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SUMMARY

Proteasomes are essential in all eukaryotic cells.
However, their function and regulation remain
considerably elusive, particularly those of less abun-
dant variants. We demonstrate the human 20S pro-
teasome recombinant assembly and confirmed the
recombinant complex integrity biochemically and
with a 2.6 Å resolution cryo-EM map. To assess its
competence to form higher-order assemblies, we
prepared and analyzed recombinant human 20S-
PA200, a poorly characterized nuclear complex. Its
3.0 Å resolution cryo-EM structure reveals the
PA200 unique architecture; the details of its intricate
interactions with the proteasome, resulting in unpar-
alleled proteasome a ring rearrangements; and the
molecular basis for PA200 allosteric modulation of
the proteasome active sites. Non-protein cryo-EM
densities could be assigned to PA200-bound inositol
phosphates, and we speculate regarding their func-
tional role. Here we open extensive opportunities to
study the fundamental properties of the diverse and
distinct eukaryotic proteasome variants and to
improve proteasome targeting under different thera-
peutic conditions.

INTRODUCTION

The ubiquitin-proteasome pathway, ubiquitous to all eukaryotes,

is critical for proteostasis and for the strictly regulated proteoly-

sis of key proteins that signal for fundamental processes,

including cell cycle progression, stress responses, DNA repair,

and the onset of apoptosis. The proteasome is the crucial prote-

ase complex at the downstream end of this pathway. It com-

prises a proteolytic core, the 20S proteasome, which, in eukary-

otes, is formed by hetero-heptameric rings of a1–a7 and b1–b7

subunits that stack into a(1–7)b(1–7)b(1–7)a(1–7) barrel-shaped as-

semblies (Groll et al., 1997; Löwe et al., 1995). The b1, b2, and

b5 subunits are proteolytically active, each with distinct sub-

strate binding and cleavage specificities that are caspase-,

trypsin-, and chymotrypsin-like, respectively (Heinemeyer

et al., 1997). The proteolytic active sites are located within the

proteasome inner chamber, and their full activation requires
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the binding of regulatory complexes at the outer surfaces of

the 20S proteasome a rings (Groll et al., 2000). The 19S regula-

tory particle, which associates with the core to form the 26S pro-

teasome, is the activator that recruits, engages, and unfolds fully

folded ubiquitinated proteins for degradation (Bhattacharyya

et al., 2014; Collins and Goldberg, 2017; Livneh et al., 2016).

Apart from the constitutive 26S proteasome, less character-

ized but important complexes add to the intricacies of protea-

some function and regulation. The immunoproteasome, thymo-

proteasome, and spermatoproteasome are core variants found

in higher eukaryotes (Kniepert and Groettrup, 2014; Murata

et al., 2018). Additionally, ATP-independent proteasome regula-

tors, less characterized and alternative to the 19S regulatory par-

ticle, include 11S particles (PA28/REG) (Huber and Groll, 2017;

Mao et al., 2008) and PA200, a still poorly characterized 200-

kDa monomeric proteasome regulator associated with DNA

repair, spermatogenesis, chromatin remodeling, and acetyla-

tion-dependent histone degradation (Blickwedehl et al., 2008;

Hoffman et al., 1992; Khor et al., 2006; Mandemaker et al.,

2018; Qian et al., 2013; Ustrell et al., 2002). These alternative reg-

ulators do not have the ubiquitin binding or unfolding activities of

the 19S regulatory particles, but their binding to the 20S protea-

some modulates its peptidase activities against small peptides

and unfolded proteins. On the other hand, they can still be

involved in the degradation of ubiquitin-tagged substrates in

the context of hybrid assemblies by binding to 20S proteasomes

singly capped with one 19S regulatory particle (Cascio et al.,

2002; Kopp et al., 2001). Last, proteasome function can be

further modulated by a range of transiently binding ancillary pro-

teins and post-translational modifications.

Despite recent progress, significantly driven by cryoelectron

microscopy (cryo-EM) studies (Bard et al., 2018; Collins and

Goldberg, 2017; Hochstrasser, 2016; Wehmer and Sakata,

2016), the functional and tight regulation mechanisms of the

human proteasome are still not fully characterized. Contrib-

uting factors include its endogenous compositional and struc-

tural variability, lack of mutagenesis studies because of the

proteasome’s obligatory role and consequent lethality associ-

ated with the disruption of its function, and limited availability

of purified homogeneous human complexes, particularly of

less abundant variants. This can in principle be overcome by

recombinant assembly. Recombinant archaeal 20S protea-

somes, which are simpler complexes formed by homo-hepta-

meric rings of a and b subunits, can be assembled by co-ex-

pressing its two subunits in E. coli (Zwickl et al., 1992). Such

an approach is not feasible for the human 20S proteasome
s. Published by Elsevier Inc.
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Figure 1. Biochemical Characterization of Recombinant Human 20S

Proteasome and 20S-PA200 Complexes

(A) SDS-PAGE of endogenous (e20S) and recombinant (r20S) human 20S

proteasomes and recombinant human 20S-PA200 complexes (r20S-PA200)

(see also Figures S1A and S1B).

(B) Proteolytic activities of e20S, r20S, and r20S-PA200 against the fluorogenic

substrates Z-LLE-AMC (blue), Boc-LRR-AMC (magenta), and Suc-LLVY-AMC

(red), specific for the proteasome b1 caspase-like, b2 trypsin-like, and b5

chymotrypsin-like active sites, respectively. Similar 20S proteasome molar-

ities were used in each assay, as shown in (A).

