non-294 

adjusted percentages.40 We used multilevel multiple imputation for missing data on covariates 295 
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creating five imputed datasets for pooled analyses.41 See appendix p8-9 for more details on 296 

statistical analysis and list of sensitivity analyses. 297 

All statistical analyses were performed using R statistical software version 3.5.1 (R 298 

Development Core Team (2018), Vienna, Austria; packages lme4, mice, micemd, metafor, 299 

sjPlot). 300 

The funder of the study had no role in study design, data collection, data analysis, data 301 

interpretation, or writing of the report. The corresponding author had full access to all of the 302 

data and the final responsibility to submit for publication. 303 

 304 

Results 305 

We identified 2,526 reports of which 133 were eligible for inclusion based on title and 306 

abstract screening (Figure 1). After reading full texts, and addition of five cohorts identified 307 

via personal contacts and open invitations, a total of 36 cohorts were invited to participate. 308 

Subsequently, 20 cohorts from Europe, USA, Chile, Pakistan, Japan and Australia responded 309 

to our invitation and were able to participate. After exclusions, the final study population 310 

included 48,145 participants (Figure 1) with a mean birth weight of 3,400 (SD 536) grams and 311 

median gestational age at birth of 39·9 (95% range: 35·5 to 42·0) weeks; 4,771 new-borns 312 

were born SGA (9·8%) and 4,736 (9·7%) were born LGA (Table). Subclinical 313 

hypothyroidism occurred in 1,275 women (3·1%), isolated hypothyroxinaemia occurred in 314 

929 women (2·2%) out of 41,564  from 17 cohorts with available data on TPOAbs. Cohort-315 

specific characteristics are provided in the appendix p10-17. Compared with participants 316 

included in the study, women who were not included because of missing data on birth weight 317 

had similar TSH and FT4 concentrations, but a higher rate of TPOAb positivity (12·6% vs. 318 

7·5 %, P=0·0005; appendix p18).  319 



13 
 

 320 

Compared with euthyroidism, maternal subclinical hypothyroidism was associated with a 321 

higher risk of SGA (11·8% vs 10·0%, adjusted risk difference 2·4 % [95% CI, 0·43 to 4·8]; 322 

odds ratio [95% CI]: 1·24 [1·04 to 1·48, P=0·015]; Figure 2A) and lower mean birth weight 323 

(estimated mean difference -38g [95% CI -61 to -1]; Figure 2C). Isolated hypothyroxinaemia 324 

was associated with a lower risk of SGA (7·3% vs 10·0%, adjusted risk difference -2·9 % 325 

[95% CI, ‐4·5 to ‐0·9]; odds ratio [95% CI]: 0·70 [0·55 to 0·91, P=0·007]; Figure 2A) and 326 

higher mean birth weight (estimated mean difference 45g [95% CI 18 to 73]; Figure 2C). 327 

Subclinical hyperthyroidism and overt hyperthyroidism were not associated with SGA or birth 328 

weight (Figure 2A), and there was no association of thyroid function test abnormalities with 329 

LGA (Figure 2B). 330 

 331 

When analysed as a continuous variable, each 1-SD higher maternal TSH concentration was 332 

associated with a higher risk of SGA (OR 1·05 [95% CI 1·01 to 1·08] per SD, Figure 3A) and 333 

lower mean birth weight (-6g [95% CI -10 to -2] per SD, Figure 3B). Each 1-SD higher FT4 334 

concentration was associated with a higher risk of SGA (OR 1·07 [95% CI 1·0 to 1·11] per 335 

SD, Figure 3A), a lower risk of LGA (OR 0·91 [95% CI 0·88 to 0·94] per SD, Figure 3A) and 336 

lower mean birth weight (-21g [95%CI -25 to -17] per SD, Figure 3B). When considered 337 

across the full FT4 range, the approximated difference in birth weight was ~200 grams 338 

