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Deposition of amyloid in the heart can lead to cardiac dilation and impair its pumping

ability. This ultimately leads to heart failure with worsening symptoms of breathlessness

and fatigue due to the progressive loss of elasticity of the myocardium. Biomarkers linked

to the clinical deterioration can be crucial in developing effective treatments. However, to

date the progression of cardiac amyloidosis is poorly characterized. There is an urgent

need to identify key predictors for disease progression and cardiac tissue function. In

this proof of concept study, we estimate a group of new markers based on mathematical

models of the left ventricle derived from routine clinical magnetic resonance imaging and

follow-up scans from the National Amyloidosis Center at the Royal Free in London. Using

mechanical modeling and statistical classification, we show that it is possible to predict

disease progression. Our predictions agree with clinical assessments in a double-blind

test in six out of the seven sample cases studied. Importantly, we find that multiple

factors need to be used in the classification, which includes mechanical, geometrical

and shape features. No single marker can yield reliable prediction given the complexity

of the growth and remodeling process of diseased hearts undergoing high-dimensional

shape changes. Our approach is promising in terms of clinical translation but the results

presented should be interpreted with caution due to the small sample size.

Keywords: cardiac amyloidosis, left ventricle, model-based markers, classification, strain and stress, shape

analysis, MRI

1. INTRODUCTION

Amyloidosis occurs when proteins that take abnormal forms known as amyloid deposits build
up in the tissues. These deposits are composed of abnormal protein fibers that accumulate more
quickly than they are cleared away, and thus interfere with the structure and function of affected
organs throughout the body. These include the heart, liver, skin, lungs, kidneys, and nervous
system (Gertz et al., 2013). When amyloid fibrils infiltrate in myocardium, the ventricles will show
impaired contraction and relaxation. This is known as cardiac amyloidosis. The most prevalent
forms of cardiac amyloidosis are known as Transthyretin-related (ATTR) and immunoglobulin
light chain (AL) amyloidosis (formerly known as primary amyloidosis). Untreated cardiac amyloid,
particularly the AL type, can be life-threatening, the median survival of patients is half a year from
the onset of heart failure (Grogan et al., 2017).
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The left ventricle (LV) with amyloid becomes firm, rubbery
and stiff, similar to hypertrophic cardiomyopathy (Kholova and
Niessen, 2005). Further, the ventricular wall is thickened (Carroll
et al., 1982; Kholova and Niessen, 2005; Quarta et al.,
2012; Martinez-NaharrO et al., 2018), particularly in the
interventricular septum (Frenzel et al., 1986), but the ventricular
cavity does not dilate much (Kholova and Niessen, 2005). Hence,
the functional defect in amyloidosis is associated to the “stiff
heart” syndrome, with the LV end-diastolic pressure rising to at
least 10 mmHg higher than normal subjects (Chew et al., 1975;
Swanton et al., 1977). As a result, the amyloidosis myocardium
material properties also altered (Petre et al., 2005).

With effective treatments, it is hoped that amyloid deposits
can gradually diminish in patients. However, although various
anti-amyloid drugs are being researched, none has been
introduced into routine clinical practice. A standing challenge
in developing anti-amyloid drugs is the difficulty of reliably
assessing the disease progression non-invasively and within in a
short follow-up duration, because subtle changes inside tissues
with reduced amyloid deposits are not always visible in clinical
images, such as cardiac magnetic resonance (CMR) imaging.

Using Doppler echocardiography, Koyama et al. found that
the early impairment in systolic function of a cardiac amyloidosis
heart can be reflected by changed longitudinal strain and strain
rate (Koyama et al., 2003). Both circumferential and longitudinal
strains are found to be substantially lower in an amyloidosis
LV, compared with a normal, or hypertrophic cardiomyopathy
LV (Sun et al., 2009; Buss et al., 2012). CMR images are used
to diagnose cardiac amyloid with late gadolinium enhancement
(LGE) (Vogelsberg et al., 2008; Liu et al., 2013; Dungu et al.,
2014) or delayed enhancement (White et al., 2014). Based on
CMR basal and apical short-axis images, White et al. showed
that the peak LV twist rate and untwist rates are significantly
lower in patients with cardiac amyloid LV (White et al., 2014).
Nucifora et al. (2014) measured the circumferential strain of 61
amyloidosis patients using tagging CMR and found the peak
circumferential strain could be a potential clinical biomarker.

In previous studies, strain and material stiffness were found
to be associated with cardiac amyloidosis. However, there is
much to be done on understanding the disease progression of
cardiac amyloid. Needless to say, finding a reliable classification
based on suitable biomarkers is crucially important in assessing
the effectiveness of amyloidosis treatments and any clinical
trials for new drugs. Despite major research development of
computational cardiac models, which can provide a rich set of
biomarkers, it is perhaps surprising that very little modeling
effort has focused on cardiac amyloidosis (Chapelle et al., 2015),
and no studies considered the relation to amyloidosis disease
progression.