(C) Proteolytic activities of recombinant human 20S proteasomes in the

presence of increasing concentrations of PA200, color coded as in (B) (see

also Figure S1C).

Error bars are represented as mean ± SD.
because of its tightly regulated biogenesis pathway (Buden-

holzer et al., 2017; Livneh et al., 2016). This involves the

step assembly of two copies of 14 closely related subunits,

a1–a7 and b1–b7, which is assisted by 5 dedicated chaper-

ones: the heterodimers PAC1-PAC2 and PAC3-PAC4 and

POMP. The proteasome a rings are initially formed and serve

as scaffolds for the successive and ordered incorporation of b

subunits. A dimerization step follows, where two pre-assem-

bled half-proteasomes fuse together, triggering a final matura-

tion step that involves the self-cleavage of the b subunit

pre-peptides. These are N-terminal extensions present in

immature b subunits, believed to shield their proteolytic activ-

ity until formation of the full 20S proteasome, and they may

also contribute as scaffolds for proteasome assembly. Here

we describe the successful assembly of recombinant human

20S proteasomes in insect cells, which we expand to the

functional and structural characterization of a recombinant hu-

man 20S-PA200 proteasome complex.
RESULTS

Recombinant Human 20S Proteasomes
We investigated the recombinant assembly of human 20S pro-

teasomes in insect cells as a proof of principle for the preparation

of other highly homogeneous eukaryotic proteasome com-

plexes, particularly those difficult to obtain from endogenous

sources. We used a bacoluvirus-insect cell expression system

where we successfully co-expressed the 19 individual human

proteins required, the 14 proteasome constitutive subunits

a1–a7 and b1–b7, and the 5 dedicated proteasome assembly

chaperones PAC1-PAC2, PAC3-PAC4, and POMP (Figure S1A).

We observed that incorporating all 14 proteasome subunits

(a1–a7/b1–b7) into a single baculovirus, ensuring their similar

expression levels and, therefore, the correct proteasome subunit

stoichiometry, significantly facilitates the assembly of recombi-

nant complexes.

The recombinant proteasomes were purified by affinity and

size exclusion chromatography steps (Figure S1B). SDS-PAGE

shows identical protein profiles for recombinant and endoge-

nous human proteasomes (Figure 1A). Moreover, the protea-

some peptidase activities, measured against fluorogenic sub-

strates specific for each of the three proteasome active sites,

are also comparable for both complexes, albeit with slightly

increased activity for the recombinant complex (Figure 1B).

Finally, we determined the cryo-EM structure of the recombinant

human 20S proteasome at a resolution of 2.6 Å (Figures 2A–2C,

S2A, S2C, S2E, and S2G). This structure, consistent with that of

the endogenous complex, unambiguously confirms recombi-

nant proteasome structural integrity and full maturation, with

the absence of all b subunit pre-peptides, which was also

confirmed by mass spectrometry. We therefore demonstrate

that eukaryotic proteasomes can be successfully assembled

by recombinant expression, opening new perspectives for full

characterization of the diverse eukaryotic proteasomes.

Recombinant Human 20S-PA200 Complexes
Preparation of recombinant proteasomes is particularly relevant

for the study of less abundant and still poorly characterized

variants. In this context, we prepared recombinant human

20S-PA200 complexes by co-expression in insect cells. The

20S-PA200 assembly further supports the recombinant

human 20S proteasome structure integrity. 20S proteasomes

are fully activated by the binding of regulators at their a ring outer

surfaces. Any divergence of these surfaces from their endoge-

nous state should result in capping impairment. To confirm

that the recombinant human 20S proteasome retains its compe-

tence to be capped, we co-expressed it with PA200. SDS-PAGE

clearly reveals co-purification of all proteasome subunits and

PA200 (Figure 1A), with the formation of 20S-PA200 complexes

confirmed by cryo-EM imaging (Figure S2B). The recombinant

20S-PA200 complex, free from other human proteasome variant

contaminants, is highly suitable for a detailed biochemical char-

acterization. PA200 is known to modulate the peptidase activ-

ities of the 20S proteasome. We find that, in the 20S-PA200

complex, trypsin-like activity, associated with the b2 active

site, is enhanced compared with the uncapped recombinant

20S proteasome, whereas there is slight inhibition of the b1
Molecular Cell 76, 138–147, October 3, 2019 139



Figure 2. Cryo-EM Structures of the Recombinant Human 20S Proteasome and 20S-PA200 Complex

(A) Cryo-EM structure of the recombinant human 20S proteasome with a fitted atomic model (see also Figure S2).

(B and C) Two close-up views of the structure shown in (A), which has well-resolved side chains throughout.

(D) Cryo-EM structure of the recombinant human 20S-PA200 complex with a fitted atomic model (see also Figures S2 and S3).

(E and F) Two close-up views of the structure shown in (D), which has well-resolved side chains throughout.

(G) Overall view of the 20S-PA200 atomic model, with major domains indicated.

(H) Close-up views of the 20S-PA200 cryo-EMmap (graymesh) with a fitted atomicmodel (cartoon representation), with each subunit color-coded as indicated at

the top.

