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Abstract
Wediscuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors,
which interpolate between perfect electric conductors and perfectmagnetic conductors. Based on the
corresponding reciprocal Green’s tensorwe construct theGreen’s tensor for two perfectly reflecting
plates withmagnetoelectric coupling (non-reciprocalmedia)within the framework ofmacroscopic
quantumelectrodynamics.We calculate the Casimir force between two arbitrary perfect electro-
magnetic conductor plates, resulting in a universal analytic expression that connects the attractive
Casimir forcewith the repulsive Boyer force.We relate the results to a duality symmetry of
electromagnetism.

1. Introduction

Nonvanishing zero-point energies are a pervasive feature of quantummechanics and quantum field theory. The
fact that energy fluctuations of the vacuum lead to physically observablemacroscopic forces wasfirst discovered
byHendrik Casimir in [1], who calculated the attractive force between two unchargedmetallic plates due to the
fluctuations of the electromagnetic field, which turned out to be given by the simple expression
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for plates separated by a distance d. The origin of this force is the non-vanishing expectation value of the squared
electric andmagnetic fields in the vacuum state, which is thenmodified by the presence of surfaces. These
vacuumfluctuations give rise to various forms ofmatter-vacuum interaction. The inverse fourth-power
distance-dependence leads to negligibly small forces on large distance scales. However, in the nanometre regime
theCasimir effect and other vacuum fluctuation induced forces can become significant or even dominant. In
particular, the Casimir force poses a challenge for constructingmicroelectromechanical systems [2]. It causes
effects such as stiction [3, 4], which is the permanent adhesion of two nano-structural elements. In order to
remove such impeding effects, possible ways ofmanipulating theCasimir force between bodies have been
pursued.

Of particular interest are repulsive Casimir forces [5]. Thefirst result in thisfieldwas obtained by Boyer in
[6], who considered an assembly of two parallel plates, one of themperfectly conducting, the other one perfectly
permeable.He found theCasimir force to be repulsive in this case and showed that the ratio of his result to the
attractive force calculated byCasimir reads
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It has also been theoretically shown that themagnitude of theCasimir force between two plates of any
magnetodielectric properties has to fall between the result of Casimir and the result of Boyer [7], whichwe shall
confirmhere.

Due to the difficulty of realisingmaterials whose permeability is perfect or nearly perfect, other ways of
implementing repulsive Casimir forces have been considered. Kenneth andKlich [8]have discussed the
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opportunities ofmaterials with non-trivial butfinitemagnetic susceptibilities for instance. As another approach
theCasimir forces onmaterials with polarisation-twisting effects have been studied. In particular the vacuum
interaction properties of topological insulators [9, 10] and of chiralmetamaterials [11, 12], have been
investigated for generalised boundary conditions [13]. For the case of a scalar field confined byRobin boundary
conditions, the Casimir force has been obtained to be either repulsive or attractive [14], as is also the case for thin
films described as Chern–Simons boundaries [15, 16]. Here wewill study perfect electromagnetic conductors
(PEMCs) as introduced by Lindell and Sihvola [17], which are an idealised class of nonreciprocal polarisation-
mixingmaterials whose response is characterised by a single parameterM.Wewill calculate theCasimir force
between twoPEMCplates in terms of this parameter, whichwill allow us to continuously vary theCasimir force
between the two extremal values.

From amore fundamental point of view, theCasimir force in PEMCmedia is of interest because of its close
relation to duality invariance. It has been shown [18, 19] that a linearmagnetodielectricmediumbreaks the
duality invariance that holds for the freeMaxwell equations, causing them to instead have a discrete

4 -symmetry. Allowingmaterial response that violates Lorentz-reciprocity restores duality invariance [20]—
PEMCmedia provide these properties. For this reasonwewill determine the relation between the PEMC
parameterM and the duality angle of a perfect conductor to obtain a coherent picture of the impact of duality
transformations onCasimir forces.

2. TheCasimir force onnonreciprocal bodies

TheGreen’s tensor r r, ,  w= ¢( ) ofMaxwell’s equations in a regionwith tensor-valued permittivity
r,e e w= ( ), permeability r,m m w= ( ) and cross-polarisabilities r,z z w= ( ) and r,x x w= ( ) (discussed in

detail in section 3) is defined to satisfy [20]:
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subject to appropriate boundary conditions, andwhere  is the three-dimensional identitymatrix. Then,
quantised electromagnetic fields can be constructed via [21]
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where jN
ˆ is a noise-current source, and herewe have takenω>0, but the corresponding negative frequency

fields can be constructed by hermitian conjugation. The noise current jN
ˆ is given explicitly in terms of noise