(Figure 3B). Effect estimates remained similar when analyses were confined to TSH or FT4 339 

concentrations within the normal range (Figure 3B). TPOAb and TgAb positivity were not 340 

associated with SGA, LGA or birth weight (appendix p19). 341 

The association of FT4 with birth weight differed according to the gestational age at blood 342 

sampling (P for interaction=0·0002). Subsequent stratified analyses showed that the effect 343 

estimates of the association of FT4 with birth weight were 2 and 3-times larger when the FT4 344 
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concentration was measured during the 2nd or 3rd trimesters compared to the 1st trimester (β 345 

[95% CI] for birth weight: -13 , -22  and -36 in 1st, 2nd and 3rd trimesters, respectively; Figure 346 

4, appendix p21). Also, estimates of the association of subclinical hypothyroidism with birth 347 

weight measured in 2nd and 3rd trimesters were 2 and 5 times larger compared to 1st trimester 348 

(β [95% CI] for birth weight: -20 , -33  and -75 in 1st, 2nd and 3rd trimesters, respectively; 349 

appendix p21).  350 

 351 

There was evidence that the association of TSH and FT4 with birth weight differed according 352 

to TPOAb status (P for interaction=0·10 and 0·09, respectively). In the subsequent stratified 353 

analysis, effect estimates of the negative association of TSH with birth weight were 4-times 354 

higher for TPOAb positive women than TPOAb negative women (β [95% CI] -17g [-32 to -355 

2·5] per SD vs. -4.7g [-9 to -0·2] per SD, respectively; appendix p24&37). In contrast, for 356 

FT4, the negative effect estimate of the association with birth weight in TPOAb positive 357 

women was almost half the estimate for TPOAb negative women (β [95% CI] -10 [-25 to 4] 358 

per SD vs. -21 [-26 to -17] per SD, respectively; appendix p24&37).   359 

 360 

There was evidence that association of FT4 with birth weight differed according to maternal 361 

age and BMI (P for interaction 0·078 and 0·003, respectively) but not fetal sex or smoking 362 

status (appendix p20). When stratified by maternal age there was not a meaningful difference 363 

in the association of FT4 with birth weight between the two groups (β [95% CI] for birth 364 

weight: -22 [-27 to -17] and -19 [-25 to -13] for maternal age <30 or ≥30 years, respectively; 365 

appendix p22). Stratified analyses showed that the negative effect estimate of the association 366 

of FT4 with birth weight was larger in women with a BMI ≥30 kg/m2 compared to those with 367 

a BMI of 18-25 kg/m2 (appendix p23). There was also evidence that the association of TSH 368 

with birth weight differed according to maternal age (P for interaction=0.11) but not 369 
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gestational age at the time of sampling, fetal sex, BMI, or smoking (appendix p20). When 370 

stratified by maternal age, the negative association of TSH with birth weight was nearly 4-371 

times higher for women aged ≥30 years compared to <30 (appendix p22). Results of analyses 372 

on low birth weight or macrosomia yielded results similar to those of SGA or LGA (appendix 373 

p25-26). Additional adjustment for gestational diabetes mellitus or preeclampsia did not 374 

change the results (appendix p27-32). Results of the crude analyses can be found in appendix 375 

p33-34. Using Newcastle-Ottawa Quality Assessment Scales we did not identify any risk of 376 

bias in the included cohorts (appendix p35-36). Results of two-step meta-analyses were 377 

similar to one-step analyses with I2 statistics ranging between 0 to 51·5% indicative of low to 378 

moderate heterogeneity. Moreover, funnel plots did not indicate publication bias or 379 

unexpected differences in effect estimates between the included studies (appendix p38-45). 380 

