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ABSTRACT
Water demand forecasting is a crucial task in the efficient management of the water supply system. This
paper compares classical and adapted machine learning algorithms used for water usage predictions
including ARIMA, support vector regression, random forests and extremely randomized trees. These
models were enriched with human mobility data to improve the predictive power of water demand
forecasting. Furthermore, a framework for processing mobility data into time-series correlated with water
usage data is proposed. This study uses 51 days of water consumption readings and over 7 million
geolocated mobility records from urban areas. Results show that using human mobility data improves
water demand prediction. The best forecasting algorithm employing a random forest method achieved
90.4% accuracy (measured by the mean absolute percentage error) and is better by 1% than the same
algorithm using only water data, while classic ARIMA approach achieved 90.0%. The Blind (copying)
prediction achieved 85.1% of accuracy.
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1. Introduction

Water consumption prediction has recently become a very active
field of study, as it leads to significant economic and environ-
mental benefits (Brentan et al. 2018). Accurate water demand
prediction ensures a reliable water distribution system and pro-
vides users with water in adequate volumes and reduced but
sufficient pressure. Decreasing water pressure across the net-
work not only improves energy efficiency through lower pump-
ing energy consumption but also reduces the probability of
network failures. Water demand predictions also help to identify
leakages when observed consumption significantly differs from
the forecasted water demand (Herrera et al. 2010). However,
pressure reduction requires detailed knowledge of many water
consumption factors.

There is a number of parameters affecting water consump-
tions such as climate, seasonality, economy, urban design and
demographics (March and Sauri 2009; Wong, Zhang, and Chen
2010). Brentan et al. (2018) focused on water demand time series
generation using a priori knowledge of water demand consump-
tion and weather data such as temperature, precipitation and
humidity. A similar set of exogenous variables was used by Al-
Zahrani and Abo-Monasar (2015) in their study on daily water
demand predictions in Al-Khobar, Saudi Arabia. Effects of includ-
ing weather information were also investigated by Ghiassi,
Zimbra, and Saidane (2008). Babel, Gupta, and Pradhan (2007)
developed a model based on a multidimensional approach,
using socio-economic characteristics, weather data, public
water strategies and policies. Their results indicated that the
demographic indicators, water tariff rate, public education level

and average annual rainfall are significant variables for predic-
tions of domestic water demand. These factors and their spatial
and temporal resolutions have varying significance depending
on the prediction time horizon. There are four common types of
these horizons used for water forecasting (Rinaudo 2015): short-
term forecasting (hours, days, weeks) is used to optimise a water
supplying system; intermediate-term forecasting (1–10 years) is
used for demand predictions that account for change in the
number of consumers; long-term forecasting (20–30 years) is
usually used when major changes in the system need to be
planned, e.g. in desalination plants and for large-capacity inter-
basin transfers.

The most commonly used predictive models for water
demand forecasting comprise autoregressive integrated mov-
ing average (ARIMA) and autoregressive integrated moving
average with exogenous variables (ARIMAX) methods (Braun
et al. 2014; Alvisi, Franchini, and Marinelli 2007). Recent studies,
however, introduce machine learning (ML) solutions, such as
Artificial Neural Networks (ANN), Support Vector Regression
(SVR) and regression trees, which now outperform the classical
methods (Herrera et al. 2010; Tiwari and Adamowski 2017;
Bennett, Stewart, and Beal 2013; Bai et al. 2014; Donkor et al.
2014; Antunes et al. 2018; Xu et al. 2019).

Despite the increasing number of studies on water demand
forecasting using exogenous variables and growing awareness
of the significance of the human factor, most research omits
population behaviour or assumes only the regular patterns
(Wong, Zhang, and Chen 2010; Alvisi, Franchini, and Marinelli
2007; Alcocer-Yamanaka, Tzatchkov, and Arreguin-Cortes
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2012). Since human water consumption accounts for a major
proportion of water demand (Wong, Zhang, and Chen 2010),
ignoring or simplifying this variable may reduce the accuracy of
water demand forecasts. To address this research gap, this
paper aims to study the influence of exogenous variables
related to human mobility on water demand forecasting
using classical and machine learning methods.

Human mobility-related data consist of at least a set of
coordinates and a timestamp, which may be used to recon-
struct human movements and mobility patterns (Barbosa-Filho
et al. 2018). These data are harvested from various sources,
such as mobile phones, wearable cameras or GPS devices and
provide very detailed spatial and temporal information. Human
mobility data have been used in city planning (Barbosa-Filho
et al. 2018), traffic engineering (Toole et al. 2015) and epide-
miology (Bengtsson et al. 2015). To the best of our knowledge,
this research is a first attempt of utilising the innovative geolo-
cated data for public utilities demand forecasting.

