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Abstract

We carry out a realistic, yet simple, calculation of the Casimir—Polder interaction in the presence of a
metallic shield in order to aid the design of experiments to test non-Newtonian gravity. In particular,
we consider a rubidium atom near a movable silicon slab with a gold film in between. We show that by
moving the slab to various distances and making precise measurements of the force exerted on the
atom, one could in principle discern the existence of short-range modifications to Newtonian gravity.
This avoids the need for a patterned surface where calculations are much harder and for which the
probe must be moved laterally at a fixed distance. We also briefly discuss the case where an atomic
cloud undergoes Bloch oscillations within an optical lattice created by reflecting a laser off the shield.
We find that our scheme has the potential to improve current constraints if relatively modest
improvements in atom localisation in optical lattices are made.

Modifications to the Newtonian gravitational interaction in the submillimeter regime are predicted by a wide
range of theories. These include the massive ‘moduli’ fields of string theory whose values determine the
geometry of possible extra dimensions [ 1, 2]. An experimental verification of such predictions would be of great
significance, but at the same time poses severe challenges. Chief among these is the dominance of electromagnetic
interactions in any realistic measurement scheme. We must therefore account for electromagnetic interactions to
extremely high accuracy if we are to reveal the faint gravitational signal beneath.

Despite these challenges, an on-going experimental effort has succeeded in placing constraints on short
range deviations to the inverse square law [3—11]. Motivated by theories which predict force mediators with
non-zero mass, leading to interaction potentials which decay exponentially with distance, the gravitational
interaction potential of two particles of mass M and m separated by a distance r is often parameterised in the
form of a Yukawa potential (see, for example, [12])

Us(r) = S (1 4 ey, (1)
T

Here, Gis the Newtonian gravitational constant, ovis a dimensionless constant and )\ is a length describing the
range of the interaction. The currently allowed ranges of the parameters o and ) are summarised in figure 1.

The electromagnetic interactions that will concern us in this paper are Casimir-type forces that arise between
bodies due to the surface-induced modification of the zero point electromagnetic field. More precisely, the
Casimir force acts between macroscopic bodies whereas the closely related Casimir—Polder (CP) force is the
name given to the force between a macroscopic and a microscopic body (an atom, molecule, nanosphere etc).
These forces are usually attractive and vary as the third or fourth power of the inverse distance, depending on the
importance of retardation in the specific system involved. One way to distinguish their effect from gravity is to
take advantage of the fact that they depend solely on the electronic properties of the material, while gravitational
forces depend only on the mass distribution. This means that objects patterned with regions that have different
densities but similar electronic properties can be used to isolate gravitational interactions in short-range force
experiments [13, 14], while other approaches include using a corrugated surface [15]. However, one of the
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Figure 1. Regions of the {«, A} parameter space that are currently excluded by experiments [5—10] are shown in yellow. The dark blue
region represents the region that could be excluded in principle by the shielding techniques detailed here, i.e. that for which the
Yukawa force can be distinguished from all others with no regard as to its absolute value. The region bounded by the dashed line takes
into account the experimental setup described at the end of this work, and represents a more practical limit for the power of the
method presented here. The four labelled circles will be used as reference Yukawa parameters throughout the calculation.
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Figure 2. Proposed setup for measurement of short-range corrections to Newtonian gravity. The experiment would consist of a silicon
slab and a rubidium atom, separated by a gold shield. For reasons that will become clear in section 4, we assume the apparatus is
oriented such that the Earth’s gravitational force mgis in the direction indicated.

problems with these methods is that a precise calculation of the Casimir and CP forces for such patterned or
structured surfaces is extremely difficult due to inherent non-additivity, and the fabrication process can
introduce additional complications such as electrostatic surface potentials at the interfaces between materials.
The measurements themselves are also a practical challenge as one has to move the force probe laterally across
the different regions while maintaining a precise distance from the surface.