Discussion 381 

In this individual participant data meta-analysis, we show that, compared to euthyroidism, 382 

maternal subclinical hypothyroidism during pregnancy is a risk factor for SGA and is 383 

associated with lower birth weight. By contrast, isolated hypothyroxinaemia was associated 384 

with higher birth weight but not LGA. Maternal TSH and FT4 concentrations were both 385 

inversely associated with birth weight, with the association of FT4 being most apparent 386 

during later pregnancy, whereas the association of TSH with birth weight was most apparent 387 

in TPOAb-positive women. 388 

 389 

One of the main results of this study is that higher FT4 concentrations are associated with 390 

lower birth weight, even within the normal range. For TSH concentrations, the associations 391 

with birth weight were less evident and not present within the normal range. These continuous 392 

analyses can be interpreted in various ways. First, together with results from other studies, the 393 
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negative association of maternal FT4 with birth weight in this study can strengthen 394 

hypotheses about the effects of thyroid hormone on the developing fetus. Since circulating 395 

maternal FT4 crosses the placenta, and maternal FT4 concentrations are correlated with new-396 

born FT4 concentrations,42,43 the negative association of maternal FT4 with birth weight could 397 

reflect a direct thyroid hormone effect. The negative dose-dependent association of FT4 with 398 

birth weight can also be further extrapolated to fetal growth restriction typically seen in 399 

pregnancies complicated by Graves’ hyperthyroidism.44,45 We hypothesize that such an effect 400 

is mediated by an increase in new-born lipid and protein catabolism causing a reduction in 401 

caloric availability, which could be further complicated by a higher placenta vascular 402 

resistance.46,47 Yet, the point estimates for overt hyperthyroidism in this study warrant further 403 

studies, although it is possible that the association of FT4 concentrations with birth weight is 404 

partly caused by high hCG concentrations. Overt hyperthyroidism in the current study may 405 

reflect transient gestational thyrotoxicosis rather than Graves’ hyperthyroidism, and high hCG 406 

concentrations have been associated with a higher birth weight.48 An alternative underlying 407 

mechanism could be through lower T3, as a recent study showed that lower maternal T3 is 408 

associated with lower birth weight.22 Although it remains to be elucidated whether T3 passes 409 

the placenta, further studies on the association of maternal T3 concentrations with pregnancy 410 

outcomes seem warranted also because T3 concentrations are lower in individuals treated 411 

with levothyroxine therapy.26 412 

Second, the continuous analyses for FT4 and TSH support the associations identified for 413 

isolated hypothyroxinaemia in this study, since both lower FT4 concentrations as well as 414 

isolated hypothyroxinaemia were associated with higher birth weight. Interestingly, the 415 

association of subclinical hypothyroidism with birth weight was in the opposite direction of 416 

the association of continuous FT4 and isolated hypothyroxinaemia, and TSH in the normal 417 

range (as is the case for isolated hypothyroxinemia) was not associated with birth weight. This 418 
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suggests important differences in the underlying pathophysiological mechanisms. Subclinical 419 

hypothyroidism is more common in TPOAb positive women and likely reflects a lower 420 

thyroid functional capacity. The latter is reflected by a considerable attenuation of the hCG-421 

mediated increase in FT4 and decrease in TSH concentrations in women with subclinical 422 

hypothyroidism as compared to euthyroid women.49 On the other hand, neither TPOAb 423 

positivity nor an impaired thyroidal response to hCG seem to play a role in women with 424 

isolated hypothyroxinaemia.49 We speculate that isolated hypothyroxinaemia is a thyroid 425 

function test abnormality that is specific for pregnancy and may not necessarily represent 426 

thyroid gland hypofunction.8 It has also been suggested that minor aberrations of thyroid 427 

function during pregnancy may arise from dysfunction of the uteroplacental unit, rather than 428 

from thyroid dysfunction.50 Further studies are required to elucidate the underlying 429 

physiology of such gestational thyroid function test abnormalities. 430 

Thyroid hormone regulates different metabolic and anabolic processes in both mother and 431 

fetus throughout gestation. It controls fetal growth by facilitating placentation and regulation 432 