The objective of this research is to propose an integrated
approach for short-term water demand forecasting using histor-
ical water consumption data in district metering areas (DMA) and
human mobility data. This study compares the performance of
classical forecasting methods and machine learning approaches
for water demand prediction. The proposed approach is evalu-
ated on five different DMAs in the city of Wroclaw and includes
data processing and aggregating, training the forecasting mod-
els and validation. The merits and limitations of the applied
methods are discussed and directions for further improvement
of prediction accuracy are identified.

2. Materials and methods

The forecasting framework designed for this research is pre-
sented in Figure 1 and it reflects the structure of this section.
The data (historical water consumption readings and mobile
phone data records) are stored and spatiotemporally inte-
grated into a database. The developed model connects to the
database to get the data required for the chosen time of pre-
diction. The data are then automatically processed and fed into
the training, testing and evaluation step. At the same time, one
of the forecasting methods described in Section 2.3 is tuned in
an automated process to achieve the best possible model
performance. Finally, the forecasted time-series are produced.

2.1. Study area

The study site is located in Wroclaw, the fourth largest city in
Poland with a population of approximately 628,600 inhabitants,
covering an area of nearly 293 km2. The water is supplied to
99% of citizens from two main water treatment plants. The
distribution network is characterized by a great variance in
age and material which results in over 10% losses (Fialkiewicz
et al. 2018). Annual energy consumption by the water supply
system accounts for 19 GWh. Total Wroclaw’s annual water
consumption in 2018 was 48.7 hm3. Water consumption data
used in this project were shared by local water infrastructure
manager MPWiK S.A. in a form of ten-minute readings of water
consumption in the DMAs.

Mobile phone data were purchased from mobile marketing
company Selectivv that scans over 200,000 mobile applications
to harvest information about mobile phones location. These
data are gathered at the time when the mobile app storing
location history was on the list of active applications or was
running as a background process. The database consists of
7,133,087 geolocated data records with information for every
record about event registration time (timestamp), application
name, device location and in some cases also user ID.

The historical water consumption readings andmobile phone
data records cover a time range of 51 days, from 21st of January
(Sunday) to 12th of March 2018 (Monday) (for the dataset plots
see Appendix A). Due to low temperatures within the selected
periodwater consumption correspondsmostly to in-housewater
usage observed in winter. There are twenty-eight DMAs in
Wroclaw that cover 51% of the entire city area. However,
a considerable part of the city is still unmetered and therefore,
any uncontrolled change in daily water demand hinders the
management of water supply system. This study analyses five
DMAs – labelled 10, 14_Z, 23, 24_Z, 32 which correspond to 34%
of the total city hydraulic sectors area (Figure 2). The selected
DMAs differ from each other by the predominant function of the
buildings. Sectors 10, 14_Z and 32 are typical residential areas
with around 80% of residential housing and less than 4% of
industrial buildings. DMA 24_Z stands out with the highest
percentage of the buildings with an industrial function which is
23% with only 45% of residential areas. Whereas, sector 23
accounts for a moderate percentage of residential and industrial
areas. Consequently, population density also varies, ranging from
~3 000 inhabitants per km2 in DMA 10 to less than 1000 inhabi-
tants per km2 in DMA 24_Z. The number of geolocated data
records in each DMA is higher in residential areas (DMA 32: 30%,
DMA 14_Z: 22%, DMA 10: 20% of the data) than in industrial and
mixed sectors (DMA 24_Z: 17%, DMA 23: 10%).

The diversity of the predominant function of DMAs is
reflected in the water consumption characteristics and week
cyclicity. In residential and mixed sectors, increased water con-
sumption can be observed in the mornings and the evenings of
each day. While in the industrial sector, consumption is much
more irregular and reduces significantly during the weekend
(21.01.2018 – Sunday, 28.01.2018 – Saturday).

2.2. Data preprocessing

To ensure maximum efficiency in data processing,
a spatiotemporal database was created using the open-source
database software PostgreSQL and its extensions: PostGIS for
spatial data and TimescaleDB for time-series. All the data have
to be transformed and loaded into a database predefined
structure. This has to be done manually. Therefore, the model
is independent of the structure of provided data. Furthermore,
the data are aggregated spatially into DMAs and temporally to
one-hour bins. If provided data (either water consumption or
mobility data) have lower temporal resolution it can be aggre-
gated to the larger bins. Similarly, if an infrastructure manager
provides different spatial segmentation (i.e. DMAs), then the
data are aggregated to the provided areas. The datasets used in
this study were thoroughly tested for their reliability, represen-
tativeness and consistency.
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To correct the water consumption data, erroneous readings
were eliminated and the time series were examined for continu-
ity. Outliers were removed using the interquartile range rule. In
this method interquartile range (IQR) is the difference between
the third (Q3) and first quartile (Q1). Every value lower than Q1 –
1.5 x IQR and higher than Q3 + 1.5 x IQR was eliminated. As
a result, in sectors 10, 14_Z, 23, 24_Z and 32 the percentage of
eliminated readings was respectively: 0,1%, 0,8%, 1,1%, 6,7% and
10,3% of the available data. The main reason for the elimination
was a meter failure resulting in empty consumption readings,
which accounted for over 95% of the rejected records. The
remaining 5% were erroneous readings, i.e. those with negative
values and outliers. After the initial filtrations, data continuity
tests were carried out to identify and describe the length and
density of time series gaps. Based on time series continuity
charts, 51 days (from 21st of January to 12th of March 2018)
were selected for the study, during which the gap in the data on
water consumption did not exceed 1 hour.