Here we take a different approach, avoiding the lateral movement of a probe across a patterned surface and
instead rely on the different distance dependences of the hypothetical Yukawa force, Newtonian gravity and the
CP force. We base our discussion on the setup depicted in figure 2, where we consider a rubidium atom
positioned near a gold sheet, with a medially movable silicon slab behind that.The role of the gold sheet is to
suppress the CP force between the atom and the silicon. Gold shields have already been employed in
experiments attempting to measure submillimetre forces [4], but in contrast with previous calculations of the

2



I0OP Publishing NewJ. Phys. 21 (2019) 033032 RBennettand D HJ] O’Dell

Figure 3. llustration of reflection coefficient nesting process used in our calculations of the CP force.

CP force in the presence of such gold shields, here we specifically avoid making the assumption of perfect
reflectivity. Rather, at the heart of our paper is a precise calculation of the CP force for a shield of finite thickness
and conductivity (we are following in the footsteps of a similar calculation for a graphene shield [16]). We hope
this will guide practitioners in evaluating the viability of ‘simple’ medially layered setups like that shown in
figure 2, as opposed to laterally structured surfaces (where there is less need for a shielded CP calculation).

At this stage it is important to note that although the gold shield reduces the CP force between the atom and
the silicon slab, it introduces a new and larger CP force between the gold and the atom. However, this is nota
problem because our proposed scheme is based upon a differential measurement where the silicon slab is moved
to different positions but the atom-shield distance is kept constant. Without a shield the change in the CP force
of the slab dominates the change in the hypothetical Yukawa force, but with the shield the change in the CP force
of the slab can be smaller than the change in the Yukawa force, allowing the isolation of the latter.

The layout of the rest of this paper is as follows: We begin in section 1 by calculating the CP force in our
proposed system, followed in section 2 by an account of the Yukawa force for a slab geometry. In section 3 we
compare the calculated forces to determine which of them dominates. Finally in section 4 we briefly explore the
feasibility of an experiment measuring the shift in frequency of a Bloch-oscillating atom due to a shielded slab.

1. CP force

Our envisaged experiment features an atom interacting with a multi-layered medium consisting of vacuum-
gold-vacuum-silicon, as shown in figure 3. In order to have a tractable calculation of the CP force for this
situation we will make two simplifying approximations; (1) The silicon slab will be modelled as having infinite
depth, and (2) we assume that all layers are of infinite extent in the lateral directions.

Let us comment on these simplifications. The first approximation will over-estimate the CP force because as
long as the depth of the silicon slab is significantly larger than the atomic transition wavelength (we will choose
parameter values satisfying this condition), the CP force from any finite-depth slab will be smaller than that for
an infinitely deep one. Note that at the atomic transition wavelength considered here, silicon has quite a large
skin depth of § ~ 17 um* so the over-estimation can be quite large for thin slabs. The second approximation,
meanwhile, is accurate if the lateral dimensions of the apparatus are much larger than all other length scales. Like
the first approximation, assuming infinite lateral size will over-estimate the magnitude of the CP force.
Therefore, our approximation scheme will give a reliable upper bound for the CP force. Since the CP force
represents an unwanted effect when measuring gravity, an upper bound is still of value. By contrast, we shall not
make these approximations in our calculation of the Yukawa force to be described in section 2.

The CP potential arises from the interaction energy between a fluctuating dipole and a nearby macroscopic
body. The coupling strengths involved are the polarisability of the atom a/(w) and the reflectivity of the
macroscopic body, which for a planar surface is encoded in the transverse electric (TE) and transverse magnetic

4 The skin depth 6 for a non-magnetic material (conductivity o and relative permittivity (w)) at frequencies much larger than e(w) o/c is

givenby 6 ~ 2./50£(w)/u0/0.