In (A)–(F) The cryo-EM maps are shown as mesh and the protein models as cartoons (A and D) or sticks (B, C, E, and F).
and b5 active sites (Figure 1B). However, such a pattern of pro-

teolytic activity modulation differs from that described previously

by adding endogenous bovine testis PA200 containing fractions

to purified human 20S proteasomes, which resulted mainly in

activation of proteasome caspase-like activity (Ustrell et al.,

2002). Therefore, to confirm our results, we expressed and puri-

fied humanPA200 on its own and added it to purified 20S protea-

somes. Upon addition of increasing concentrations of PA200,

both endogenous and recombinant proteasome peptidase

activities show modulation identical to the recombinant 20S-

PA200 complex, validating its functional integrity (Figures 1C

and S1C).

Structural information currently available on endogenous 20S-

PA200 is limited to a low-resolution (23 Å) cryo-EM map of a

bovine complex (Ortega et al., 2005). Taking advantage of our re-

combinant human 20S-PA200 and the recent advances in cryo-

EM, we determined the cryo-EM structure of the double-capped

complex at a resolution of 3 Å (Figures 2D–2H, S2B, S2D, S2F,
140 Molecular Cell 76, 138–147, October 3, 2019
S2H, S3A, and S3B). The quality of the map allows unambiguous

building of an atomic model of the full complex ab initio for

PA200. PA200 is mostly formed by helical repeats spiraling

around a dome above the proteasome a ring (Figures 2H, S3A,

and S3B). Although its overall arrangement resembles that of

the yeast proteasome-bound Blm10, a yeast ortholog of

PA200 whose structure was solved by X-ray crystallography at

3.4 Å resolution (Sadre-Bazzaz et al., 2010), because of signifi-

cant differences between the two complexes, the structure of

Blm10 could not be used as a direct template for PA200

modeling.

Relevant and Unique 20S-PA200 Structural Features
Our 20S-PA200 structure reveals extensive interactions be-

tween PA200 and the surface of all a subunits, except for a7,

where the interactions occur only at its N-terminal tail. There

are two main anchor regions among the PA200 and 20S protea-

some interaction network (Figures 3, S4A, and S4B). One



Figure 3. PA200 Main Docking Sites on the

Proteasome a Rings

(A) Cartoon representation of the PA200 structure,

showing the two major anchor regions of PA200 at

the proteasome a ring, one involving the PA200 loop

formed by residues 561–576 (dashed circle, left) and

the other involving the PA200 C terminus (solid cir-

cle, right).

(B) Close-up view of interactions between the

PA200 loop, residues 561–576, and the proteasome

subunits a1 (orange) and a2 (green).

(C) Close-up view of interactions between the

PA200 C terminus and the proteasome subunits a5

(blue) and a6 (red).

In (A)–(C) the 20S-PA200 structure is oriented to

best depict the interactions highlighted. In (B) and

(C), the cryo-EMmaps are shown as gray mesh and

the atomic models as sticks. The protein-protein

interaction network involving these two PA200 an-

chor regions and the 20S proteasome are repre-

sented in Figures S4A and S4B. See also Figure S5.
involves the PA200 C-terminal 1838SPCYYA1843 residues, which

include and extend upstream of the HbYX motif (hydrophobic-

tyrosine-other) common to other 20S proteasome binding pro-

teins. These residues, except for Pro1839, form a tightly packed

interaction network with the HbYX motif-interacting pocket at

the proteasome a5-a6 interface (Figures 3A, 3C and S4B). The

other main anchor region comprises the analogous binding

pocket at the a1-a2 interface, where an extended PA200 loop,

formed by residues 561–576, docks (Figures 3A, 3B, and S4A).

Although this loop tightly binds to a known HbYX-interacting

pocket, its sequence differs from that of this motif.

The extensive interactions between PA200 and the protea-

some result in significant a ring conformational rearrangements.

In 20S-PA200, there is a subunit radial displacement, away from

the proteasome long axis, particularly evident for a3 and a4 (Fig-

ure 4). The N-terminal tails of a5–a7 are fully ordered and re-

located from the proteasome axis into grooves at the inner sur-

faces of the PA200 dome (Figures 5 and S4C–S4E), whereas,

for the remaining a subunits, these tails are disordered and not

recovered in our map. Remarkably, for a3, the H0 helix is also

disordered, resulting in an unusually wide a ring opening (Figures

4C and S3C), as discussed below. Despite the proteasome a

subunit rearrangements, the location of PA200 immediately

above the a ring opening, rather than aligned with the 20S pro-

teasome central axis (Figures 2H, S3A, and S3B), results in the

proteasome inner chamber remaining considerably enclosed,

restricting proteolytic active site access to small peptides and

unfolded proteins, as reported previously (Ustrell et al., 2002).

Interestingly, among the unique features of the 20S-PA200

structure are two positively charged grooves at the distal outer

surface of PA200 (Figure 6A). Channels at the center of these

grooves appear to be significantly obstructed by well-defined

densities, not accounted for by the protein model, consistent

with cofactors coordinated by dense clusters of PA200 lysine

and arginine side-chains (Figures 6, S5, and S6). We find that
one of these densities is compatible with a molecule of inositol

hexakisphosphate (InsP6) (Figures 6A–6D and S5A), where

only one of the InsP6 phosphate groups does not interact

directly with PA200; consequently, it is somewhat less well

recovered in our map. The density obstructing the channel of

the second PA200 groove appears to be less recovered, but

its shape and coordination by a cluster of positively charged res-

idues led us to tentatively assign it to (5,6)-bisdiphosphoinositol

tetrakisphosphate (5,6[PP]2-InsP4) (Figures 6A, 6E–6G, S5,

and S6B).