The aim of this work is to carry out an image-derived
mechanical and statistical modeling approach for LVs with
amyloidosis progression. We systemically checked multiple
factors, including the strains, stresses, p-V curve, LV shape,
and volume of a group of amyloidosis patients before and after
treatment. The biomechanical modeling analysis was blind to the
clinical assessment, and the classification based on the multiple
factors compares favorably with the clinical observation. To

the best of the authors’ knowledge, this is the first time that
cardiac amyloidosis progression has been studied in a combined
mechanical and statistical approach, based on longitudinal
images of real patients during treatments.

2. METHODS

2.1. CMR-Based LV Model Construction
2.1.1. CMR Imaging
The study consists of CMR images from seven cardiac
amyloidosis patients before treatment (baseline) and at 6 or 9
months after the treatment (follow-up). The information of all
patients is in Table 1. Each patient has been clinically classified
as recovery, worsening, and stable (no obvious change). The
assessment was based on the clonal response to chemotherapy
and progression/regression on the extracellular volume. The
biomechanical modeling analysis in this paper is blind to the
clinical assessment and the CMR imaging acquisition, briefly
summarized in Appendix A.1, has been described in detail
elsewhere (Fontana et al., 2015).

2.1.2. Ventricular Model Reconstruction
A prolate spherical coordinate system is used to reconstruct the
LV geometry following the steps in Liu et al. (2009). Short-
axis and long-axis cine images (Figure A1) at a total of 13
time instants in diastole are used to warp the LV geometry.
The LV wall boundaries are manually segmented using an in-
house Matlab code (Gao et al., 2017), and all short-axis LV
wall boundaries are aligned to the images of the horizontal long
axis, the vertical long axis, and the left ventricular outflow tract,
respectively. In order to align the LV geometries along the long-
axis at different times, we first determine the distance between
the most-basal short-axis image and the mitral annulus ring,
denoted as dt at time t. Following this, the most-basal short-
axis image is moved toward the annuls ring along the long
axis with a distance of dt − min(di), (i = 1, ...13, representing
the ith short axis image at diastole). Note that the long axis is
defined by connecting the center of the LV base and the apex.
In order to align the LV geometries circumferentially, the angles
of right ventricular insertion points are defined in the basal plane
(corresponding to the most-basal short-axis image), v1 near the

TABLE 1 | Cardiac amyloidosis patients and treatment details.

Case Age Sex Weight

(kg)

Blood pressure

(mmHg)

Gadolinium

dosage (mL)

Baseline Baseline Baseline Follow-up Baseline Follow-up

1 62 M 110 79/42 96/61 22 17.8

2 55 F 78.9 106/71 131/80 15.8 16

3 54 F 75 115/68 108/71 16.2 15

4 70 M 67.8 94/62 96/61 13.6 13.1

5 65 M 57 111/69 107/71 11.4 12.3

6 59 F 87.8 112/69 129/83 17.6 21

7 72 M 75.4 106/66 108/71 15.1 11.5
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inferior segment, and v2 near the anterior segment, as shown in
Figure 1 at two different time instances. Then, for LV geometries
at different times, the basal plane is aligned by matching the
insertion points at v1, and the same number of elements are
assigned to the septum circumferentially when generating the
layered hexhedron mesh. Figure 2 shows the reconstructed LV
at early-diastole, right after isovolumetric relaxation when the
mitral valve just opens and the ventricular pressure is the lowest,
for all patients both before and after treatment. This choice of
reference configuration has been used in the literature (Genet
et al., 2014; Gao et al., 2017).

A rule-based approach (Potse et al., 2006) is adopted to
generate myofiber structure within the LV wall, with fibers varied
linearly from−60o at the epicardium to 60o at the endocardium,
and the sheet angle from −45o at the epicardium to 45o at
the endocardium (see Figure 3A). Because the reconstructed LV
geometries are fitted to one standard template mesh after long-
axis and circumferential alignment, we may reasonably assume
that elements with the same index from LV models at different
times are co-registered. As shown in Figure 3B, three short-
axis planes are further defined for extracting strains. Within
each selected plane, 20 regions distributed equally along the
circumferential direction are selected to obtain regional-average
strains. In total, 60 circumferential strains are measured from
CMR derived LV models.

Since each LV geometry has the same mesh connectivity, after
co-registration of all LV geometries, a mapping can be established
for every element of the LV geometry at different time frames.
The deformation gradient related to the first time frame (at
early-diastole) can be readily calculated as F =

∂x
∂X , where X

and x are position vectors at the first and later time frames,
respectively. We further obtain the circumferential direction (c)
locally with respect to the long axis, and the transmural direction
(r) pointing from endocardium to epicardium, and then the local
longitudinal direction l = r × c, which follows local geometrical
curvature (Gao et al., 2014a). This enables us to compute the
circumferential and longitudinal strains as Ecc = c·( 12 (F

T
F−I) c)

and Ell = l · ( 12 (F
T
F − I) l), in which I is the identity matrix.