10P Publishing

NewJ. Phys. 21 (2019) 033032 RBennettand D HJ] O’Dell

(TM) reflection coefficients rrg and rry;. The interaction is mediated by photons of wave vector k, whichina
planar system is decomposed into parallel (k) and perpendicular components

k= \J(w/c)* — kf. )

Summing over all such photon contributions entails integrating over any two of the three variables w, kj,
ki, since the third is fixed by equation (2). Here we choose to eliminate k; . The final step is to rotate the
w-integration to imaginary frequencies w — i£(§ > 0) in order to avoid a rapidly oscillating integrand.
Putting this all together one finds the CP potential Ucp a distance z from a planar surface [17-19]

h 0 o0 k ki c? 2 2,2
Uep(2) = 8—“0 j; d¢ £ali6) fo dkj———— x rTE—[1+2—§26 e )

™ N
where the polarizability c(w) is defined for a transition i — jof an isotropically polarisable atom as:

2
2 wijl il
a(w) = —lim % 4)
—0wj — w? — iwe
Here, f1;is the atomic transition dipole moment and wj; is the transition frequency.
We can build the explicit reflection coefficients for either polarisation ¢ = TE, TM by beginning from the
well-known expressions for the overall reflection coefficient rj} of a three-layer system whose two interfaces are
a

separated by a distance d;and have single-interface Fresnel reflection coefficients r;] and };, and single-interface

transmission coefficients t;7 and ¢} aslisted in the appendix. The composite reflection coefficients are given by [20]
LIt e2ifd;

A8 LD

1—r; rﬁeZ‘ﬂjdf

©)

o __ .0
Tk = 1 +

where 3; = |[g;w? / 2 — kHZ is the z-component of the wave vector in layer i. In our particular system, we have;
ﬁl = ﬁ3 = /Bvac = ﬂwz/cz - kHz) (6)
B2 = Bru = Jeanw?/c? — kf, @)
By = Bsi = Jesiw?/c? — ki, (®)

dl =2 d2 = dAu) d3 = dvac’ d4 — 00, (9)

where €, and €g; are the relative permittivities of gold and silicon, respectively. This means that r,34 as shown in
figure 3 is given by

0 10 .0 210, dvac
o _ o ty3t3y135€ ™ e 10
T34 = 13 + 0 .0 ,2iB v (10)
1 — r3r5ge e
Now we can build the reflection coefficient of the whole system by composing r,34 with 115
13 15, r3q e e
fhss = 1 + (11)

1 — 1§75y, et

The explicit form of these composite reflection coefficients can be found in the appendix. The CP potential of the
atom in our particular setup is then finally given by

U = 1o 7 aeeade [T an

kitc?
82 x| oz (1 i 22 nosg |e NS 2
s

ki
Jirere

This expression allows us to include the effects of finite thickness and conductivity of the shield on the CP force.
Note that if the gold layer was a perfect reflector we could set r,.5, — —1and r3, — 1.

The main contribution to the CP potential is at the dominant transition frequency of the atom, which for
ground state Rb atoms is approximately 3.8 x 10'* Hz (780 nm). We propose choosing a gold shield of
thickness dy, = 50 nm which is considerably greater than the skin depth at this frequency which is of the order
of afew nanometres. As shown in the upper plot of figure 4, it is indeed the case that by the time the gold is 50 nm
thick the CP force is rather insensitive to its finite thickness. However, as well as having a finite thickness the gold
also has a finite conductivity. This is well-described by an intraband Drude model whose dielectric function is:

4
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Figure 4. Upper: The ratio of CP force near an isolated 50 nm thick sheet of gold to the CP force due to a semi-infinite block of gold. It
is seen that for thicknesses of 50 nm (or more) there is very little difference between the two. Note that the asymptotic value for large z
is not quite equal to 1 due to the finite wavelength of the atomic transition sensing the finite thickness of the sheet; the parameters
chosen in this paper correspond to the solid line, but decreasing the atomic transition wavelength (or increasing the slab thickness)
causes the curve to tend to unity for all zas shown by the dashed lines. We also note the intriguing minimum at around 2 microns
which arises from the interplay between plasmon resonances and geometry. Lower: Ratio of CP force near the same 50 nm thick sheet
of gold to that due to a perfectly reflecting surface (whose thickness is of course irrelevant). This, combined with the upper plot, shows
that the finite conductivity of the gold has a small but appreciable affect on the CP potential near it.