Allosteric Modulation of the 20S Proteasome Active
Sites by PA200
It is well established that the 20S proteasome peptidase activ-

ities are modulated by binding of regulators to the a rings, but

direct structural evidence of the associated alterations in the

active sites has beenmissing. Our 20S-PA200 cryo-EM structure

shows that the proteasome a ring conformational rearrange-

ments, induced by PA200 binding, result in global allosteric

structure adjustments that extend to the proteasome b subunits.

A close comparison of the active sites in our 20S proteasome

and 20S-PA200 complex atomic models reveals slight differ-

ences in the lining of the three proteasome substrate binding

pockets (Figure 7), which explain the proteolytic activity modula-

tion observed upon PA200 binding (Figures 1B and 1C). The cas-

pase-, trypsin-, and chymotrypsin-like proteasome activities,

associated with the b1, b2, and b5 active sites, were probed us-

ing fluorogenic substrates with glutamate, arginine, and tyrosine

residues at position P1, respectively. Our 20S-PA200 structure

shows that there is widening of the b2 S1 pocket in 20S-PA200

that may facilitate arginine binding, consistent with the observed

trypsin-like activation. On the other hand, lesser narrowing at the

b1 and b5 sites can reduce their accessibility to glutamate and

tyrosine residues, respectively, explaining the observed slight

inhibition of the caspase- and chymotryptic-like activities
Molecular Cell 76, 138–147, October 3, 2019 141



Figure 4. PA200 Induced Conformational Changes in the 20S Proteasome a Rings

(A) The closed a ring outer surface of the 20S proteasome.

(B) Superimposition of the a ring outer-surface atomic models of the recombinant human 20S proteasome (gray cartoon) and 20S-PA200 (cartoon with subunits

color coded). The H0 helices of the 20S proteasome a1–a2 and a4–a7 are indicated by solid circles color coded as in 20S-PA200, whereas the H0 helix of a3,

which is disordered in 20S-PA200, is encircled by a black dashed circle.

(C) The open a ring outer surface of the 20S-PA200 complex.

In (A) and (C), the cryo-EM maps are shown as gray mesh, and the atomic models are represented as cartoons.
observed in the 20S-PA200 complex. Moreover, the apparent

negative charge lining the b5 S1 pocket in the 20S-PA200 com-

plex, compared with the hydrophobic pocket found in the 20S

proteasome, may also facilitate binding of arginine. This could

also contribute to the raised tryptic activity we observed for the

20S-PA200 complex, even when, in the apo 20S proteasome,

the tryptic activity is normally assigned only to the b2 active site.

DISCUSSION

We demonstrate that eukaryotic proteasomes can be success-

fully assembled by recombinant expression. This important

new tool in proteasome research can be exploited in the prepa-

ration of highly homogeneous samples suitable for fundamental

functional and structural studies that can be supported by muta-

genesis studies and for therapeutic drug discovery and develop-

ment. Three proteasome inhibitors are already in clinical use

against cancer, primarily multiple myeloma, and new com-

pounds are being developed for higher efficacy and for the

treatment of other varied pathological conditions, including in-

flammatory diseases and parasitic infections (Ettari et al.,

2016; Khare et al., 2016; Li et al., 2016; Park et al., 2018).

Recombinant expression of proteasome complexes can be

particularly important for studying less abundant proteasome

variants and complexes difficult to purify in high quantities

from endogenous sources, which may include those from infec-

tious parasites (Khare et al., 2016; Li et al., 2016). Another rele-

vant example, where the availability of recombinant protea-

somes could have a significant effect, is the specific targeting

of the human immunoproteasome, a variant related to the consti-

tutive 20S proteasome, where the proteolytic active subunits are

replaced by interferon-g-induced ib1, ib2, and ib5 counterparts.

The nature of the human immunoproteasome impairs its purifica-

tion from endogenous sources, with a detrimental effect on its

characterization and drug design and development. In one
142 Molecular Cell 76, 138–147, October 3, 2019
remarkable effort to overcome this limitation, a yeast strain

was modified to incorporate in its 20S proteasomes chimeric

yeast and human b5 subunits, designed to mimic the proteolytic

activity of the endogenous human ib5 subunit while incorpo-

rating the yeast elements required for proteasome assembly

andmaturation (Huber et al., 2016). However, although these hu-

manized proteasomes are already contributing to drug develop-

ment, they are not physiological and only mimic ib5 without

providing information regarding ligand binding at the ib1or ib2

active sites and no information regarding possible ligand-

induced allosteric effects on the human immunoproteasome.

Recombinant complexes can significantly contribute to the full

characterization of proteasomes bound to ATP-independent

regulators, which are less abundant and significantly less stud-

ied than the canonical 26S proteasome. Structures of 11S com-

plexes have been determined by X-ray crystallography; namely,

a human PA28a7 homoheptamer (Knowlton et al., 1997) and

mouse PA28a7, PA28b7, and PA28a4b3 (Huber and Groll,

2017). Structural information regarding the interaction of 11S

complexes with 20S proteasomes was obtained with the X-ray

structures of chimeric complexes formed by yeast and archaeal

20S proteasomes and Trypanosoma brucei PA26, a PA28 homo-

log (Förster et al., 2003, 2005; Whitby et al., 2000). These struc-

tures reveal displacement of the N-terminal loops of the protea-

some a subunits with opening of a proteasome axial channel

without significant additional proteasome conformational

changes (Figures S3C and S3D). Prior to the work described

here, the structure of mammalian 20S-PA200 complexes have

been restricted to a 23 Å resolution cryo-EM map that also

showed opening of a proteasome axial channel but without

providing information regarding detailed molecular interactions

or rearrangements because of resolution constraints (Ortega

et al., 2005). On the other hand, from the crystal structure of a

yeast 20S proteasome bound to Blm10, a PA200 homolog, it

has been suggested that both Blm10 and PA200 would



Figure 5. Interaction between the N-Terminal Loops of the Proteasome a Subunits with PA200

(A) Cartoon representation of the N-terminal tails of the proteasome a5–a7 subunits, indicated by arrows, at the PA200 dome inner surface.