Note the reference state for strain calculation is early-diastole, not
end-diastole which is usually adopted in clinics.

2.2. Personalized Biomechanical LV Model
2.2.1. Constitutive Law
We use the Holzapfel-Ogden strain energy function to describe
myocardial passive properties (Holzapfel and Ogden, 2009),

9 =
a

2b
exp(b(I1 − 3))+

∑

i=f,s

ai

2bi
[exp(bi(max(I4i, 1)− 1)2)− 1]

+
afs

2bfs
[exp(bfsI

2
8fs − 1)] (1)

FIGURE 1 | Definition of right ventricular insertion points at the basal plane in order to align LV geometries circumferentially at different time instances.

FIGURE 2 | Generated LV geometrical models based on the CMR images and their meshes at early-diastole of seven patients in baseline and follow-up scans.
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FIGURE 3 | Schematic illustration of myofiber orientation (A) and selected three layers in the LV wall (B).

where a, b, af, bf, as, bs, afs, bfs are patient-dependent material
parameters, and Ij (j = 1, 4f, 4s) are invariants of the right
Cauchy-Green tensor. A more detailed description of the model
(1) can be found in Holzapfel and Ogden (2009) and its
applications in LV modeling should be referred to Göktepe et al.
(2011), Wang et al. (2013), Gao et al. (2014b), and Wang et al.
(2014). Differentiation of the strain energy function (1) with
respect to the displacements and applying constraints related to
various conservation laws leads to a set of equations that define
the cardiac dynamics. These equations are solved numerically
using finite element discretization, implemented in ABAQUS
software 6.11.

2.2.2. Boundary Conditions
Early-diastole is used as the reference configuration. The
following boundary conditions are applied at the most basal
plane (see Figure 3B),











u
edge
x (t) = uCMR

x (t), u
edge
y (t) = uCMR

y (t),

u
edge
z (t) = 0, on the epicardial edge

ubasez (t) = 0, excluding the epicardial edge

(2)

where u
edge
x , u

edge
y , uCMR

x , uCMR
y are the displacements in the x and

y directions determined from the model and the CMR images at
the epicardial edge in the most basal plane (see Figure 3B).

The diastolic pressure profile is assumed to be linear between
zero at early-diastole (t = 0 s) and PED at end-diastole
(t = 1 s), following (Steendijk et al., 2004). t here is a
pseudo simulation time. The values of PED should be patient-
specific. However, as the pressure measurements are invasive,
this information is not available from in vivo studies. On the
other hand, the literature suggests that all amyloidosis patients
have increased wall thickness and higher pressure compared
with normal subjects (Kholova and Niessen, 2005; Quarta et al.,
2012; Martinez-NaharrO et al., 2018). Hence, we assume PED is
proportional to scaled LV wall volume as follows:

TABLE 2 | Wall volume ratio and estimated end-diastolic pressure of the

amyloidosis patients.

Vwall/vLV PED (mmHg)

Case Baseline Follow-up Baseline Follow-up

1 2.2066 2.4505 17.38 15.65

2 1.5379 1.8881 10.91 13.39

3 2.7021 3.8163 19.17 27.07

4 1.9746 1.6576 14.01 11.76

5 2.2003 2.6155 15.57 18.55

6 3.2463 3.196 23.03 22.67

7 3.5 5.0283 24.83 35.67

PED

PEDm
=

Vwall/VLV

(Vwall/VLV)m
, (3)

where PEDm is the mean end-diastolic pressure, taken to be
19mmHg based on measurements in Plehn et al. (1992) and
Boufidou et al. (2010). Vwall/VLV is the ratio of the LV wall
volume to the LV chamber volume. Its mean value (Vwall/VLV)

m

at early-diastole before treatment is 2.678. The scaled PED for
each patient is listed in Table 2. This range of pressure values
seems to be consistent with clinical observations of amyloidosis
patients (Bhuiyan et al., 2011).