2
Wy

u - 1 - = .
eau (W) w(w + 1)

(13)

where w, = 1.38 x 10'¢rad s~ isthe plasma frequencyand y ~ 4.08 x 10"’ rad s is the damping parameter
[21]. In principle one should also take into account interband transitions (see, e.g. [22]), but these only have an
effect on the permittivity well above the frequency scale set by the considered transition of the atom, meaning
they have a negligible effect on the results presented here. This finite conductivity has an appreciable effect on the
CP force near the sheet of gold (as compared to a perfect reflector), as shown in the lower panel of figure 4. This
suggests that in order to get reliable results for the relative values of the various forces involved a realistic CP
calculation, as performed here, is necessary.

2. Yukawa force

We now proceed to a calculation of the Yukawa force. This is much simpler than that of the CP force and we
therefore include both the finite depth of the silicon slab and the finite lateral sizes of each layer. Referring back
to figure 2, the values we shall use for the various parametersarea = 100 um, b = 100 yumand W = 10 um,
and as above we assume the thickness of the gold sheet to be ds,, = 50 nm.

In order to calculate the Yukawa force in the system we require an expression for it at a distance
Z = dyac + day + z + W /2 from the centre of mass of a rectangular slab, as shown in figure 2. The force is
evaluated on the xy symmetry axis of the slab so symmetry dictates that the force Fy is in the z direction;
Fy = [% Uy (1) ] 7= [;—Z Uy (1) ] Z. We can then integrate this over the slab volume to obtain the Yukawa force
from the whole slab. We have

Fy — (22 — 1) 2P f Pl =M A zan (14)
N T T

where Vis the volume of the slab and p is its density. Taking initially the case of a slab of infinite extent in the xy
plane and of thickness W, we find, in agreement with [23], an exact result for the Yukawa force in such a situation
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Figure 5. The perpendicular component Fy of the Yukawa force at a distance Z from our finite slab of size 100 m X 100 pm X

10 pm found by numerical integration of equation (14) using the density of silicon (pg; = 2330 kg m~3). We have expressed the result
in units of the Yukawa force Fi* for a slab of infinite lateral extent, as given by equation (15). This ratio is of course independent of the
common scaling factor Gmpa in equations (14) and (15), but depends on the particular value of A chosen. For A < 1 pm the deviation
from unity is not visible at the scale of this graph, so the upper line can be taken to represent all such values of A. For larger values of A
the force has alonger range, so it makes physical sense that finite size effects should be more visible as A is made larger, as reflected in
the figure.

Table 1. Summary of forces involved. Here Z = d,,c + da, + z + W/2.

Symbol  Description Force found from
Y(Si) Yukawa force of the slab with parametersi = 1,2, 3, 4 defined in 4o GAmpy pg; e Z/Misinh (%)

figure 1
Y:(Au) Asabove, but for the shield 470 G gy Pry e 2/ Xisinh (%“_)
Cp Casimir—Polder force in the presence of the gold shield, including Numerical evaluation of equation (3)

non-additive contributions from both the slab and the shield
CP(Si) Casimir—Polder force if the shield is removed Numerical evaluation of equation (3) with e 5,(w) = 1
N(Si) Newtonian gravitational force of the slab GabWpg,myy, /Z*
N(Au) Newtonian gravitational force of the shield 271Gy, MRb
E Gravitational force of the Earth MRbY

; . W,
Firf = 47raG)\mpe*Z/’\smh(a)z. (15)

For afinite slab the integrals must be carried out numerically, which is complicated by the fact that the
parameters o and A are unknown. One can eliminate the overall scale o by expressing the finite slab force in
units of the infinite slab force, but the range parameter A remains. The results for various values of A of a finite-
slab numerical integration are shown in figure 5.