The mobile phone data did not show any significant outliers,
therefore, to prevent information loss, the geolocated data
were not pre-processed but loaded into the database in a raw
format. After loading and filtration, the data were spatially
linked to the corresponding DMAs.

2.3. Forecasting models

Over the last decade, machine learning algorithms were found
being superior to other statistical methods as they are
highly capable of handling nonlinear and imprecise data
(Ghalehkhondabi et al. 2017; Herrera et al. 2010). Furthermore,
machine learning algorithms architecture can be easily adjusted
to employ multi-source data in a prediction task. This work
compares a few popular machine learning regression methods
(Support Vector Regression (SVR) and ensemble tree-based
methods) with ARIMA and ARIMAX models. As a simulation of
lower bound of predictability, a Blind approach is employed.

Figure 1. Scheme of water demand forecasting process.
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2.3.1. ARIMA
Auto-regressive integrated moving average model (ARIMA)
(Box et al. 2015) is a classical forecasting model which combines
auto-regressive (AR) and moving average (MA) components
with additional time-series differencing (I). ARIMA is defined
as follows:

ϕp Bð Þðt � BÞdXt ¼ θq Bð Þat (1)

where ϕ and θ are coefficients related to the AR and MA
components respectively, estimated during a model fitting
step. The Xt are the time-series elements at the time t and
a are the residuals, B is a backshift expression used to denote
previous elements or coefficients (named lags), hence
Bq ¼ Xt�q. ARIMA orders (parameters) p and q determine the
number of previous lag observations taken into consideration
when estimating model coefficients for AR and MA compo-
nents and d is a number of differencing transformations, that
is an order of lag subtracted from current element Xt .

Performance of a forecasting model can be improved by
using additional information related to a predicted series. Such
data are referred to as exogenous variables. ARIMA can be
extended by adding such variables to the model. If we denote
external k inputs as xtk, then ARIMAX p; d; qð Þ is defined as:

ϕp Bð Þðt � BÞdXt¼ θq Bð ÞaEt þ
Xk

i¼1
ηχi (2)

where η are the coefficients of external inputs estimated at
a model fitting step.

ARIMA and ARIMAXmodels have been used for decades and
valued for their accuracy (Braun et al. 2014; Alvisi, Franchini,
and Marinelli 2007). Various extensions of the models were
proposed, one of which are SARIMA (seasonal ARIMA) models
that account for seasonal effects approximated from the past
data, improving their accuracy in long-term forecasting.
Despite a large number of studies showing the superiority of
machine learning based methods over these models, some
studies show that ARIMA and ARIMAX models are still more

accurate in long-term predictions than machine learning meth-
ods (Ghalehkhondabi et al. 2017).

2.3.2. Support vector machines
Support Vector Machines (SVMs) (Cortes and Vapnik 1995) are
supervised machine learning methods. Support Vector
Regression is the adoption of SVMs for regression problems.
The idea of SVR is to fit a p-1 dimensional hyperplane to
a given set of points in p dimensional space by minimising the
loss function, which ignores errors yielded by points lying within
a margin of tolerance (defined by the ε value). To support non-
linear regression problems, the kernel function is used to trans-
form the data into a higher dimensional feature space where
a linear regression can be performed. In comparison to tradi-
tional regression procedures, SVR attempts to minimize the pre-
diction error bound to achieve generalized performance, instead
of minimizing the observed training error. Over the last decade,
a lot of research has been done to improve the SVR in water
demand predicting task, finding it resistant to overfitting and
having a lower error on previously unseen data, which is impor-
tant for the noisy water consumption data (Ghalehkhondabi
et al. 2017). The limitation of SVR is that the algorithm perfor-
mance is vulnerable to parameters choice. In order to overcome
this problem hybrid SVR with externally determined parameters
can be implemented (Bai et al. 2014).

2.3.3. Tree-based ensemble methods
This is a class of supervised learning algorithms based on a tree
structure, which can be used for regression problems. In ensemble
methods, during the tree fitting process, a large collection of trees
is constructed. Then, the result is computed as an average from
the results of each tree. With the ability to model nonlinear
relationships and resistance to overfitting, tree-based ensemble
methods were applied for water demand forecasting producing
better results than other machine learning algorithms (Chen et al.
2017; Herrera et al. 2010; Tyralis, Papacharalampous, and
Langousis 2019). Furthermore, the tree-based ensemble methods

Figure 2. Map of DMA sectors. Sectors included in this study are marked with turquoise colour.
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can effectively handle small sample sizes, which is important in the
case of limited data availability. Among the significant limitations
of this group of methods is their inability to extrapolate outside
the range of a training sample (Tyralis, Papacharalampous, and
Langousis 2019).