2.2.3. Parameter Inference
For each amyloidosis patient, the material parameters in
Equation (1) are inferred by using an optimization algorithm
through minimizing an objective function (the difference
between the model and imaged-derived P-V curve and
circumferential strains). Sensitivity analysis in our previous
study (Gao et al., 2015) shows the ranking order of the
parameters, from the most significant to the least, is

a > afs > af > bf > b≫ bfs > as ≈ bs. (4)
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This allows us to divide the parameters in Equation (1) into two
groups, the first group includes a, b, af, bf, afs, and the second
group involves as, bs, bfs. The first group may be determined
with higher accuracy than the second group because of the higher
sensitivity to clinical measurements, although this may not be
true all the time as the material model is strongly nonlinear. As
such, a two-step approach is used. In the first step, parameters
of the first group are determined by minimizing the following
objective function with the parameters in the second group
taking the values from Gao et al. (2015) for healthy volunteers
estimated at PEDm = 8 mmHg (as = 0.5426 kPa, bs = 1.5998,
bfs = 3.3900):



























FVE = FV + FE

FV = wv

ntime
∑

i=1
[(VFEA

i − VCMR
i )/VCMR

i ]2

FE =
wE

nlayer nreg

nlayer
∑

k=1

nreg
∑

j=1

ntime
∑

i=1
(ĒccFEA

i,j,k
− ĒccCMR

i,j,k
)2

(5)

where nlayer is the number of layers considered, nlayer = 3
indexed by k; ntime is the number of time steps, ntime =

13 indexed by j; nreg is the number of regions in each layer

considered, nreg = 20 indexed by i; VFEA
i , VCMR

i are the LV
chamber volumes from the FEA and CMR images, respectively;
ĒccFEA

i,j,k
, ĒccCMR

i,j,k
are the mean circumferential strains in 20

regions from the FEA and CMR images, respectively; wv, wE

are the weights. Note we do not include the longitudinal strains
in our objective function because the uncertainty of estimating
longitudinal strains is much larger than the circumferential
strains. This is because the simplified long-axial alignment we
use does not account for the out-of-plane motion along the long
axis. We are unable to quantify the out-of-plane motion due to
the lack of necessary features in cine images. 3D strain imaging
such as tagging allows one to include longitudinal strains (Nikou
et al., 2016) or the displacement fields (Asner et al., 2016) in the
objective function, but it is not used routinely in clinics. It is
for this reason many published studies using in vivo cine images
mainly used measured volume (Genet et al., 2014; Palit et al.,
2018), or regional circumferential strains along with measured
volume in the objective function (Gao et al., 2015).

After obtaining the optimal five constants in the first group,
we proceed to infer all parameters but found as, bs, and bfs are
insensitive to the optimization. Therefore we first focus on the
ratios of parameters: as/afs, af/as, bs/bfs, bf/bs. A range of values
for these ratios can be found from the literature (Gao et al., 2015;
Palit et al., 2018) from which we derive the linear regressions,

{

as/afs = 1.72 af/as − 3.65

bs/bfs = −0.43 bf/bs + 1.61
. (6)

The first equation of (6) shows that as is the only unknown after
the first optimization step,

as =
1

2

[

1.72afs +
√

(3.65 afs)2 + 4× 1.72 afafs
]

. (7)

In the second equation of (6), two unknowns remain, bs bfs. Let
ξ = bf/bfs, we write

{

bs = bf/ξ

bfs =
bf

ξ (1.61−0.43ξ )

. (8)

It is easy to see that ξ ∈ [1.44, 2.96] from data in Gao et al.
(2015) and Palit et al. (2018). Thus in the second step, ξ is
optimized by minimizing the objective function FE in Equation
(5).

The flowchart of the two-step optimization method and
the inferred parameters are given in Appendix A.2. The
uncertainties of these parameters are evaluated using the residual
bootstrap method (Efron and Tibshirani, 1986), as described
in Appendix A.2.

2.3. Shape Analysis and Statistical
Classification
For feature comparison between the amyloidosis patients and
control, we make use of the LV geometries of 26 healthy subjects
from our previous study (Gao et al., 2017). Basic characteristics
for the healthy volunteers are: ages: 45±15, sex (male: female):
15 : 11, systolic blood pressure (mmHg): 145.6 ± 31.4, diastolic
blood pressure (mmHg): 83 ± 15, LV EF(%):57 ± 5, LV end-
diastolic-volume (mL): 126 ± 21, LV end-systolic-volume (mL):
55±14. Geometry reconstruction follows the same procedure
as for the amyloidosis patients (see section 2.1.2). All the LV
geometries are fitted to one template LV mesh, with 5,792
vertices from the endocardial and epicardial surfaces, extracted
from CMR images with the same imaging orientation as shown
in Figure 4 (i.e., the chest wall in the left side of the short-
axis images). Note the vertices inside the ventricular wall are
excluded, and each vertex has three coordinate components.
Thus, a Cartesian coordinate representation lies in the 17,376
dimensional space, necessitating the use of dimensionality
reduction techniques for consideration of the geometry in the
context of classification and data visualization (see Figure 4).