3. Comparison of forces

Now that we have an account of the Yukawa and CP forces involved in the proposed setup, we can compare
them to determine which is dominant and whether any are amenable to measurement. The forces due to each
component of the apparatus (and also the Earth) are listed in table 1 and are plotted in figure 6 as a function of
dyac (the two rows in figure 6 are for two different fixed values of z). The parameters we use are given in table 2
and correspond to the four points chosen in figure 1. In the plot we have graphed both the absolute values of the
forces and the quantity

AF = F — F(dy, — 00) (16)
so that, for example, the AF for the Yukawa force of the silicon slab is
AFysiy = Fysi) — Fysiy(dvac — 00) = Fysy) (17)
and for the gold shield
AFyauw = Fy@aw — Fyauw(@vac — o0) =0 (18)
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Figure 6. Comparison of forces as a function of d, . at two different fixed distances 3 and 10 m from the shield, with the parameter
choices for the Yukawa force being the ones shown in figure 1. The left-hand column of graphs gives the absolute value of the force
involved, while the right-hand column gives AFas defined in equation (16). The vertical line and points are for later reference and the
shading gives the improvement due to the shield. All the different forces and parameters used are listed in tables 1 and 2, respectively.

Table 2. Summary of parameters used in this work.

Yukawa Slab Shield Atom

{a, A\}1 {10, 2 um} Dsi 2330kgm ™’ Pau 19300 kgm > Wi 5.05 x 107 Cm
a, 10° 2 um €s; 5 w, 1.38 x 1 rads™ wj; 4 x 1 rads™
{a, )}, {105, 2 pm} si A 38 x 10 rads™! i 2 0'° rad s
{a, A} {10% 0.5 um} w 10 im v 4 x 10P rads™’ Mrp 1.4 x 10 P kg
{a, A}y (10%0.5 pm} a,b 100 pm dau 50 nm

and so on. By subtracting out the value at dy,. = 00, AF gives us the difference between the cases where the
silicon slab is present and when it is removed.

From theleft-hand column of figure 6 we see that the Newtonian gravitational force of the Earth (myy, g)
dominates all other forces in all cases, as one would expect. By contrast, we see from the right column of figure 6,
where AFis plotted, that the dominant change in the CP contribution with and without the silicon slab is the
Yukawa force corresponding to points 1 and 2 on figure 1. The Earth’s gravity and the various shield forces
obviously do not change before and after the removal of the slab, and so do not appear on the right-hand graphs.
The figure also emphasises the change in the CP force due to the presence of the shield, with the improvement to
the shielded case highlighted as the shaded area. It is clear from the graphs in the right-hand column that the
consideration of realistic shielding of CP forces as given in this paper is necessary to properly evaluate the forces
in the proposed system.

The key message conveyed by figure 6 is that if the Yukawa modification to Newtonian gravity exists with any
of the parameters chosen in figure 1, then the detected change in the total force AF with and without the silicon
slab would be much larger than would be expected based on the CP force and Newtonian gravity alone,
indicating the presence of a new force. This does not so far say anything about whether the size of that
discrepancy is actually detectable; this aspect will be considered in section 4.

We also briefly consider thermal effects. The regime in which thermal effects can become important to the
CP forces is when the black-body peak is at a wavelength comparable to the atom-surface distance (see, for
example, [24]). At 300 K, this peak is at around 17 pum, so for parameters used in the uppermost graphs in
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figure 6 (which turn out to be the ones we are mainly interested in) we can safely ignore thermal effects even at
room temperature. In order to go to longer distances and still be able to ignore thermal effects one would have to
cool the apparatus, but cryogenic temperatures are not necessary. For example, at 150 K the black-body peak is
atapproximately 34 ym, which easily encompasses the distances we are interested in.