(B–D) Close-up views of the N termini of the proteasome subunits a7 (B), a6 (C), and a5 (D). The cryo-EMmaps are shown as graymesh and the atomic models as

sticks.

In (A)–(D), the 20S-PA200 structure is oriented to best depict the highlighted interactions. The protein-protein interaction network involving the N-terminal tails of

the proteasome a5–a7 subunits and PA200 are represented in Figures S4C–S4E.
rearrange the N-terminal loops of the 20S proteasome a subunits

in a way somewhat similar to that proposed for 11S regulators,

with only a localized effect at the a subunit N-terminal tails at

the proteasome axis (Sadre-Bazzaz et al., 2010). In contrast,

we show an intricate interaction network between PA200 and

the proteasome that results in proteasome conformational

changes with functional implications.

Analysis of the recombinant human 20S proteasome and 20S-

PA200 complexes provides significant and unexpected new in-

sights, with uniquely large proteasome subunit conformational

changes induced by binding of PA200. These include axial dis-

placements and significant rearrangements of the proteasome

a subunits, involving not only their N-terminal loops but, signifi-

cantly, also the H0 helix of a3, resulting in an unusually wide

proteasome a ring opening (Figures 4, S3C, and S3D). In com-

parison, in the yeast 20S-Blm10 structure, all a subunit H0 heli-

ces are ordered, and, consequently, the a ring opening appears

much less prominent (Sadre-Bazzaz et al., 2010; Figures S3C

and S3D). Notably, the a subunit rearrangements observed so

far in proteasome open-state conformations (Chen et al., 2016;

Wehmer et al., 2017) are also significantly subtler than in the

20S-PA200 complex (Figures S3C and S3D). Nevertheless, the

extensive rearrangements induced by PA200 binding, as we
describe, reflect a high degree of conformational plasticity of

the proteasome a ring, which may well be required for the pro-

cessing of at least some proteasome substrates and may not

be restricted to the 20S-PA200 complex.

Previous studies showed strong evidence of allosteric commu-

nication between proteasome regulators binding at the outer sur-

face of the a rings and the proteolytic active sites within the pro-

teasome inner chamber (Bech-Otschir et al., 2009; Chu-Ping

et al., 1994; Haselbach et al., 2017; Kleijnen et al., 2007; Ma

et al., 1992; Ruschak and Kay, 2012). In this context, it is well es-

tablished that binding of regulators at the 20S proteasome a rings

modulates the proteolytic activities of b1, b2, and b5. However,

the detailed structural rearrangements of the proteasome active

sites associated with such allosteric modulation have not been

described previously for any proteasome regulator. Earlier studies

attributed this modulation to the opening of a proteasome axial

gate, characterized by displacements of the a subunit N-terminal

loops away from the proteasome long axis (Chen et al., 2016; Sa-

dre-Bazzaz et al., 2010; Wehmer et al., 2017; Whitby et al., 2000).

It has been proposed that such an axial gate can facilitate access

of small peptides to the proteasome inner chamber, where the

proteolytic active sites are located, resulting in enhanced pepti-

dase activities. However, this simplified model suggests that all
Molecular Cell 76, 138–147, October 3, 2019 143



Figure 6. Relevant Features in the Structure of the Human PA200

(A) van derWaals surface representation, colored by charge, of the PA200 distal outer surface (oriented as indicated on the left), showing two prominent positively

charged grooves, indicated by solid rings.

(B) Close-up view of the non-protein density blocking the channel on the positively charged groove indicated in (A).

(C) The densities for the cofactor in (B) are fitted with a model of InsP6. Only one of the InsP6 phosphate groups does not interact directly with PA200 and,

consequently, is somewhat less well recovered in our map.

(D) The location of InsP6 (B and C) within its PA200 groove.

(E) Close-up view of the non-protein density blocking the channel of the positively charged groove indicated in (A).

(F) The densities for the cofactor in (E) are fitted with a model of 5,6[PP]2-InsP4.

(G) The location of 5,6[PP]2-InsP4 within its PA200 groove.

See also Figures S5 and S6.
20S proteasome peptidase activities would be equally activated

upon gate opening and, therefore, cannot account for the more

complex modulation of each of the individual proteolytic active

sites that is observed.

Our data show that, despite the unusually wide opening at

the proteasome a ring induced by PA200 binding (Figures 4,

S3C, and S3D), there is only significant activation of proteasome

trypsin-like activity (Figure 1). Such modulation is not consistent

with the previously reported activation of mainly the human pro-

teasome caspase-like activity by addition of a bovine testis

PA200-enriched fraction (Ustrell et al., 2002), but this discrep-

ancy is likely due to the different experimental approach used.