To analyse the LV shape change, we first need to represent
the LV in a low dimensional space. Principal component
analysis (PCA) relies on, successively, finding the principal
directions of variation in the data where the amount of variation
explained by the eigenvectors (principal components) can be
quantified using the corresponding eigenvalues (Bishop, 2006).
If we begin with data in n dimensions, then projecting onto
the first m < n principal components provides us with a
lower dimensional representation of the data while preserving
variations in the data captured by these first m principal
components. By construction, PCA assumes a linear mapping
into the lower dimensional space and constrains the principal
directions of variation to be orthogonal to one another (Shlens,
2014). Similarly, there is an implicit assumption of Gaussianity
since we assume that dependence between data points is
fully specified by the first two moments (mean and variance).
These limitations of PCA can be overcome by considering a
more flexible, non-linear, dimensionality reduction technique.
Methods such as an autoencoding neural network could be
considered however, for sparse data sets, as available in our
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study, parameter tuning will either lead to overfitting, or (if
properly regularized) lose the non-linear model flexibility that
motivated the method in the first place. For visualization
purposes, t-Distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten and Hinton, 2008) provides a non-linear
projection of the data into a lower dimensional space by

FIGURE 4 | The process of data segmentation and dimensionality reduction.

First we segment the outer and inner walls of the LV (A) allowing us to

construct a mesh representation of the LV (C). We then extract the main

variations in a sample of LVs (D) allowing us to represent the geometries in a

lower dimensional space (B).

minimizing a KL divergence between conditional probabilities
of nearest neighbors in both spaces. However, since an explicit
transformation is never learned, the method is limited to only
data visualization. More details of dimensional reduction is given
in Appendix A.3.

For the purpose of classification, we can first consider a
supervised method similar to PCA, namely linear discriminant
analysis (LDA) (Bishop, 2006). Whereas PCA finds the direction
of maximal variation without taking classes into account,
LDA attempts to find a lower dimensional projection for
separation of the two classes (in this case, healthy volunteers
and amyloidosis patients). LDA is restricted by assumptions of
linearity and Gaussianity. To overcome these constraints, we will
also consider a kernel support vector machine (SVM), which
allows for the possibility of non-linear boundaries between the
groups in the dataset by the introduction of a kernel function
(Murphy, 2012).

3. RESULTS

3.1. Analysis of Mechanical Features
3.1.1. Material Parameters
The optimization procedure is given in Appendix A.2, followed
by uncertainty quantification using the bootstrap method. The
inferred material parameters for the seven patients and the
corresponding errors are listed in Table 5, and Tables A2, A3.

However, it is not easy to see the pattern of parameter
changes directly given the potential correlations between these
parameters, and the lack of uniqueness. To assess the mechanical
features, below we analyze the mechanical response of the cardiac
amyloidosis patients during the disease progression using our FE
models with the inferred parameters.

FIGURE 5 | p-V curves of the seven cases in baseline (red) and follow-up (blue), from CMR images (symbols) and FE models (lines).
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3.1.2. p-V Curve
Based on the wall-thickness scaled PED, the p-V curves estimated
from the FE models are shown in Figure 5, which are compared
with the corresponding results when the volume is estimated
directly from CMR images. Figure 5 shows that there are little
changes in the p-V curves of Cases 1, 4, 5, 7 from baseline
to follow-up, but dramatic changes for Cases 2, 3, 6. The end-
diastolic volumes of Cases 3, 5, and 7 increased compared to
the baseline values, suggesting a ventricular dilation, while the

end-diastolic volumes of Cases 1, 2, 4, and 6 decreased, especially
for Case 2.

3.1.3. Stress-Stretch Response
The myocardium stress-stretch response along the myofiber
direction for each patient can now be obtained from a pseudo
uni-axial test of the myocardium using the material parameters
estimated with perfectly aligned myofibers in one direction.
The results are plotted in Figure 6. The stress-stretch curves

FIGURE 6 | The stress-stretch responses of the patients at the baseline (red) and follow-up (blue).

FIGURE 7 | The first principal stress contours at baseline (A,E) and follow-up (B,F). The corresponding (logarithmic) strain contours are shown in (C,D,G,H). (A–D)

are for Case 1, (E–H) are for Case 7. The unit of the stresses is kPa.
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of Cases 1, 2, 4, 5, and 6 in the follow-up are less stiff
than in the baseline, in contrast to Cases 3 and 7. Note that
in Case 6, the difference in the baseline and follow-up is
very small.

3.1.4. 3D Strain and Stress Distribution
Figure 7 shows the first principal strain and stress of two different
patients (Case 1 and Case 7) at baseline and follow-up. Clearly,
the progression is very different in these two subjects. In Case
1, the first principal strain is slightly lower in the follow-up
(Figure 7B) compared to the baseline (Figure 7A), particularly
in the apical region. The strain patterns are somewhat different,
but the maximum strain does not increase in the follow-up
(Figure 7C vs. Figure 7D). However, for Case 7, there is a
dramatic increase in the first principal stress level in the follow-up
(Figure 7E) from the baseline Figure 7F. The strain patterns are
also very different. In terms of the LV shape, not much change
is seen in Case 1, but significant axial elongation is observed
in Case 7.