Random forests (RF) (Breiman 2001) learn a set of trees, where
the training algorithm applies bootstrap aggregation (also known
as bagging) to each learner which means that each new tree is
constructed using randomly selected chunk of the data. In RF,
a decision of the best node split, whichminimises an internal error
criterion, is made using a random subsample from an already
selected fragment of a learning set. This leads to the creation of
a series of uncorrelated trees, which individually are weak predic-
tors. Then, a new sample is run through each of the trained trees.
Because of a random characteristic of data subsample selection
some data are not used to construct trees. These samples create
an ‘out-of-bag’ dataset, which is used to evaluate the model and
rebuild it with tuned parameters if needed. This procedure yields
better results and prevents model overfitting.

Extremely randomized trees, called also Extra-Trees (ET)
(Geurts, Ernst, and Wehenkel 2006) are also based on the bag-
ging approach. The difference is that the whole dataset is used
to train trees and a random selection of samples is applied at
the node-splitting step, where a cutting point is selected at
random from selected features. The node-splitting process
stops only when the output is constant or the number of
elements is lower than the selected value. From the bias-
variance point of view, the strongly randomized approach
reduces variance better than other algorithms, while using
the whole sample for each tree construction minimises its bias.

2.3.4. Blind approach
The Blind approach is used to determine the lower bound of
predictability and as a reference for any other algorithm. It is
defined as:

Xt ¼ Xt�168h: (3)

where Xt is the predicted water demand at time t and Xt�168h is
the reading from exactly one week earlier.

2.4. Model validation

The results were evaluated using commonly known assessment
methods. As a prediction accuracy measures, a mean absolute
percentage error measure (MAPE), root mean squared error
(RMSE) and Nash-Sutcliffe index of efficiency (EI) were used. If
we denote n as a number of compared values, yi as the original
value of water consumption from the test or validation set, ŷi as
the water demand prediction and y as the mean value of the

observations, then the measures are defined as follows (Donkor
et al. 2014):

MAPE ¼ 100%
n

Xn

i¼1

yi � ŷij j
yij j ; (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � ŷiÞ2

r
; (5)

EI ¼ 1�
Pn

i¼1 ðyi � ŷiÞ2Pn
i¼1 ðyi � yÞ2 ; (6)

The MAPE expresses a relative error which is comparable
between different time-series. When it equals zero, then the
prediction is identical to real water usage. The RMSE is sensitive
to outliers and when equals to zero, the model fit data per-
fectly. It cannot be compared between time-series as it is not
normalised. The EI expresses the goodness of fit of a model and
is more sensitive to systematic errors (Herrera et al. 2010). The EI
can range from -∞ to 1 inclusively. When EI = 1 the model
perfectly fits the data.

The mean squared error (MSE) and mean absolute error
(MAE) metrics were used as a split evaluation criterion in tree-
based models. These are defined as:

MSE ¼ 1
n

Xn

i¼1
ðyi � ŷiÞ2; (7)

MSE ¼ 1
n

Xn

i¼1
yi � ŷij j; (8)

We use the autocorrelation function (ACF) and the partial auto-
correlation function (PACF) for an initial determination of
ARIMA and ARIMAX orders and validation of results.
Autocorrelation is defined as the correlation between an ele-
ment of a signal with its lag. Therefore, the autocorrelation of n
lag is a correlation between elements Xt and Xt�n. Partial auto-
correlation is a correlation between a signal with its own lagged
values, where linear dependence for shorter lags are removed.

ARIMA and ARIMAX orders were selected using Akaike’s
Information Criterion (AIC) which is a commonly used measure
for classical forecastingmodels (Anele et al. 2017). It is defined as:

AIC ¼ 2n� 2nll; (9)

where n is a number of estimated parameters in the model and
nll is a log-likelihood function for the model. It is the metric of
relative model quality on the same set of data. The model with
the lowest value of AIC is considered the best.

2.5. Data processing

The pre-processed water use readings and mobile phone data
are integrated into a database andmust undergo further proces-
sing to improve the quality and structure of the data to more
accurately predict urban water use. Each prediction is made
using the period of 21-days of the data selected from the
whole dataset.

2.5.1. Water consumption data processing
The filtered and pre-processed water consumption data are
analysed to identify potential trends and week cyclicity effects
which help to select the best parameters for forecasting mod-
els. To adjust to the temporal resolution of the mobile phone
data, ten-minute readings are summed into one-hour periods.
Any data gaps are identified and filled with the closest present
reading from the same hour and day of a week.
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2.5.2. Geolocated data processing
In order to use geolocated data as an exogenous predictor,
transformation into time-series is required. As the mobile
phone data are loaded into the database in a raw format,
depending on the application, data may require selective filtra-
tion. For example, some mobile applications are programmed
to automatically record a person’s mobile phone position at
midnight and, as this is not a common time for water consump-
tion activity, these records are removed from the database.
After filtering out useless records, the data are aggregated
into one-hour bins for each DMA in the study area, where the
total number of records per DMA is counted. This operation
creates a time-series for each of the DMAs.