Here we confirmed the integrity of the peptidase activities of

our 20S-PA200 complex by titrating purified endogenous and

recombinant human 20S proteasomes with homogeneously pu-

rified PA200, which resulted in identical proteolytic activity pat-

terns (Figures 1 and S1C). Nevertheless, if the effects on proteo-
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lytic activity were due to a simple axial gate opening, then an

equal effect should be expected for all active sites, which is

not observed. Indeed, our 20S-PA200 structure shows that the

rearrangements observed at the a subunits are propagated allo-

sterically into the b subunits, resulting in the different conforma-

tional changes at each of the proteolytic active sites that we

describe in Results. These structural readjustments explain, at

the molecular level, how PA200 binding to the 20S proteasome

differentially modulates each of the individual proteasome pro-

teolytic activities (Figures 1 and 7); namely, the selective activa-

tion of its trypsin-like activity and slight inhibition of its caspase-

and chymotryptic-like activities. Although the detailed molecular

basis of allosteric modulation of the proteasome active sites has

not yet been described for any other proteasome, regulator-

related effects should be expected because it is known that

different proteasome regulators induce different effects on

each of the three proteasome proteolytic activities.
Figure 7. Comparison of the Proteolytic

Active Sites in the Human 20S Proteasome

and 20S-PA200 Complexes

Shown are van der Waals surface representations,

colored by charge, of the three proteasome active

sites (b1, b2, and b5) of the recombinant 20S pro-

teasome (top row) and 20S-PA200 complexes

(bottom row), viewed from the proteasome inner

cavity. White dashed circles indicate the S1 pocket

of each active site.



Our structural data allow some speculation regarding the

PA200 functional mechanisms. PA200 is involved in acetyla-

tion-dependent degradation of histones (Mandemaker et al.,

2018; Qian et al., 2013), and in this context, it was predicted

that its residues 1650–1738 fold into an acetyl-lysine binding

bromodomain, with a hydrophobic pocket formed by residues

Phe1676, Asn1716, and Phe1717 (Qian et al., 2013). However,

our 20S-PA200 structure reveals that, although these residues

are indeed neighbors, the side chain of Phe1676 is buried in

the protein structure and oriented away from those of

Asn1716 and Phe1717. Although we do not identify bromodo-

mains in our PA200 structure, it is noteworthy that we

assigned non-protein densities in our 20S-PA200 cryo-EM

map to inositol phosphates bound to PA200 (Figures 6 and

S5). Inositol phosphates have been shown to bind and

regulate the catalytic activity of class I histone deacetylases

(Millard et al., 2013; Watson et al., 2012, 2016). Therefore, it

seems reasonable to suggest that PA200-bound inositol phos-

phates may be correlated with the PA200’s role in the degra-

dation of acetylated histones, although this needs further

investigation.

The results presented here serve as a framework for further

studies ultimately aiming at a complete characterization of

the function and regulation of the different eukaryotic protea-

somes and their variants. Our results open very substantial

new research opportunities that can be explored not just in

therapeutic drug development but that can also serve as a basis

for fully understanding the critical role of proteasomes within all

eukaryotic cells.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Sf9 insect cells were cultivated in InsectXPRESS media (Lonza), at 27�C.

Bacterial Strains
Constructs were transformed and amplified in either Escherichia coli TOP10 or Pir1 chemically competent cells (Invitrogen).

The DH10EMBacY Escherichia coli strain (Geneva Biotech) containing a baculovirus shuttle vector (bacmid) and a constitutively

expressing YFP expression cassette was used to create all expression bacmids containing the cloned genes of interest.

METHOD DETAILS

Cloning and generation of baculovirus
cDNAs encoding each of the human 20S proteasome subunits, proteasome assembly chaperones and PA200 were synthesized

as codon-optimized genes for expression in E. coli (Epoch). These genes were subsequently cloned in Multibac Turbo vectors

pACEBac1, pIDS and/or pIDC using a strategy adapted from the IVA method (Garcı́a-Nafrı́a et al., 2016). All proteasome a sub-

units were cloned into a pACEBac1 vector, the b subunits into a pIDS, the chaperones in both pIDC and pACEBac1, and PA200

in pACEBac1. The proteasome b subunits were cloned with their N-terminal pre-peptides, which are cleaved at the final stages

of proteasome assembly and maturation resulting in proteolytic active complexes (Budenholzer et al., 2017). We added a

TwinStrep-tag at the C terminus of b7 to assist on the purification of mature homogeneous proteasome complexes, as this

is known to be the last subunit to be incorporated during the proteasome assembly pathway (Li et al., 2007; Marques et al.,

2007). We also created untagged and N-terminal Twin-Strep tagged versions of PA200, to be co-expressed with the 20S pro-

teasome or expressed on its own, respectively. The pACEBac1 vector, containing the a subunits, and the pIDC vector, contain-

ing the b subunits, were Cre-Loxed (Fitzgerald et al., 2006) to create a single vector (20S proteasome plasmid). Attempts were

made to Cre-Lox the chaperones containing pIDC vector to either the protesome a or b subunit vectors, but due to the size of

the plasmids, the high number of genes and gene repetitions many random recombinant events occur, and for that reason we

decided to clone the proteasome assembly chaperones in a separate pACEBac1 vector (Figure S1A).
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All assembled plasmids were transposed to DH10EmBacY cells (Geneva Biotech), and Bacmid DNA purified following published

protocols (O’Reilly et al., 1994). Bacmidswere transfected (P1 virus), after which Sf9 cells, at 1.5x106 cells/ml in InsectXPRESSmedia

(Lonza), were infected and incubated for approximately 72 hours until viability was around 80%. The P2 virus was then filtered and

2% Hi-FBS serum added. This was kept as a stock at 4�C, protected from light.