3.2. Shape Analysis
PCA permits an intuitive representation of the variations in
the data via the modes of variation (See Appendix A.3, top of
Figure A3), obtained by perturbing the mean LV shape along
each of the principal components. For our dataset, mode 1 is
clearly related to overall size of the LV, mode 2 appears to
represent thickness of the LV wall and mode 3 is related to the
horizontal shape. Considering the absence of group indicators
in this method, it is interesting to observe the second mode
of variation, showing that within the dataset one of the largest
sources of LV variation appears to be wall thickness. In the central
plot on the bottom of Figure A3 we see the projection of the
data onto this second principal component where, as expected,
there is some separation of the amyloidosis patients from the
healthy volunteers once we isolate this source of variation. This
separation can also be observed by considering the median
distance (wall thickness) between points on the epicardium and
endocardium of healthy volunteers and amyloidosis patients,
found to be 0.77 and 1.11 cm for healthy volunteers and
amyloidosis patients respectively. Letting wall thickness be taken
as themedian distance between the epicardium and endocardium
walls, we obtain a p < 0.05 for a test of a difference between
median wall thickness of healthy volunteers and amyloidosis
patients using Mood’s median test (these results are consistent
with a t-test and a rank sum test).

Before studying amyloidosis progression prediction, we
perform classification of the seven amyloidosis patients at
baseline compared with a set of 26 healthy volunteers based
on geometries alone, assessing the performance of LDA and
a kernel SVM. Sensitivity (the ratio of the correctly predicted
positive observations to all observations in the positive class) and
specificity (the ratio of correctly predicted negative observations
to all observations in the negative class) scores for these methods,
obtained using a leave-one-out cross validation (LOOCV)
procedure, are given in Table 3 along with an overall accuracy

TABLE 3 | Sensitivity, specificity, and F1 scores for classifying geometries using

LDA and Kernel SVM.

Method LDA Kernel SVM

Specificity 0.92 1

Sensitivity 0.71 0.86

F1 0.71 0.92

quantification obtained using the F1 score:

F1 = 2
TP

2TP + FP + FN
(9)

where TP is number of true positives, FP is number of false
positives and FN is number of false negatives. The F1 score is the
harmonic mean of the precision (the ratio of correctly predicted
positive observations to the total predicted positive observations)
and the recall (also called sensitivity).We use the harmonic rather
than the arithmetic mean to penalize the improvement of one of
the scores at the expense of the other.

Accuracy of both the linear and non-linear methods is
encouraging, suggesting the discriminative properties of the LV
geometry with regards to amyloidosis.

3.3. Classification and Prediction
3.3.1. Selected Markers for Classification
The analysis above shows that no single marker provides a clear
indication for disease progression. A combination of multiple
features must be considered. To this end, we summarize the
representative markers below that may contribute to the growth
and remodeling of myocardium.

1. Vwall/VLV, which reflects the wall thickness change relative to
the ventricular volume. A lower value of Vwall/VLV means the
wall becomes thinner (recovery);

2. Ēcc, the circumferential strain at end-diastole averaged from
the three planes. A larger value of Ēcc indicates that the LV is
more compliant in the circumferential direction (recovery);

3. Ēll, the longitudinal strain at end-diastole averaged from the
three planes. A larger value of Ēll indicates that the LV is more
compliant in the longitudinal direction (recovery);

4. σ̄1, the principal stress at end-diastole averaged from the three
planes. A lower value of σ̄1 means the tissue is less stressed
(recovery);

5. W, work done by pressure during diastolic filling, because it
is not straightforward to compare different p-V curves, we
compare the area-under-the-curve, which is defined as

W =

∫ diastole

0
p dVLV.

A higher value of W in the follow-up means more work
is required to maintain the heart function, corresponding
to worsening.
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6. The average slope f̄ of the stress-stretch curve σ −λ. A steeper
σ − λ in the follow-up indicates the myocardium becomes
stiffer (worsening).

7. Shape features, obvious shape changes compared to control
indicate worsening.

The markers used for follow-up cardiac amyloidosis status
prediction are divided into three classes: (1) geometrical markers
(features 1–3), (2) biomechanical markers (features 4–6), and
(3) LV shape markers (feature 7). Geometrical markers include
normalized LV wall thickness, which has been applied clinically.
Biomechanical markers are discussed in section 3.2.