2.5.3. Data split
The water consumption and the processed geolocated data are
merged and split into two datasets: 14 days of learning and
testing sets and 7 days of validation data (66.7% and 33.3%
respectively). The learning and testing data are taken together
and shuffled during the 3-fold cross-validation process for
model parameters tuning (Section 2.6), while the validation
dataset is used only once at the end of the forecasting process.

N-fold cross-validation divides data n-times into learning
and testing sets, which are used to train and evaluate tested
models. This approach allows to achieve more reliable results
through multiple repetitions of the learning-testing process
and to detect overfitting at an early stage. Due to its individual
time-series characteristics, the modified cross-validation pro-
cess is implemented for this work. The previously pre-selected
days are split using a moving time window which randomly
selects a starting point at least two weeks before the last date in
the training and testing dataset. The cross-validation results are
calculated as an average from the test scores of each fold.

2.5.4. Raising data correlation
A high correlation between the geolocated data and water
consumption time-series indicates their similarity. Therefore,
the exogenous variable would potentially improve the forecast-
ing accuracy if that variable is highly correlated with the pre-
dicted series. To maximise series correlation, the mobility data
need to be processed each time when prediction has to be
done. First, due to the temporal sparsity of the data, records
from the whole training period are accumulated and averaged
with respect to the days of the week. This creates a pattern of
a ‘typical week’ for each of the studied DMAs. After that, the
geolocated series is controlled by two parameters named
decay and offset. The former informs how long a single record
is accounted for, that is, if a mobile phone logs at a specific
time, for non-zero decay values it will be still considered to be
in an area for the determined period. The offset parameter
shifts the geolocated series by a given value, so if the applica-
tion creates a log just before a person arrives home, that would
align mobile phone records with the water demand series
(Figure 3(a)). These parameters are selected individually for
each DMA during the model training phase through the
exhaustive procedure. Parameters are learned only using the
training data but are applied further throughout testing and
validation phases. For each value of decay parameter, the offset
that maximises the correlation of the geolocated series and the

water consumption series is determined by the convolution of
their Fourier transforms. The inverse Fourier transform is con-
sidered to be equal to the calculation of correlation of these
series for every possible offset parameter. The combination of
these two parameters with the highest series correlation value
is selected. This procedure allows raising the correlation level to
a range of 40% – 75%. (Figure 3(b)) and increase computational
efficiency.

2.6. Model parameters selection

Each tested algorithm has its unique parameters determining
its behaviour. Before training, the model automatically searches
for the best parameters’ combination for a current prediction.
This is done by a searching algorithm which uses a predefined
set of parameters to fit the model and selects the combination
of these parameters giving the lowest error. The best para-
meters’ combination is then used to validate the model.
Results from the validation are presented in Section 3.

2.6.1. ARIMA and ARIMAX model tuning
First, predefined set of ARIMA and ARIMAX orders p (from 1
to 5), d (from 0 to 2), and q (from 1 to 5) is determined using
ACF and PACF functions. Next, every possible combination of
these parameters is tested by an exhaustive grid search algo-
rithm which fits model to the training and testing data. The
model with the lowest value of AIC is selected.

In classical approaches, cyclicity has to be determined expli-
citly for the algorithm. The seasonal pattern is modelled by the
spline basis function (De Boor 1978) using current training set
and is given as an exogenous variable. This approach captures
the cyclicity of the data a priori and does not raise the complex-
ity of the calculations.

2.6.2. Machine learning methods tuning
The tested ML methods’ initial parameters (called hyperpara-
meters) have to be set up before running the algorithm and can
significantly affect a model’s performance. For each of the
algorithms, the best performing combination is selected using
a random search and a training and testing dataset with 3-fold
cross validation applied. It works similarly to the grid search
method (2.6.1) but only n random combinations are selected. In
this case, 100 combinations are tested every time.

Tree-based models are tested for a number of trained trees
(from 10 to 1000) and a type of split evaluation criterion (MSE or
MAE). The SVR model is tested for various types of kernels
(linear, sigmoid, radial basis function, polynomial), various epsi-
lon values (from 10−4 to 10) and a penalty parameter C (from
10−3 to 20). The epsilon value determines the threshold of an
acceptable error where no penalty is given during the training
process. The penalty parameter is used to control the trade-off
between bias and overfit.

