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Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological
conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis.
However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe
suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the
complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of
osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the
positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate
targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact
to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper
strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders.

1. Introduction

Bone is a dynamic organ that continuously remodels in a
well-orchestrated manner to support body-required me-
chanical characteristics and maintain calcium homeostasis
throughout one’s lifetime [1, 2]. This constant remodeling
process requires delicate coordination from multiple cell
types, in which hematopoietic stem cell- (HSC-) derived
osteoclast (OC) lineage and bone marrow mesenchymal
stem cell- (BMSC-) derived osteoblast (OB) lineage receive
the most attention [3-5]. Balance between bone resorption

by OCs and bone formation by OBs is usually maintained
during the physiological process but dies away under
pathological conditions, such as inflammation, diabetes,
aging, and cancer, resulting in bone remodeling-related
disorders and diseases, such as osteoporosis, periodontitis,
inflammatory arthritis, Paget’s disease, or tumor-induced
osteolytic bone metastasis [6-10]. OCs, the giant cells that
are responsible for bone removal in the skeletal family, have
always been considered to be the main culprit in these
disorders and diseases because of its overactive function-
alities under pathological conditions [7, 8]. Therefore,
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antiresorptive drugs, such as bisphosphonates, receptor
activator of nuclear factor-xB (RANK) ligand (RANKL)
inhibitor, estrogen, or selective estrogen receptor modula-
tors, are prevalent therapeutics that target osteolysis and
rescue bone loss [11-13].

Recently, with the in-depth study in bone physiology,
OCs, the giant (but not a fool), are manifesting more
complex identities beyond their resorptive function. In
particular, the reciprocal interactions between bone cells are
attracting much attentions [14-16], because of the advanced
understanding of the bone coupling between osteoclastic
bone resorption and osteoblastic bone formation [3, 17, 18].
Through cell-cell contact, cell-bone matrix interaction, and
paracrine factors, OCs have crosstalk with other bone cells,
stem cells, and immune cells in the bone microenvironment,
which affects recruitment, differentiation, and function of
not only themselves but also the other cells [19-21]. This
effect of OCs on other cells is more apparent during skeletal
aging due to deteriorations on mesenchymal stem cell/
mesenchymal stromal cell- (MSC-) derived osteogenesis and
chondrogenesis, while HSC-derived osteoclastogenesis ad-
vances with increasing age, thereby gaining the initiative in
the bone remodeling process and functioning predomi-
nantly over other factors [22-25]. It should be noted that
OC-derived activities have both positive and negative effects,
and those “pure” antiresorptive drugs (bisphosphonates or
denosumab) for age-related bone disorder usually inhibit
bone resorption with a concomitant reduction in bone
formation owing to bone coupling, indicating the impor-
tance of OCs in maintaining normal bone remodeling after
adulthood [11, 26, 27].

This review aimed to determine the essential roles of OC
not just as a bone eater during bone remodeling but also as a
positive contributor to the bone microenvironment and
skeletal health. Specifically, we discuss how OCs contribute
to the recruitment and differentiation of MSCs, as well as the
following bone formation during remodeling. We hope this
review can provide a different perspective on recognizing
OCs when strategies are created to develop ideal therapeutic
agents that target bone remodeling disorders characterized
by excessive OC activity.

2. Osteoclasts and Bone Remodeling

Unlike bone modeling, which does not require coupled
activities of OCs and OBs during skeletal growth and de-
velopment, bone remodeling demands anatomically or
spatially coupled activities of OCs and OBs to replace the old
and damaged bone and to maintain calcium homeostasis in
the body throughout one’s life [28]. Each year, approxi-
mately 3 to 4 million basic multicellular units (BMUs) re-
sponsible for bone remodeling are initiated, and about 1
million of them are highly active as a standby for partici-
pating in bone turnover in the adult skeleton [28-30]. The
remodeling process inside the BMUs does not occur ran-
domly along the bone surface, but rather at specific sites, and
it follows a well-orchestrated sequence of events that are
typically divided into five stages: the activation of OC re-
cruitment, initiation of osteoclastic bone resorption,
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transition from catabolism to anabolism due to OC apo-
ptosis and OB recruitment, formation of the new organic
matrix by OBs, and subsequent mineralization over time
[28, 31]. In healthy adults, under physiological conditions,
bone mass can be stable for one or two decades after
reaching the peak volume due to a balance of the bone
resorption and bone formation, that is, until age-related
imbalance starts (heightened OC activity and reduced OB
performance) [6, 22, 28].