3.3.2. Shape Classification and Prediction
We first study the amyloidosis patient recovery using shape
features. As we do not know what is a “healthier” shape for LV,
we make use of the control data from our previous study (Gao
et al., 2017). The analysis is conducted by projecting the seven
patients onto LDA components and measuring distances from
the group of healthy volunteers before and after treatment. Pre-
processing with PCA is necessary, removing collinearity and
preventing singularities in the LDA calculations (this is the
result of all meshes being formed by the same base LV mesh).
Figure 8 presents these distances where a negative gradient is
a sign of movement toward healthy volunteers. Only patients
1, 5, 6, and 7 appear to improve as a result of the treatment.
This analysis is performed using leave-one-out-cross-validation
where in each case one amyloidosis patient is left out of the
training set. These movements toward or away from healthy
volunteers provide the shape marker in Table 4 where values of
the six markers in the previous section are also provided. Further
details on computation of the first six markers are provided in
Appendix A.2.

FIGURE 8 | Shape analysis of the amyloidosis patients. This plot was

produced using LDA during an initial analysis of the data, before any patient

recovery labels were known. The y-axis provides a measure of distance from

the group of healthy volunteers and the x-axis provides two timepoints: before

and after treatment.

Now that we have quantified the shape features, we can
summarize the changes of all the markers from our model in
Table 4. The original values of these markers at the baseline and
follow up as well as the uncertainty quantification are provided
in Appendix A.4.

4. DISCUSSION

Using a modeling approach, we have studied the predictive
power of the mechanical and geometric markers with respect
to amyloidosis classification. Of great interest is the relation of
amyloidosis progression with thesemarkers, andwhich ones have
greater predictive power. We find that, due to the complexity of
the LV disease, no single marker can provide the whole picture
of the disease progression. Indeed, as shown in Table 4, some
markers give opposite predictions for the same case. To overcome
this issue, we made use of the recovery score for each patient
based on the predictions of all the markers studied.

Table 5 summarizes the results of predicting recovery of
amyloidosis patients. The recovery score refers to a classification
done based on Table 4, which was found before the patient
labels were made available. The recovery score is obtained as the
proportion of “better” predictions in Table 4. In other words, we
take the number of recovery scores and divide by the total so
if a patient is said to recover by 3 out of 7 markers, then the
recovery score is 3/7. The small sample size here severely limits
significance of these results, but by consulting a committee of
weak classifiers we seek to obtain more conclusive results. All
patients were diagnosed with heart failure and all of them had
NYHA class 2 at presentation. However, some cases (e.g., Case
1) became class 1 after treatment, and others (e.g., case number
7) became class 3 on the second follow up. Hence, the clinical
assessments can bemade. This is used to compare to our recovery
score in Table 4, with a good overall agreement, particularly in
cases (1, 3, 4, 6, 7). Notice that although we have computed
the recovery scores, we do not know the corresponding range
of recovery scores to the clinical statuses (of recovery, stable or
worsening). If we declare all scores above 0.5 correspond to stable
or recovery, then 6 out of 7 predictions are accurate. Case 2 is
predicted wrong, but the score is almost at the boundary.

Despite the encouraging results from the double blind test
shown in Table 5, limitations of our work must be discussed.
This is a proof of concept study in the goal of classifying
disease progression after treatment in amyloidosis patients. Thus,
although the concept of the approach is deemed to be rather
promising, it is important to exercise caution when interpreting
the statistical results presented in this paper, as the lack of data
reduces significance of the statistical analysis, as well as the
dimensionality reduction results.

There are two issues that can impact the stress values we
estimate. The first is that it is known that the eight parameters
in the HO model are coupled and not independent. Therefore,
each parameter may not be uniquely determined. However, it is
not the individual change of the parameters that we look for, but
the collective effects of all the parameters. For example, it has
been shown that the stress-strain curves can be more robustly
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TABLE 4 | Classification for the amyloidosis patients based on various markers.

Marker Vwall/VLV Ēcc Ēll W σ̄1 f̄ Shape

Case (Follow-up − Baseline)/Baseline×100%

1 11.05 10.66 (0.06) −10.72 (0.092) −18.86 (0.05) −18.20 (0.11) −33.86 (0.12) down

2 22.77 25.24 (0.10) −51.86 (0.12) −13.51 (0.03) −38.59 (0.18) −92.69 (0.09) up

3 41.2 −4.77 (0.03) 65.03 (0.16) 168.22 (0.06) 39.79 (0.31) 428.19 (2.26) up

4 −16.05 2.65 (0.10) −10.63 (0.11) −30.70 (0.11) −6.53 (0.07) −40.92 (0.69) up

5 18.87 70.20 (0.18) 7.26 (0.18) 108.82 (0.09) −8.50 (0.07) −93.09 (0.08) down

6 −1.55 −29.86 (0.03) 0.74 (0.06) −14.37 (0.04) 13.36 (0.03) 193.59 (1.52) down

7 43.67 9.33 (0.08) 83.90 (0.14) 154.70 (0.15) 42.12 (0.17) 168.10 (2.45) down

Better: 4,6 1,2,4,5,7 3,5,6,7 1,2,4,6 1,2,4,5 1,2,4,5 1,5,6,7

Worse: 1,2,3,5,7 3,6 1,2,4 3,5,7 3,6,7 3,6,7 2,3,4

The criterion for improvement for the first 6 markers is based on physiology, as described in section 3.3.1. The criterion for improvement for “shape” (last column) is based on the

statistical analysis described in section 3.3.2. The uncertainty intervals for the biomechanical markers (columns 5–7) are obtained from the residual bootstrap analysis described in

Appendix A.2, A.4. Note the sign of the values does not change when taking this uncertainty into account.