of metabolism, fetal glucose and oxygen consumption as well as other co-factors directly 433 

affecting skeletal growth, tissue differentiation and accretion.51-53 One of the sensitivity 434 

analyses in this study showed that the negative association of FT4 with birth weight is 435 

amplified during the 2nd and 3rd trimester. These differences most likely reflect an 436 

amplification of the metabolic effect of thyroid hormone on fetal growth due to an increased 437 

fetal nutritional demand and increased fetal growth rate associated with the progression of 438 

pregnancy.51,54 Our results indicate that maternal thyroid function also during later pregnancy 439 

is a relevant determinant of fetal development. These results highlight the relevance of 440 

follow-up thyroid function testing when levothyroxine therapy is started during early 441 

pregnancy and warrant further studies preferably utilizing repeated thyroid function tests.  442 

 443 
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Worldwide, levothyroxine is one of the most often prescribed drugs during pregnancy 15-19, 444 

and the dosage is commonly targeted to achieve high-normal FT4 concentrations. The 445 

extrapolation of data from population-based studies for defining treatment targets remains 446 

valuable, as is reflected by recent data on levothyroxine overtreatment and child 447 

neurocognition.8,55 This study in untreated, otherwise healthy women shows that a higher 448 

maternal FT4 concentration within the normal range is associated with lower birth weight and 449 

a higher risk of SGA. This suggests that levothyroxine therapy comes with a potential risk of 450 

overtreatment, especially when targeting high-normal FT4 concentrations. Consistent with the 451 

results of this study, a recent randomized trial showed that low-dose levothyroxine treatment 452 

of either subclinical hypothyroidism or isolated hypothyroxinaemia was associated with a 453 

higher risk of SGA, albeit statistically non-significant (for subclinical hypothyroidism, 454 

levothyroxine 10% vs placebo 8%; for isolated hypothyroxinaemia, levothyroxine 9% vs 455 

placebo 8%).37 Further studies are needed to investigate whether the changes in TSH or FT4 456 

concentrations that occur during levothyroxine therapy in pregnancy are related to treatment 457 

benefits and/or harms and differ per underlying thyroid function test abnormality. 458 

Strengths and limitations 459 

In the current study, we were able to utilize detailed individual-participant data on thyroid 460 

function, birth weight and potential confounders from 19 prospective, population-based 461 

cohorts, allowing standardization of the definition of thyroid function test abnormalities and 462 

analysing potential dose-dependent associations. One of the limitations of the current study is 463 

the interpretation of the results on overt hyperthyroidism, since we had limited statistical 464 

power for this group and TSH receptor antibody concentrations were not available. Secondly, 465 

the interpretation of the results could be affected by pregnancy-related changes in thyroid 466 

binding proteins that could interfere with FT4 immunoassays. However, gestational changes 467 

in FT4 concentrations as assessed by immunoassays are highly similar to those measured with 468 
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liquid chromatography-mass spectrometry or equilibrium dialysis.56,57 Thirdly, we could not 469 

invite 5 studies that were published while conducting statistical analyses for the current study 470 

(appendix p8) and that we could not collect data on previous stillbirths, renal disease or 471 

previous SGA. Finally, due to the observational nature of the included studies, we cannot 472 

exclude any residual or unmeasured confounding, which limits any conclusions on causality 473 

of the identified associations. 474 

Conclusion 475 

This large individual participant data meta-analysis shows that subclinical hypothyroidism is a 476 

risk factor for SGA and that isolated hypothyroxinaemia is associated with higher birth 477 

weight. Furthermore, we identified a dose-dependent negative association of maternal FT4 478 

with birth weight that was most prominent during late pregnancy. This indicates that there is a 479 

potential risk of overtreatment when titrating levothyroxine to high-normal FT4 480 

concentrations and underlines the importance of follow-up thyroid function testing when 481 

levothyroxine therapy is started during early pregnancy.  482 
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Table Characteristics of the total study population (N=48,145*) 665 