OCs, the unique bone-resorbing cells, arise from HSCs
and belong to the monocytic family [21, 32]. In the activation
phase of bone remodeling, mononuclear OC precursors in
the bone marrow or from blood circulation are attracted to
prospective resorption sites, where they attach to the matrix
surface and further differentiate into mature OCs (giant
multinucleated cells) via cell fusion, termed as “multi-
nucleation” [5, 32-34]. Mature OCs start to generate sealing
zones on the targeted matrix surface during the resorption
phase via the rearrangement of the cytoskeleton and the
formation of a dense belt-like structure called the “actin
ring” [35, 36]. The actin ring encloses the plasma membrane
and makes it into a highly convoluted ruffled border which
then serves as an exit site for protons and lysosomal pro-
teases, such as cathepsin K (CTSK) to be secreted into the
resorption lacunae, facilitating hydrolyzation and solubili-
zation of the inorganic and organic components of bone
[5, 20, 37]. By sensing the concentration of extracellular
calcium [Ca*'], around the cell and responding to the
change of intracellular Ca®* concentration [Ca**];, OCs
switch between the resorbing state featured by possessing
actin rings and the nonresorbing/migrating state featured by
scattered podosomes [38-40]. The resorbing activity of OCs
gradually declines when basal [Ca®*]; increases, whereas
lower [Ca®*]; reduces cell motility but enhances the an-
choring capacity of the cell onto the bone matrix surface
[38, 41]. Once resorption at one site is completed, OCs can
move and start a new resorption cycle somewhere else or
undergo apoptosis based on their lifespan [32, 36]. Among
key molecules and signaling pathways involved in the
process of osteoclastogenesis and resorption activity, RANK
signaling is dominant through the entire life cycle of OCs
and can be further amplified by costimulatory signals from
immunoreceptor tyrosine-based activation motif- (ITAM-)
associated immunoglobulin-like receptor (IgLR) signaling
[38, 42-44]. Details of the RANK signaling network, along
with other critical pathways that cooperate with it, such as
calcium signaling pathway (Ca®*/calmodulin/calcineurin/
NFATc1) and oxidative stress response pathway (ROS/Nrf2/
Keapl), have been well summarized in several excellent
papers and will not be discussed further in this review
[32, 38, 45-47].

Recent advances widely explored the origins of OCs and
associated them with aging and other pathological scenarios.
It was not until the last decade that researchers started to
decipher how aging affects the skeletal system tremendously.
While osteogenic and chondrogenic differentiation from
MSCs deteriorates, aging upgrades OC progenitors in both
quality and quantity, including increased intrinsic expres-
sion of c-Fms and RANK, and enlarged OC progenitor pool
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[22-25]. As the origin of the OC progenitor, HSCs con-
tribute to the reinforcement of the progenitors’ pool by
giving a bias toward myeloid development over lymphoid
differentiation with increasing age [23, 48]. Madel et al.
recently summarized different origins of OCs in an age-
dependent manner (Figure 1): the embryonic erythro-my-
eloid progenitor (EMP) lineage during the embryonic and
postnatal period, bone marrow myeloid/monocyte/macro-
phage (BMMs) lineage during adulthood, and conventional/
mature monocytes (MNs), as well as dendritic cells (DCs)
under inflammatory conditions which are usually seen in old
age [21, 49]. In addition to the promotion of OC progenitors
during aging, OC supporting cells, such as OBs, B cells, and
T cells, also contribute to osteoclastogenesis by increasing
RANKL expression and reducing osteoprotegerin (OPG)
level in the bone microenvironment, although the pop-
ulation of these cells decreases with increasing age
[24, 50-52]. Therefore, OC is vulnerable to be treated as a
“foe” of skeletal health because of hyperactivity, especially in
aged individuals. However, it does not negate its substantial
role as a “friend” in removing the old and damaged bone, as
well as a positive contributor during bone formation after
adulthood, which has become more understandable in the
last few years.

Several in vitro studies indicated that OC-derived factors
directly affect MSC recruitment and OB differentiation
[53-56]. Karsdal et al. reported that conditioned media
(CM) from human OCs increased bone nodule formation in
a dose-dependent manner, which was further confirmed by
Kreja et al. [53, 54, 56]. Interestingly, they also found that the
effect of OCs on MSC migration and OB differentiation can
be independent of their resorption activity. Likewise,
Henriksen’s study indicated that mature OCs were sources
of anabolic stimuli for OBs, and their interaction with the
matrix can strongly affect the anabolic signals from OCs to
OBs [55]. Conversely, a reduced number of OBs and bone
formation were found in OC-poor osteopetrosis, indicating
a critical role of OCs in regulating bone anabolic function
[57]. All these findings suggest complex identities of the
giant beyond the resorption function.

3. Osteoclasts and the Initiation of
Bone Remodeling

The initiation phase of bone remodeling includes the re-
cruitment of OC precursors, differentiation and functioning of
OCs, and maintenance of bone resorption [28, 31]. The ini-
tiation of osteoclastogenesis largely depends on the crosstalk
between OC precursors and the OB lineage cells. Emerging
data supports the central regulatory role of osteocytes in the
initial stage of bone remodeling [58-62]. As the most abundant
cells in bone that are derived from OBs and embedded in the
bone matrix, osteocytes play a role in determining which bone
surface OCs are about to resorb [58, 59]. Through a network of
osteocyte canaliculi, osteocytes can detect microfractures and
microcracks in bone and contact other cells, such as OBs, on
the bone surface. Bone fatigue induces apoptosis of osteocytes,
which are localized to regions that contain microcracks, and
this apoptosis was observed to precede OC invasion in the

damaged area, which triggers subsequent bone remodeling in
the targeted region [63].