Expression of proteasome complexes
Each individual baculovirus was initially amplified (P3 amplification) by infecting Sf9 cells at 1.5 x106 cells/ml with 1:100 of P2 virus,

followed by a 72 hour incubation at 27�Cwith shaking, or until cell viability was about 80%. The P3 virus were then filtered and used to

co-infect Sf9 cells with a density of roughly 2x106 cells/ml (12 mL of each P3 virus for each 500 mL of cells). Expression of the human

20S proteasomewas accomplished by co-infection of Sf9 cells with two baculoviruses, one containing the 20S proteasome the other

the assembly chaperones. The 20S-PA200 complex was expressed by triple co-infection with baculoviruses containing (1) the 20S

proteasome, (2) the chaperones and (3) the PA200. Interestingly, we observed that human 20S proteasomes can assemble when

expressing only its 14 subunits, but with more than a 3-fold decrease in yield of mature complexes compared with that obtained

with chaperone co-expression (data not shown). This suggests that endogenous insect proteasome assembly chaperones can, at

least partially, assist in the assembly of the human complex. After infection, the Sf9 cells were incubated at 27�C for 48 hours and

harvested by centrifugation at 3,000 g, 20 min, 4�C. Cell pellets were washed with cold PBS, frozen in LN2 and stored at �80�C.

Purification proteasome complexes
The purification strategy was the same for both reconstituted 20S proteasome and 20S-PA200 complexes. Briefly, thawed cells were

resuspended in 3-4 times volume of buffer W (50 mM Tris pH 7.5, 150 mMNaCl, 5% (v/v) glycerol, 1 mMDTT, 1 mM EDTA), lysed by

sonication and the lysate cleared by centrifugation at 48,400 g for 30 minutes. The clear lysate was then passed through a 5 mm filter

and loaded onto tandem Streptactin Superflow Plus columns (QIAGEN), equilibrated in buffer W, and eluted in buffer E (50 mM Tris

pH7.5, 150 mM NaCl, 5% (v/v) glycerol, 1 mM DTT, 1mM EDTA, 2.5 mM d-desthiobiotin). Proteasome containing fractions were

pooled together and the TwinStrep-tag cleaved by overnight dialysis against buffer W containing TEV protease, at a ratio of 1:50

(TEV to protein). The sample was filtered again with a 0.4 mm filter and loaded onto Streptactin Superflow Plus columns, where

the flow-through was collected. The protein was concentrated using 30 kDa cut-off Vivaspin 20 concentrators (Sartorius) and loaded

onto a Superose 6 Increase 10/300 gel filtration column (GE Healthcare) equilibrated with 50 mM Tris pH 7.4, 100 mM NaCl, 1 mM

EDTA (Figure S1B). Typical yields for the purification of reconstituted 20S proteasomes and 20S-PA200 complexes are 2-3 mg and

1 mg of protein purified from 1 L of Sf9 cultures, respectively.

Expression and purification of PA200
Expression of the human PA200 was accomplished by infection of Sf9 cells with the TwinStrep-Tev-PA200 containing baculovirus.

The purification protocol was the same as described for the recombinant 20S proteasome, except that the last size exclusion chro-

matography step was performed in a Superdex 200 Increase 10/300 (GE Healthcare).

Proteasome activity assay
20S proteasome proteolytic activities were measured by fluorescence spectroscopy using the b1, b2 and b5 specific substrates

(from Boston Biochem) carboxybenzyl-Leu-Leu-Glu-7-amino-4-methylcoumarin (Z-LLE-AMC), tert-butyloxycarbonyl-Leu-Arg-

Arg-7-amino-4-methylcoumarin (Boc-LRR-AMC) and N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (Suc-LLVY-AMC),

respectively.

Recombinant human 20S proteasomes, endogenous human 20S proteasomes (Enzo) and recombinant human 20S-PA200 com-

plexes, all at 7.5 nM in 25 mM HEPES, pH 7.5 and 0.5 mM EDTA, were incubated with 50 mM substrate (stock at 5 mM in DMSO) for

30 minutes at room temperature. Fluorescence intensity, generated by the release of AMC fluorophores, was measured in triplicate

with a Pherastar (BMG Labtech) with lexcitation = 350 nm and lemission = 450 nm.

PA200 titration experiments were done by mixing 60 nM of either endogenous or recombinant 20S proteasomes with increasing

concentrations of recombinant PA200 (0 nM, 15 nM, 20 nM, 30 nM, 60 nM, 120 nM, 180 nM and 240 nM), followed by incubation for

1 hour at room temperature. The samples were then diluted 20 times and incubated with 50 mM of each of the three proteasome flu-

orogenic substrates. Measurements were done in Pherastar (BMG Labtech) after incubation at room temperature for 30 minutes. All

experiments were done in triplicate.

Cryo-electron microscopy
Quantifoil R1.2/1.3 electron microscope grids, with a 300 gold mesh, were coated with a thin layer of carbon freshly floated from

mica, following the procedures we previously optimized for the preparation of grids with endogenous human proteasomes (da

Fonseca and Morris, 2015; Morris and da Fonseca, 2017). We find that the continuous carbon layer favors an even particle distri-

bution, while its electron scattering facilitates the assessment of the information in the recorded images, as judged by the recovery

of Thon rings to high resolution in their power spectra, which also contributes to an accurate defocus estimation for the correction
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of the contrast transfer function associated effects. The grids used for imaging the recombinant human 20S proteasome were

glow-discharged in the presence of pentylamine, as we previously described for the endogenous complex (da Fonseca and Mor-

ris, 2015; Morris and da Fonseca, 2017). The grids used for the 20S-PA200 complex were glow-discharged in atmospheric air. 3 mL

of sample were loaded on the grids and flash frozen by plunging the grids into liquid ethane using a Vitrobot Mark IV (FEI), operated

at 22�C, 95% humidity, 20 s waiting and 5 s blotting times. The grids were transferred into a FEI Titan Krios electron microscope,

operated at 300 keV and a nominal magnification of x95,000, resulting in a calibrated sampling of 0.81 Å per pixel at the image level.