polarisation PN
ˆ and noisemagnetisation MN

ˆ by
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where Z0 0 0m e= denotes the impedance of free space.Here and throughout we use the convention that
3×3matrices in position space (tensors) are represented by ‘open-face’ symbols ( ,  etc), while 2×2
matrices acting in polarisation or duality space are represented by ‘calligraphic’ symbols ( ,  etc). The
quantities fl̂ are bosonic quasiparticle excitations satisfying:

e mf r f r r r, , , , , 7w w d d d w w l¢ ¢ = - ¢ - ¢ =l l ll¢ ¢[ ˆ ( ) ˆ ( )] ( ) ( ) ( ) ( )
†

with all other commutators being zero. From amacroscopic point of view theCasimir force F between arbitrary
bodies can be interpreted as the ground-state expectation value of the Lorentz force, or equivalently by an
integral over theMaxwell stress tensor ̂:
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with∂V being the boundary of a volume enclosing the body onwhich the force is to be calculated, and the stress
tensor is
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where thefields are obtained from equation (4) together with B Ei 1w=  ´-ˆ ( ) ˆ .We can now evaluate the
expectation value in the vacuum state 0 ñ∣{ } of the noise current quanta fl̂ by using f 0 0ñ =l̂∣{ } and the
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commutator (7) above.Wewill also use an integral relation that can be derived from the definition (3) of the
Green’s tensor [20, 22]
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is the generalised imaginary part of a tensor. Employing equation (10) as well as the electric field given by
equation (4), one obtains in agreementwith [11] the vacuum expectation values of the dyadic products
appearing in equation (9) in Fourier space:
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This relation is essentially a formof the fluctuation–dissipation theorem, asfirst shownunder very general
conditions in [23]. Its role is to link thefield correlations required for evaluation of the quantum stress tensor
and the classical Green’s function of themedium.Using similar relations for the remaining terms in equation (9),
transforming back to position space and rotating to imaginary frequencies u yields
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fromwhich the force can be computed bymeans of equation (8). In this formula theGreen’s tensor has been
replaced by its scattering part 1( ) defined via

, 140 1  = + ( )( ) ( )

where 0( ) is the bulk part of theGreen’s tensor, which does not contribute to theCasimir force regardless of the
system’s geometry. In additionwe exploit the fact that [20]
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which functions as a cutoff for high frequencies, allowing one to obtain a finite result. Note in particular thatwe
did not assume the validity of the Lorentz reciprocity condition r r r r, , , ,T w w¢ = ¢( ) ( ), which is connected
with time reversal invariance [20].We hence have derived an expression for theCasimir force of arbitrary
nonreciprocal bodies, which can also be obtained as a particular case of results for generalmagneto-dielectrics
(see, for example, [24, 25]).

3. Bi-isotropicmedia andPEMCs

In order to obtain a tuneable Casimir forcewewill consider a class ofmaterials whose reflection behaviour is in
some sense intermediate between the extreme cases of the perfect electric conductor (PEC) and perfectmagnetic
conductor (PMC), which are respectively characterised by infinite permittivity ε or infinite permeabilityμ.
Thesematerials are known as bi-isotropic (see, for example, [18]), and inmacroscopic quantum
electrodynamics the response of such amedium is conveniently described by fourmaterial constants; the
familiar ε andμ, as well as two cross-polarizabilities ξ and ζ. In principle all these quantities are permitted to be
tensor-valued, which leads to themore general case of bi-anisotropicmedia.Wewill confine ourselves to bi-
isotropicmedia, inwhich thematerial response shows no direction-dependence. Thismeans that the four
material constants are scalar (or pseudo-scalar) valued and fulfil the constitutive relations

c
D E H

1
, 160e e x= +ˆ ˆ ˆ ( )

c
B H E

1
, 170m m z= +ˆ ˆ ˆ ( )

wherewe have chosen our definitions in such away that all fourmaterial constants are dimensionless. For a
fundamental theory of linearmaterial response see [26].
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3.1.Duality transformation
By allowing for nonzero (or even infinite) cross-polarisabilities ξ and ζwe achieve an interpolation between
PECs and PMCs. To do this we note thatMaxwell’s equations for classical fields inmedia in the absence of free
charges of currents can be arranged in the followingway
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These equations are invariant under an SO(2) transformation, i.e. they remain validwhen the vectors offields are
multipliedwith amatrix of the form
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Thefields forming a vector in this formalism are called dual partners. The constitutive relations for the quantised
fields then read [19]
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where the noise polarisation PN
ˆ andmagnetisation polarisation MN

ˆ are related to the noise current jN
ˆ . Note that

in case of reciprocalmaterials the reduced number of degrees of freedom stemming fromhaving ξ=−ζ leads to
the constraint that θhas to be a integermultiple ofπ/2, inwhich case the continuous symmetry of duality
invariance hence reduces to a discrete 4 -symmetry [19]. The consideration of polarisation of polarisation-
mixingmaterial constants ξ and ζ, however, restores the continuity of duality invariance [20].