The machine learning methods were adapted for time-series
forecasting, which required creating internal and external lag
parameters. These lags define how many previous records
(hours) from the data are considered at each prediction step.
Internal lag determines the number of water demand readings
considered and external lag controls the number of geolocated
data records fed into the model.
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Experimental calculations showed that MAPE drops for 24
and again for 168 lags, which is the length of a day and a week
(in hours), respectively. The value of 168 lags is used for every
prediction. After setting the number of internal lags, the same
test is run for a number of external lags. However, for that
parameter, the prediction accuracy does not vary significantly,
since the external data are provided in real-time. Hence, 5 lags
for geolocated data were used as it guarantees robustness for
missing data in most cases and is low enough not to raise the
complexity of calculations.

3. Results and discussion

Due to the heuristic nature of machine learning algorithms, it is
important to ensure the multiple validation of the models on
various time ranges. Experimental results were calculated in
a validation process which was repeated 30 times, each time
selecting 21 consecutive days of data from the whole study
period of 51 days with a 24-hours step. Finally, errors were
averaged from all the validation cases. For each method, differ-
ent variants of fed data were calculated. The results for 7-days
and 24-hours forecasts are presented in Tables 1 and 2 (for the
separate results for each DMA see Appendix B). W indicates
that historical water consumption data were used. The geolo-
cated data are abbreviated as G. If a decay parameter was
applied it is denoted as D and if time-series where shifted by

an offset parameter it is denoted as O. Hence, when geolocated
data were processed by decay and offset parameter it is abbre-
viated as G(D,O) and when data were not processed it is
denoted as G. The geolocated data modified using only the
offset parameter is denoted as G(O).

3.1. Weekly forecasts

Table 1 shows that the Blind prediction method, for a weekly
forecast, has an accuracy (measured as 1 – MAPE) of almost
85%, which means that most of the long-term trends in the
water demand are rather cyclic-based than week-based.
Therefore, all the methods that contain cyclic-signal will be
correct. Comparing all the other methods to the Blind approach
reveals that the gained improvements are on the level of 20%
for EI, 40% RMSE and up to 35% for MAPE.

Following this major notion that the cyclic variation plays
a central role in water demand signal it is also clear to observe
that classical autoregressive prediction methods such as ARIMA
and ARIMAX provide second best predictions and are insensi-
tive, i.e. they do not take any advantage of exogenous variable –
geolocated data. It looks as the impact of such data contains
too scattered, non-seasonal signal that is difficult to model
using polynomials (Equation (2)).

The sole use of geolocation data (G in Table 1) provides less
predictive accuracy than any other tested data source (Blind

Figure 3. Correlation of geolocated data and water usage time-series in DMA 24_Z: (a) series comparison after applying offset and decay parameters. (b) correlation
depending on the decay parameter for each DMA. Depicted correlations are calculated for the best offset parameter.
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approach in terms of MAPE). It is, however, providing an advan-
tage when looking into the RMSE and EI parameters. These
results show that the seasonal variation in the geolocation
data were not pertaine, but a short term scatter would be
well represented.

If one would like to compare machine learning methods (ET,
RF, SVR) applied with or without geolocation data, it is clear
that these data slightly change forecasts and the most success-
ful uptake of such data improves forecasts by 1.4%. Moreover,
increase in correlation between G and W time series as shown
in the section 2.5.2. is not always improving forecasting skills of
the algorithms (see Table 1 e.g. RF RMSE W + G vs W + G(D,O)).

3.2. 24-hours forecasts

Results in Table 2 show that for a 24-hours prediction the Blind
method provides better estimates of the water demand than
the one based on geolocation data only (G), but interestingly it
also outperforms in all cases of ARIMA/ARIMAX approach. The
other results shown in Table 2 are consistent with these pre-
sented in Table 1. Random forest approach works best based
on all three statistics and adding geolocation data is improving
solution only by a single percentage. It might suggest that for
a shorter forecast horizon the cyclical term is less determining
than for longer forecasts, hence the machine learning
approaches (ET, RF, SVR) work better than standard predictive
models and the Blind method.

3.3. Classical and machine learning water demand
prediction methods

Results in Tables 1 and 2 indicate that the RF proved to be the
best performing method for all the DMAs which is consistent
with the results presented by Antunes et al. (2018). Yet, their
analyses use a set of additional input features such as tempera-
ture and rain occurrences, which may cause different and incom-
parable results. Errors yielded by ARIMA/ARIMAX and ET
algorithms are very similar to each other and 0.5% higher on
average than the RF results. In accordance with Antunes et al.
(2018) and Xu et al. (2019), the SVR algorithm performs worse
than othermodels. Its performance results are similar to the Blind
method. Also, Ghalehkhondabi et al. (2017) in the review paper
point out that the machine learning (named soft computing
methods) are outperforming classical multilinear regression,
multiple non-linear regression and ARIMA methods. Literature
review (Braun et al. 2014; Chen et al. 2017; Antunes et al. 2018)
offers usually a comparison of shorter forecasts: daily water
demand/use (one value per day) or sub-daily prediction (24
values per day). In these studies SVR (Braun et al. 2014) is out-
performing SARIMA by 1% (1-sigma) and 4% (2-sigma) (mea-
sured as a percentile relative error). Antunes et al. (2018)
present a comparison of models where ARIMA is outperformed
by RF and ANN by 50% in terms of MAPE and 5% of RMSE. In
another study (Adamowski et al. 2012) RMSE of ARIMA is two
times higher than the best performing ANN method. It has to be
mentioned that the weekly forecast is not usually validated

Table 1. Calculated average MAPE, RMSE and EI for 7-days ahead forecast for all the DMAs with respect to the methods and variants.