4. Measurement scheme

Although our calculations of the forces on an atom detailed above are independent of the measurement method
employed, in order to evaluate the viability of the entire scheme presented here let us now examine one
particular method, namely, gravity-induced Bloch oscillations [13, 25]. This is a type of atom interferometry and
takes advantage of the quantum wave-like properties of atoms. However, unlike standard atom interferometers
where interference takes place between different paths in coordinate space, and which have, for example, been
used to make high precision measurements of the gravitational constant G [26, 27], Bloch oscillations are the
result of interference in momentum space and the motion of the atoms in coordinate space can be made very
small. This allows the atoms to be localised at an almost fixed distance from a surface and is well suited to
measuring short-range forces [28]. Indeed, referring to the right hand column of figure 6, we see that the Yukawa
force diminishes significantly with distance (although it should be noted that A Fy remains dominant all the way
out to 30 pm). Thus, we want the atoms to be located as close as possible to the shield.

Bloch oscillations occur when an external force is applied to a quantum particle that also experiences a
periodic potential, which in the present case would be provided by an optical lattice formed by retro-reflection of
alaser beam from the gold shield. Bloch oscillations are sensitive directly to the force, as opposed to collective
dipole oscillations in a harmonic trap [29, 30] (sensitive to force gradients), and so-called super-Bloch
oscillations in driven optical lattices (sensitive directly to potential) [31], and can even be measured non-
destructively [32—34]. The Bloch oscillation frequency v is directly proportional to the external force F

Fa

= — 19
Vg s (19)

where ais the lattice spacing, which we will take to be 500 nm, but is independent of the depth of the lattice potential.
In our proposed experiment the strongest force by some orders of magnitude is mgpg ~ 1.4 x 10724 N, which
corresponds to a Bloch oscillation frequency of around 1 kHz. This fast oscillation can be used to our advantage [28]:
orienting the apparatus vertically the little ¢’ driven oscillations provide a reference oscillator whose frequency can
be measured to an accuracy of one part in 107 [13, 25]. Moving the silicon slab to different positions, Z;and Zy say,
one can attempt to measure the shift Ay in the Bloch oscillation frequency

_[FEZp — F(Zi)]a

Av
B 2/

(20)

The difference in the force for the two positions of the silicon slab is therefore measurable providing Avgis
larger than around 1077 kHz = 0.1 mHz.

As mentioned above, we would like to trap the atoms as close to the shield as possible, but in practical terms
there is of course a limit to how close to the surface one can go—this is set by how tightly the atoms can be
trapped and how far they move during one Bloch oscillation. For discussion of the former we note from [13, 35]
that a typical atomic cloud used in Bloch oscillation experiments has an rms width of approximately 12 ym,
meaning that trapping distances much closer than this are unrealistic. For example, as shown in the lower part of
figure 7, an atomic cloud trapped at 10 gm with an rms width of 12 um has appreciable overlap with the surface
(approximately 2.5% of the atoms would be in the region z < 0). At such alarge distance the techniques
proposed here would only result in a modest improvement in the region of Yukawa parameter space that can be
excluded, as can be seen in figure 7.

We therefore consider what would happen if, in a future experiment, an atomic cloud could be centred at a
distance of 3 ym from the surface with an rms width of 2 ym. As shown in the lower part of figure 7, the overlap
referred to above would be much smaller (approximately 0.02%). To this end we note that in deep lattices, or
close to the Mott insulator phase [36], atoms occupy close to a single lattice site. In fact, operating in such
regimes may not be necessary because the effect of adding an external force on top of a periodic potential is
exactly to localise the atoms in space such that the (localised) Wannier—Stark states become the natural
eigenfunctions rather than the (delocalised) Bloch functions [37]. During a Bloch oscillation wave packets
explore a spatial region of size w, given by [38]
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Figure 7. Change in Yukawa force (with parameters given by the four points Y1-Y4 in figure 1) as dy, is varied between 2.5 and 20 m
as a function of distance from the shield. The change in Bloch oscillation frequency corresponding to each change in force (calculated
from equation (20)) is indicated on the right-hand axis of the plot, alongside the experimental sensitivity of 0.1 mHz calculated from
[13,25]. In the lower panel we show a schematic representation of a 500 nm optical lattice containing a sample centred at 10 ;zm from
the shield (red), with an rms width 12 zzm. As discussed in the text, an rms width appropriate for this experiment would be 2 ym
(green).