Images were recorded with EPU software using a Falcon III direct electron detector operating in counting mode, at an electron

dose per pixel of �0.5 e-/s, with 60 s exposures saved as 75 frame movies with evenly distributed electron dose (Figures S2A

and S2B).

Single particle analysis
The cryo-EM images were processed using the cisTEM software (Grant et al., 2018). For the analysis of the recombinant human

20S proteasome, the frames of each of the 483 movies recorded were aligned and summed into single images. Upon inspection,

411 images were selected for further analysis, based on the ice quality, image contrast and the recovery of isotropic Thon rings to

high resolution. The selected images had a defocus range from �0.8 mm to �3.4 mm. A total of 58,281 particles were picked from

the selected images and subsequently classified. The resulting 2D class averages reveal a very homogeneous sample and were

used to exclude particle picking false positives. No proteasome top-views, corresponding to projections along the proteasome

long axis, were selected since the proteasome side-views show a tomographic distribution of Euler angles, evenly distributed

around one of the main axis, providing a complete and even information recovery in Fourier space. The resulting selection of

50,885 particles were used for Auto Refine, with C2 symmetry imposed, using our previous 3.5 Å cryo-EMmap of the endogenous

human 20S proteasome (EMD-2981) (da Fonseca and Morris, 2015) as starting reference. The overall image processing workflow

is shown in Figure S7A. The resolution of the final map was estimated at 2.6 Å by Fourier shell correlation, as implemented in

cisTEM (Figure S2C).

The analysis of the cryo-EM images of the recombinant human 20S-PA200 followed the same procedures as described for the

recombinant 20S proteasome. From the 1,114 movies recorded, 717 were selected for further analysis and had a defocus range

from �1.2 mm to �2.9 mm. 29,434 particles were picked from the selected images and classified. The resulting class averages re-

vealed the presence of some uncapped 20S proteasomes, which were excluded from the particle data-set together with particle

picking false positives. The 17,356 particles from the selected class-averages were subjected to another round of 2D classification

into 10 classes that showed no evidence for significant heterogeneity. Therefore, all 17,356 particles were used for 3D Auto Refine,

with C2 symmetry imposed, using our cryo-EM map of the recombinant human 20S proteasome as starting reference, followed by

a round of local refinement. An additional 3D classification into 2 classes, using C1 symmetry, indicated that 28% of the particles in

the final map are from single capped complexes. The overall image processing workflow is shown in Figure S7B.The resolution of the

final map was estimated at 3.0 Å by Fourier shell correlation, as implemented in cisTEM (Figure S2D).

Molecular modeling
The model of the human recombinant 20S proteasome was built based on the X-ray crystal structure of the endogenous human 20S

proteasome (PDB: 5LE5) (Schrader et al., 2016) using real-space refinement in Coot (Emsley et al., 2010) and Phenix (Afonine et al.,

2012). The model of the recombinant human 20S-PA200 complex was built based on our cryo-EMmodel of the recombinant human

20S proteasome and models for the human PA200 derived from Phyre2 (Kelley et al., 2015) and I-Tasser (Yang et al., 2015). These

PA200 models were used as initial guides for the assignment of secondary structure using real-space refinement in Coot (Emsley

et al., 2010) and Phenix (Afonine et al., 2012), followed by correction of the sequence register using the amino acid side chain den-

sities clearly resolved in our cryo-EM map. Connecting loops and all other regions were built ab initio from the cryo-EM density. The

final atomic models of the recombinant human 20S proteasome and 20S-PA200 complexes were validated using MolProbity (Chen

et al., 2010) (Figures S2G and S2H).

Graphic representations
The representations of our structures as shown in Figures 2A, 2D, S2E, and S2F were created using UCSF Chimera (Pettersen et al.,

2004), while all the remaining structure representations in the manuscript were created using the Pymol Molecular Graphics System,

Schrödinger, LLC. The cryo-EM maps shown in Figures S2E and S2F were colored according to local resolution as estimated using

ResMap (Kucukelbir et al., 2014). The diagrams of the protein-protein interaction networks shown in Figure S4 were created with

LigPlot+ (Laskowski and Swindells, 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Cell density was measured in a Countess II (Life technology).

Protein concentrations were measured in a Nanodrop 2000c (Life technologies).
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Proteasome activity was measured in Pherastar a (BMG Labtech) with lexcitation = 350 nm and lemission = 450 nm. Data analysis,

including the calculation of Error bars as mean with standard deviation derived from the triplicate measurements represented in Fig-

ures 1 and S1, was done in Prism 8 software (GraphPad).

DATA AND CODE AVAILABILITY

The cryo-EM density maps of 20S and 20S-PA200 have been deposited into the EMDataBank with accession codes EMD-4877 and

EMD-4860, respectively. The corresponding atomic coordinates have been deposited in the Protein Data Bankwith accession codes

PDB: 6RGQ and PDB: 6REY.
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