TABLE 5 | Model predication vs. clinical assessment.

Patient 1 2 3 4 5 6 7

Recovery

score

0.71 0.57 0.14 0.57 0.71 0.71 0.43

Clinical

assessment

Recovery Worsening Worsening Stable Stable Recovery Worsening

The higher the score, the more likely is the recovery, and vice versa.

estimated despite the inter-correlations of the parameters, as
shown in our previous study (Gao et al., 2015), for different
measurement noise levels or initial values. To quantify the
parameter uncertainty in our paper, we have carried out a
residual bootstrap analysis (Efron and Tibshirani, 1986). Our
uncertainty quantification follows a three-tier approach. At the
bottom tier, we apply the residual bootstrap analysis to estimate
the estimation uncertainty of the biomechanical parameters,
which are defined below Equation (1). The methodological
details are described in Appendix A.2. Note that the bootstrap
analysis takes two effects into consideration: intrinsic uncertainty
as a consequence of measurement noise, and algorithmic
uncertainty as a consequence of potential convergence of the
optimization algorithm to local optima of the objective function.
At the middle tier, we use the bootstrap distributions of the
biomechanical parameter estimates from the bottom tier to
obtain the corresponding distributions of the biomechanical
markers, which were introduced in section 3.3.1. The results
can be found in Appendix A.4. At the highest tier, we use
the uncertainty of the biomechanical markers to determine the
uncertainty of the recovery scores. The methodological details
can be found in Appendix A.4, and the results are in Table 4.

The second issue is the significant assumption we made on the
end-of-diastole pressure for the patients since invasive pressure
measurements are not available. We assumed that there is a
proportional relationship between the pressure and wall volume,
inspired by data from the literature. This assumption increased
the uncertainty of the final stress values we computed. However,

we would like to state that it is not the absolute stress values,
but the relative change (follow up vs. acute), that matters in
our evaluations. Clearly, Table 4 shows that the recovery scores
are not affected by the uncertainty intervals since, within the
interval provided by the uncertainty propagation outlined in
Appendix A.4, the recovery indicator does not change. We
also estimated the recovery scores based on markers from the
image-based strain and shape analysis alone, and found that
the prediction is not as good, in that two cases (1 and 7)
are predicted wrong if we exclude the stresses related markers.
However, we noted that some of the individual scores give
nearly opposite results. For example, in Table 4, two strain and
shape indicators show that case 7 is getting better, but the three
stress and wall thickness indicators show it is getting worse.
Hence, not all indicators give a positive contribution to the
overall score. This highlights the complexity of the pathological
system, and indicates that no single biomarker studied is able to
predict the amyloidosis progression. We tentatively suggest that
competing mechanisms may be in play during patients’ recovery.
For instance, the increased strains (showing recovering) in Case 7
are accompanied by the increased stresses (showing worsening).
This may imply that the more stiffened myocardium over-
weights the benefits of the smaller strains. Therefore, it seems
that multiple markers are required to give a balanced view for
the overall picture. We remark again that our observations need
to be supported by a larger sample size, as with a small sample
size it is difficult to distinguish systematic effects from random
fluctuations.

Other modeling limitations should also be mentioned. In this
paper, amyloidosis LV is regarded as homogeneous material.
The loaded early diastolic configuration is used as the reference
configuration which excludes the effect of residual stresses. Our
alignment of LV geometries at different times is based on a
simplified linear registration approach. Nonlinear methods, such
as deformable registration approaches (Rueckert et al., 1999), the
large deformation deformetric metric mapping (Durrleman et al.,
2014), may provide more accurate geometry co-registrations.
These issues need to be addressed in future work.
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5. CONCLUSION

A proof of concept analysis of cardiac amyloidosis
progression has been obtained by projecting a group of
amyloidosis patients onto linear discriminant analysis
components and measuring distances from the group of
healthy volunteers before and after treatment. Extensive
mechanical, geometrical, and shape markers are included
in the analysis for the first time for cardiac amyloidosis
patients. A promising agreement with clinical observation
is achieved in predicting disease progression following
medical treatments in a double blind test. Although these
results should be interpreted with caution due to a small
sample size, the methodology of using statistical analysis
and multiple markers, in particular the shape analysis, can
play a powerful role in clinical translation in the future
when used in large samples with new and automatic image
segmentation methods.
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