Maternal characteristics  
Age, years 29·0 (5·1) [N=47,661] 
Gestational age at the time of sampling, weeks 12·8 (7·0 to 39·7) [N= 47,979] 
BMI, kg/m2 24·0 (4·4) [N=32,586†] 
Parity, N (%)  

0 24,589 (51·1) 
1 13,805 (28·7) 
2 4,400 (9·1) 
≥3 2,486 (5·2) 
Missing† 2,865 (6.0) 

Smoking status, N (%)  
Non/past smoker 39,788 (82·6) 
Current smoker 5,038 (10·5) 
Missing† 3,319 (6.9) 

Education, N (%)  
Low 10,085 (20·9) 
Medium 11,122 (23.1) 
High 11,744 (24·4) 
Missing† 15,194 (31.6) 
  

Maternal test results  
TSH (mU/L) 1·32 (0·13-4·50) [N=47,524] 
FT4 (pmol/L) 13·0 (7·3-21·9) [N=47,394] 
TPOAb positivity, N (%) 3,128 (7·5) [N=41,706] 
TgAb positivity, N (%) 1,063 (5·8) [N=18,355] 
  
Child characteristics  
Birth weight, grams 3,400 (536) 
Small for gestational age, N (%) 4,771 (9·9) 
Large for gestational age, N (%) 4,736 (9·8) 
Gestational age at birth, weeks 39·9 (35·5-42·0) 
Sex, N (%) [N=37,181] 

Female 19,644 (40.8) 
Male 19,054 (39.6) 
Missing† 9,447 (19.6) 

Table shows descriptive statistics of the characteristics of all included women as the 666 

mean (SD), median (95% range) or count (percentage), as appropriate. Cohort-specific 667 

descriptive characteristics are shown in appendix p10-13. 668 

*Number of participants with available data on either of thyroid function tests, unless 669 

otherwise indicated. 670 

† Missing mostly due to lack of data from one or some cohorts. 671 

For detailed description of missing data of covariates per cohort see appendix p14. 672 

 673 

Figure 1. Flowchart of the study and population selection. 674 
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Figure 2. Association of thyroid function test abnormalities with small or large for gestational 675 

age and birth weight. 676 

All analyses were adjusted for maternal age, BMI, ethnicity, smoking, parity, gestational age 677 

at blood sampling, fetal sex and gestational age at birth (the latter two for birth weight only). 678 

Risk differences and 95% CIs were back-calculated from the results of multivariable models 679 

and adjusted for baseline risk imprecision. 680 

Figure 3. Association of TSH and FT4 concentrations with small or large for gestational age 681 

and birth weight. 682 

Figures show the association of maternal TSH and FT4 in full range or within the normal 683 

range (2.5th-97.5th percentiles) with small or large for gestational age (panel A) and birth 684 

weight in grams (panel B). All analyses were adjusted for maternal age, BMI, ethnicity, 685 

smoking, parity, gestational age at blood sampling, fetal sex and gestational age at birth (the 686 

latter two for birth weight only). 687 

* After exclusion of outliers of TSH (n=453) or FT4 (n=169). 688 

† Normal range (2.5th-97.5th percentiles) is defined based on cohort-specific absolute 689 

measurements of TSH or FT4, which in the standardized data corresponds to TSH Z-score 690 

range of -4.2 to 1.8 and FT4 Z-score range of -2.2 to 2.5. 691 

Figure 4. Association of FT4 Z-scores with birth weight according to gestational age at the 692 

time of sampling. 693 

Figure shows the association of FT4 Z-scores with birth weight (grams) stratified by 694 

gestational age at the time of sampling. The analysis was adjusted for maternal age, BMI, 695 

ethnicity, smoking, parity, gestational age at blood sampling and fetal sex and gestational age 696 

at birth. 697 