Measure Method W W + G W + G(D,O) W + G(O) G

MAPE [%] ET 10,044 10,071 10,056 10,075 19,891
RF 9,611 9,558 9,601 9,601 17,769
SVR 14,232 14,065 14,146 14,187 39,166
ARIMA/ARIMAX 9,969 9,969 9,969 9,969 -
Blind 14,934 - - - -

RMSE [m3/h] ET 3,476 3,474 3,480 3,479 5,271
RF 3,369 3,355 3,368 3,366 5,098
SVR 4,509 4,447 4,380 4,433 8,637
ARIMA/ARIMAX 3,523 3,523 3,523 3,523 -
Blind 5,798 - - - -

EI [-] ET 0,886 0,885 0,885 0,885 0,753
RF 0,888 0,889 0,888 0,888 0,764
SVR 0,809 0,813 0,813 0,813 0,361
ARIMA/ARIMAX 0,863 0,863 0,863 0,863 -
Blind 0,688 - - - -

Table 2. Calculated average MAPE, RMSE and EI MAPE for 24-hours ahead forecast for all the DMAs with respect to the methods and variants.

Measure Method W W + G W + G(D,O) W + G(O) G

MAPE [%] ET 10,963 11,036 11,060 11,040 31,679
RF 9,612 9,529 9,637 9,623 27,327
SVR 14,674 14,985 15,232 15,184 43,950
ARIMA/ARIMAX 16,327 16,327 16,327 16,327 -
Blind 16,126 - - - -

RMSE [m3/h] ET 3,371 3,381 3,391 3,388 7,523
RF 3,040 3,030 3,057 3,046 7,144
SVR 4,374 4,395 4,365 4,425 9,461
ARIMA/ARIMAX 5,251 5,251 5,251 5,251 -
Blind 5,176 - - - -

EI [-] ET 0,881 0,880 0,880 0,879 0,460
RF 0,898 0,898 0,896 0,897 0,493
SVR 0,811 0,801 0,788 0,794 0,185
ARIMA/ARIMAX 0,669 0,669 0,669 0,669 -
Blind 0,685 - - - -
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against the reference data (House-Peters and Chang 2011) but
such studies are suggested (Ghalehkhondabi et al. 2017).

3.4. Autocorrelation function analysis

Additionally, the analysis of an ACF function on residuals was
performed. In general, lower autocorrelation means that cyclic
patterns and time-dependent relations have been captured
and reproduced accurately. This usually leads to higher accu-
racy of predictions. The degree of residuals’ autocorrelation is
expressed as an averaged share of statistically significant cor-
relation values. It is presented in Table 3 for 7-days and 24-
hours forecasts.

Table 3 shows that the average share of significant cor-
relation values for both forecasting horizons is the lowest
for the ARIMA/ARIMAX method which indicates that this
method captures time-dependent relations best, despite
the fact it is not the best performing one. This can be
caused by the explicit modelling of the cyclic pattern in
this method. The tree-based ensemble approaches have
a slightly higher share of significant correlations in ACF
function than ARIMA/ARIMAX approach, with RF approach
being the best ML method, which is consistent with the
presented prediction errors (Tables 1 and 2). On the other
hand, SVR performed the worst of all methods, including
Blind approach, demonstrating the inability of this approach
to effectively model cyclic patterns in the data. In a shorter
forecasting horizon all the ML methods are performing
worse than for 7-days ahead prediction, while classical
approach has the same amount of statistically significant
correlation values in the ACF function.

Importantly, when geolocation data were applied along
with W time series in the ML methods, the average share of
significant correlation values drops slightly (up to 3%) with
the W + G(D, O) combination providing the largest
decrease. Presumably, the geolocation data helps model
dynamic fluctuations of cyclic patterns generated through
an alternation of the human factor in water consumption.
The ARIMA/ARIMAX methods were not affected by the geo-
location data, therefore it does not influence the ACF func-
tion of residuals.

3.5. Geolocated data application

The forecasts based only on the geolocation data are not captur-
ing time-dependent relations, leading to worse performance.
However, if it was possible to model cyclic patterns a priori it
may significantly improve the effectiveness of this method.

Results presented in Tables 1–3 show that adding geolocated
data as exogenous variable slightly improves the accuracy of ML
methods and has the largest impact for the longer forecast hor-
izon. Moreover, adding geolocation data reduces the number of
significant correlation values in the ACF function of residuals. For
the best performing method, the average MAPE improves by
over 0.9%.