w2 1)

where Wis the width of the first energy band. In the tight-binding approximation and with the depth of the
lattice being five times the photon recoil energy Er = 72k /(2m), where k is the laser wavenumber, one finds
that W a2 0.26Ey [38]. For our parameters we find Eg = 6.13 x 1073° J, using this in equation (21), one finds
w =2 0.6 um, which is a good deal smaller than the proposed trapping distance of 3 pm. This means that the
oscillations remain localised around 3 pim, which is the region in which we have shown the Yukawa force change
can dominate. Furthermore, one need not rely solely on little g to provide the fast Bloch oscillation frequency
and localisation: an external magnetic field interacting with the atoms’ magnetic moment (the basis of magnetic
traps) can be used to boost the external force which would also improve the accuracy of the frequency
measurement by increasing the number of oscillations during the measurement time. A careful consideration of
any systematic effects associated with this field would have to be made, although we note that magnetic fields
near gold-coated silicon chips have been well studied in the context of atom chips (see, e.g. [39]).

Finally, we consider which parts of the parameter space of the Yukawa interaction could be excluded in an
experiment such as the one we propose here. Firstly we fix zto 3 yum based on the discussion above, givingus a
value for AFcp. Equating this to AFys;) as given by equation (17) with unspecified o and A, one then hasan
equation that constrains cv and A to a particular set of combinations represented by a curve in the a—A\ plane. The
region bounded by this curve contains all the values of «w and A for which the Yukawa force change is larger than
the CP force change in this experiment. This region is shown in figure 1, alongside that for the unshielded case
(found by solution of AFys;y = AFcp(s)) and the real experimental sensitivity (found by solution of
AFy s, = 107! N, which is the force corresponding to a frequency sensitivity of 0.1mHz as discussed above). It
is seen that the CP shield is vital if any part of the parameter space is to be excluded by this type of experiment,
and that there is a considerably sized new region in which the Yukawa force change overwhelms all others,
without consideration of the absolute magnitude (i.e. detectability) of such a force. Taking into account the real
experimental sensitivity of a Bloch oscillation experiment, one still finds that a significant new region of
parameter space could be excluded.

5. Conclusions

Here we have demonstrated that a realistic account of the CP force is an important ingredient in the design of
experiments using electromagnetic shielding to measure short-range corrections to Newtonian gravity, and that
these considerations are in fact the deciding factor in whether the non-Newtonian force can be dominant over all
others in a particular experimental setup. Parameterising this force by a Yukawa potential, we have made an
initial investigation into whether this force is large enough to be measurable, finding that, given modest
improvements in localisation of atoms in an optical lattice, a new region of the Yukawa parameter space can be
excluded.
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Appendix. Reflection and transmission coefficients

The single-interface reflection and transmission coefficients are;

e _ i = B M _ g8 — €3

E=2 = , (A.1)
Y B+ B Y &8 + i3
)

Usinga shorthand S; = e2%% the four layer reflection coefficient used in the text s, for either polarisation;
' = 1% — Sa(ry + D7) + DISs(r5 + D13y + r33(1 + Ss73))]
537‘3?27'5‘4 + Szrgl [S3(T’3g2 + 1)7{4 + 1’53(1 + 537’30;)] -1

which is a more explicit version of equation (11).
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