3.2. Perfect electromagnetic conductors (PEMC)
Wewill now focus on PEMCs as a special case of bi-isotropicmaterials. The concept of PEMCs has been
introduced by Lindell and Sihvola [17, 27, 28], finding applications inwaveguide and antenna engineering [29].
At a boundarywith normal vectorn the PEMC reflection properties are defined via

Z Mn D B 0, 220 - =· ( ) ( )
Z Mn H E 0. 230´ + =( ) ( )

They show a transmission-free, polarisation-mixing reflection behaviour [17]. The pseudoscalarmaterial
parameterM interpolates between PEC (M  ¥) and PMC (M=0 boundaries).We can now relateM to the
magnetoelectricmaterial constants introduced in the previous section by comparing equations (22) and (23)
with the general constitutive relations (21). One arrives at

, 24x z me= =  ( )

M 25
x
m

e
m

= =  ( )

in the limit ,m e ¥  ¥, withM beingfinite. In otherwords, a PEMC is a very specific limiting case of a bi-
isotropicmediumwith a strong response. Though it is not obvious from equations (24) and (25), these equations
are consistent with reciprocalmedia for the PEC ( , ,e z x e ¥  ) and PMC ( , ,m z x m ¥  ) limits, as
detailed in [17]. As pointed out byDzyaloshinskii [30] and further investigated in [31], Cr2O3 is a naturally
occurring crystal with aweak nonreciprocal cross-polarisability. The close analogy of such an electromagnetic
responsewith that of the PEMCaswell as the Tellegenmedium and the axion field in particle physics is also
discussed in [32]

PEMCmaterials can be seen as the dual transformof a PECby afinite duality transformation angle θ.
Transforming the PEC-boundary conditions

Zn B n D Bsin cos 0, 260* q q= - + =· · [ ( ) ( ) ] ( )

Zn E n H Esin cos 0 270* q q´ = ´ + =[ ( ) ( ) ] ( )

directly gives equations (22) and (23) if the identification

M cot 28q= ( ) ( )

ismade and the positive sign in equations (24) and (25) is taken. Thismeans that the PEC case corresponds to
θ=0 and the PMCcase to θ=π/2, with all other cases appearing for intermediate angles in the range (0,π/2).
If the negative signwere included in equations (24) and (25), the angle θwould instead be equal to−π/2 for the
PMC, running to θ=0 for the PEC.
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4. TheGreen’s tensor of twoPEMCplates

In order to apply our general result (13) to two PEMCplates, wefirst need tofind the respectiveGreen’s tensor
for the setup specified infigure 1.

4.1. General structure of theGreen’s tensor
The reflection properties of a nonreciprocal plate are described by four reflection coefficients rss, rsp, rps, rpp
corresponding to all possible combinations of the polarisation directions (s or p) of the incoming and outgoing
light. Here the index p denotes an electric field polarisation parallel to the plane of incidence (transverse-
magnetic (TM) polarisation), while s indicates perpendicular polarisation (transverse-electric (TE) polarisation).
The reflectedwave vrefl corresponding to a general incident wave vinc at a boundary described by these four
coefficients can therefore be represented as amatrixmultiplication:

r r
r r

v
vv v . 29

ss sp

ps pp

s

prefl inc= = ⎜ ⎟⎛
⎝

⎞
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A setup consisting of two plates is considered as a three-layer system, wherewe require theGreen’s tensor for all
positions in themiddle layer. This consists of waves travelling from r to r¢ and being reflected any number of
times, which can be elegantly taken into account bymeans of aNeumann series, as is well-known (see, for
example, [33]). Formatrices representing two plates being located at z=0 (- ) and z=L (+ )
respectively we define
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withσi,σj denoting the polarisation directions s and p and  is the two-dimensional identitymatrix. Using the
general formof theGreen’s tensorwe obtain the result
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Note that thematrixmultiplication is performed in (s, p)-space. TheGreen’s tensor’s spatial components are
obtained by the outer product of the respective polarisation vectors. In this expression thefirst two terms
account for an even number ofmultiple reflections between r and r¢, while odd numbers of reflections
contribute to thefinal two terms. Similarly to the case of reciprocalmaterials [21], it turns out that the terms
representing an odd number of reflections do not contribute to theCasimir force.