The implication of improved 24-hours predictions on water
supplying system has the potential to reduce energy costs. It was
shown that using accurate water demand forecasting in energy
optimization of the water pumping system can reduce energy
consumption for about 39.4% (Bouach and Benmamar 2019).

In comparison to other studies that used exogenous variables
for water demand prediction, the accuracy gains are similar. Many
water demand predictionmodels incorporateweather variables as
an exogenous data as it has a large impact on prediction accuracy.
Antunes et al. (2018) used temperature and rain information to
predict water demand, achieving 0.25% MAPE improvement in
the best case but at the same time they noted an increase of
RMSE. Ghiassi, Zimbra, and Saidane (2008) improved MAPE of
hourly forecasting model by 0.35% through adding weather infor-
mation to the prediction. Al-Zahrani and Abo-Monasar (2015) did
not provide a direct evaluation of the impact of adding weather
information to prediction but they found MAPE to be varying by
0.71% depending on the types of variables used.

The geolocated data from mobile applications used in this
study proved to be a useful addition for improved accuracy.
Hence, to improve the model performance further, other more
accurate humanmobility data such as Call Detail Records and/or
GPS data would have to be used. Future research will focus on
more sophisticated utilisation of geolocated data and possible
accuracy improvements. For instance, it is possible to classify
geolocated data into trips and stops and to infer a purpose of
a particular trip (Siła-Nowicka et al. 2016) and then link it to an
individual water usage profile, which may result in a better
performance of forecasting models. Incorporating other datasets
such as weather conditions or land use data could further
improve model accuracy (Stańczyk et al. 2018; Ghiassi, Zimbra,
and Saidane 2008; Al-Zahrani and Abo-Monasar 2015).

4. Conclusions

The most important factor for a reliable and efficient water
distribution system is providing an adequate volume of water
at a reasonable pressure to its users. Therefore, short-term
water demand forecasting is a crucial task in efficient water
supply system planning and management.

This research studied the relationships between humanmobi-
lity-related data and information about approximate forecasted
water demand. The experiment was conducted on data from the
city of Wroclaw in Poland during winter, a time of in-house water
usage. The selected DMAs have mixed characteristics: the DMA
10, 14_Z and 32 are predominantly residential, DMA 24_Z is an

Table 3. Averaged share of significant correlation values in the autocorrelation
function for 7-days and 24-hours ahead forecasts for all the DMAs with respect to
the methods and variants.

Method W W + G W + G(D,O) W + G(O) G

7-days forecast
ET 2,92 2,90 2,87 2,93 3,87
RF 2,82 2,78 2,74 2,79 3,43
SVR 3,34 3,36 3,31 3,29 6,19
ARIMA/ARIMAX 2,45 2,45 2,45 2,45 -
Blind 3,19 - - - -

24-hours forecast
ET 2,97 2,91 2,93 2,96 3,91
RF 2,86 2,82 2,80 2,79 3,47
SVR 3,38 3,39 3,38 3,30 6,22
ARIMA/ARIMAX 2,45 2,45 2,45 2,45 -
Blind 3,21 - - - -
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industrial area and DMA 23 is a mixed residential-industrial area.
The proposed approach is the first application of humanmobility
data in water demand prediction models. It also evaluates the
ability of predicting water demands using only human mobility
data, which may be a promising opportunity for water infrastruc-
ture managers who cannot afford to install meters on their net-
work. With that, they still may be able to predict hourly urban
water demand.

In this paper, the performance of classical and machine learn-
ing algorithms was compared. The selected methods were
ARIMA, SVR, RF, ET and the Blind approach. The paper proposes
a forecasting framework and describes the full workflow, starting
with data cleaning and filtering, through geolocated and water
demand data processing, to model training, tuning and evalua-
tion. All of the tests were carried out with 3-fold cross-validation,
using a different training and testing sample each time and
validating the trained model once on the validation set.

The best performing algorithm was RF, reaching 90.4% pre-
diction accuracy at an average for one-week ahead forecast. ET,
which are also a tree-based algorithm, and classical regression
methods had a slightly higher prediction error (4% on average).
SVR performed worse than other methods and only slightly
better than the blind approach. It was found that the autocor-
relation of residuals was best minimised by the tree-based
methods when exogenous data were used. Importantly, it
was found that when human mobility data were incorporated
into the model, statistical errors were lower and residuals were
less correlated. It was also shown that the moderate (over 50%)
correlation of the geolocated time-series and water demand
data could be achieved through the introduction of decay and
offset parameters, used for the human mobility data modifica-
tion, which opens up the potential to use it as a water use
predictor in the future. The future smart water supply manage-
ment system could include a short-term prediction based on
people mobility to locally adjust the pressure in the area where
the large relocation of users is predicted or detected.
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