Figure 1.Three-layer systemwith perfectly reflecting, cross-polarising boundary surfaces at z=0 and z=L.
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4.2. PEMC reflectionmatrices
The boundary conditions (22) and (23) for thefields lead to polarisation-mixing effects at a PEMCboundary. In
terms of themagnetoelectric constants these reflection coefficients for radiation incident frommedium1 onto
medium2 are given by [10]

r
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^ representing the component of thewave
vector perpendicular to the interface. In the PEMC-limit, with all response functions going to infinity and
M e m= , one obtains inmatrix form:
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which is independent of the incomingwave vector.
Introducing the corresponding duality transformation angle θ via equation (28), one obtains for two plates:
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with q being the respective duality transformation angle that defines the properties of each plate.We can now
also calculate the correspondingmultiple-reflection contributions to obtain
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5. Casimir force between twoPEMCplates

In order to solve theGreen’s tensor integral we introduce polar coordinates k , j( ) for the two-dimensional
integral over kP. This simplifies the calculation considerably because the reflectionmatrices aswell asD±and
Dmdo not depend onj, the angular dependence appears only in the dyadic product of the polarisation vectors,
whichmay be straightforwardly integrated.

We can compute a force dF/dA per unit area from the stress tensor via equation (8).Making use of the fact
that dAPez, we have
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where á ñ is given by (13). The symmetry of the problem requires that f has no x- or y- components which can
indeed be seen from the fact that no combination of the polarisation vectors yields a x–z- or y–z-component
when integrated overj.Wewill hence suppress the fact that f is a vector and just calculate its absolute value.

We now insert our obtainedGreen’s tensor (31) into (13) and observe that the contributions from the terms
containing curls equal the contributions from thosewithout. After settingκ=ik⊥, transforming to polar
co-ordinates k u ccos , sink f k f= = ( ) ( ) and carrying out the trivial angular integrationwe get
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This generalisation of Lifshitz’s formula for planar systems [34] agrees with results for reciprocal polarisation-
mixing plates such as gratings [35–37], which is itself a consequence of the general validity of the fluctuation–
dissipation theorem. Remarkably, the result is hence insensitive to the fact that the plates are non-reciprocal at
this level.
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Substituting x=κL and performing thematrixmultiplicationswe find the following integral
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which can be analytically integrated tofinally obtain ourmain result
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q q
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wherewe havemade use of the polylogarithm function z z kLin k
k n

1= å =
¥( ) . Our result (42) immediately

demonstrates an invariance of theCasimir force under duality transforms ofmaterial parameters; it only
depends on the difference of the PEMCangles, so a simultaneously applied duality transformation does not
change theCasimir force. Thuswemaywrite f f f,q q q q d= - =+ - + -( ) ( ) ( ).We can easily check that this is
indeed compatible with the results of Casimir andBoyer via
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wherewe used deMoivre’s identity followed by formula (27.8.6(3)) of [38] (see also [39], (25.12(ii))), giving
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Thenwe obtain the special cases of Casimir (δ=0, corresponding to any choice of identical plates)
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andBoyer (δ=π/2)
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We show the results for intermediate angles infigure 2. It is seen that there is some value δcrit for which there is no
Casimir force, solving equation (44) for this gives

2
1 1 2

2

15
0.96

4
. 47critd

p p
= - - »

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ · ( )

In the case of a scalar field under Robin boundary conditions, it has previously been shownnumerically that such
a ‘zero-force’ parameter exists between the extreme cases of attraction and repulsion [14], here we extend this to
the electromagnetic field aswell as finding an analytic value for δcrit. It is also interesting to notice that the
following holds

Figure 2.Casimir force between twoPEMCplates normalised to the original result of Casimir in terms of their duality phase shift
δ=θ+−θ−.
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fd 0, 48
0

2

ò d d =
p

( ) ( )

so even though the force is not symmetric around the central angle δ=π/4, the enclosed areas to the left and the
right of the zero-force angle δcrit are equal. Thus our result represents a sum rule for theCasimir force for
PEMCs; the sumofCasimir forces over the entire PEMCparameter space is zero.

6. Conclusion

In order to calculate theCasimir force between twoPEMCplates we have constructed theGreen’s tensor for two
nonreciprocal plates in terms of their reflection properties. The result is duality invariant aswell as it is
compatible with the theoremderived byKenneth andKlich that the Casimir force between identical bodies is
always attractive [8]. It also verifies for a certain class of local nonreciprocalmedia described in section 2 the
prediction that theCasimir force between twoplates of any possiblematerial will fall in between the results of
Casimir and Boyer [7], which had thus far only been shown formagnetodielectrics. The derivedGreen’s tensor is
hence also applicable for different losslessmaterial classes. In particular the focusmight go to perfectly reflecting
chiralmaterials (ξ=−ζ in terms ofmaterial constants) to explore the full parameter space of theCasimir effect.

Formore realistic scenarios of course the corrections due to imperfect reflection or non-zero temperature
are of high interest. For these cases the derived PEMC case can be viewed as a theoretical upper limit for the
Casimir force sincewe assumed the reflection coefficients as well as the PEMCparameter to be frequency
independent, and calculated the force at zero temperature. In less idealised cases onewould expect the resulting
Casimir force to lie somewhere ‘under the curve’ for the respective value of θ.
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