Osteocytes have also crosstalk with OCs via secreted
proteins. Osteocytes can control OC function by secreting
RANKL and transforming growth factor beta (TGEF-f)
[64, 65]. RANKL, one of the essential osteoclastogenic
factors, is mainly secreted by osteocytes [65-67]. Naka-
shima et al. [65] demonstrated that osteocytes express a
much higher amount of RANKL and have a better capacity
to support osteoclastogenesis than OBs and bone marrow
stromal cells, which is a strong evidence for the crosstalk
between osteocytes and OCs in bone remodeling. The
MLO-Y4 osteocyte-like cell line represents a good model
for studying the soluble interactions between osteocytes
and OCs [64]. When mechanical scratching was applied to
MLO-Y4 cells, enhanced secretion of osteoclastogenic
factors, RANKL, and the monocyte colony-stimulating
factor (M-CSF) was observed. The mechanical scratching of
osteocytes induced the formation of tartrate-resistant acid
phosphatase- (TRACP-) positive cells on top of the gel
along the damaged region. No TRACP-positive cells were
formed in the peripheral regions [59]. These findings in-
dicate that soluble factors secreted from damaged osteo-
cytes could locally induce and activate the initial phase of
OCs formation.

The initiation of bone remodeling at the targeted bone
site is essential for the renewal of an old or damaged bone
matrix to prevent the skeleton from aging. Failure to trigger
bone remodeling can result in accumulated microdamage
and hypermineralization, which leads to reduced bone
quality and increased fracture risk. Thus, retaining the
crosstalk between OCs and osteocytes is beneficial for
skeletal health when managing high turnover bone disor-
ders, such as osteoporosis.

4. Effect of Osteoclasts on Mesenchymal Stem
Cell Recruitment and
Osteoblast Differentiation

After the old or damaged bone is resorbed by OCs, bone
remodeling enters the second phase: the transition of OC to
OB activity. In this reversal phase of bone remodeling, the
microenvironment created by OC activity provides signals
that aid in the cessation of bone resorption and the initiation
of bone formation via the recruitment and differentiation of
MSCs [17, 68]. The bone resorptive microenvironment is
built by multiple factors that are released from the bone
matrix during bone resorption or directly secreted by OCs
locally, which also contribute to the establishment of the
osteogenic microenvironment that promotes the recruit-
ment of MSCs [4, 69-71]. MSCs are multipotent stem cells
that are capable of differentiating into various cell types,
such as OBs, adipocytes, and chondroblasts [72, 73]. In the
bone marrow, MSCs are located around sinusoids and the
perivascular network in the stroma [74, 75]. During bone
remodeling and fractured-bone regeneration, MSCs migrate
to the bone surface or fracture site and then differentiate into
OBs to reconstruct the bone [76], subsequent to the
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FiGure 1: Origins of osteoclasts in an age-dependent manner [21]. Osteoclasts (OCs) differentiate from the embryonic erythro-myeloid
progenitor (EMP) lineage during the embryonic and postnatal period. In adulthood, bone marrow myeloid/monocyte/macrophages
(BMMs) derived from hematopoietic stem cells (HSCs) are the main origin of osteoclasts. Moreover, monocytes (MNs) and dendritic cells
(DCs) are also important origins of osteoclasts in aged or pathological conditions. MOP: macrophage/osteoclast progenitor.

osteoclastic resorptive phase. It has been well demonstrated
that local growth factors and signals play important roles in
the recruitment and commitment of MSCs [77], such as the
bone morphogenetic protein (BMP) family [78], insulin-like
growth factor (IGF) [79, 80], TGF-f [68, 81], fibroblast
growth factor 2 (FGF-2) [82], vascular endothelial growth
factors (VEGF) [78], and platelet-derived growth factors
(PDGFs) [83, 84]. Moreover, emerging evidence showed that
many of these local factors are associated with the viability
and activity of OCs [17, 20, 54].

4.1. Osteoclastic Resorption Releases Bone Matrix Embedded
Factors and Recruits Mesenchymal Stem Cells. Factors re-
leased from the bone matrix during bone resorption may be
the first signal from OCs that has been found to affect
MSCs. The bone matrix contains many latent growth
factors that are deposited by OBs during matrix con-
struction and then released by osteoclastic resorption on
the bone surface [85, 86]. Howard et al. [87] firstly pro-
posed that the release of coupling factors embedded in the
bone matrix may positively affect MSC-derived osteo-
genesis. To date, several matrix-derived factors have been
identified as potential factors involved in bone remodeling,
such as TGF-f [85, 88], IGF-1 [69], bone morphogenetic
protein (BMP)-2 [89, 90], and vascular endothelial growth
tactor (VEGF) [91]. In particular, matrix-derived TGF-f1
and IGF-1 have shown definite effects linking bone re-
sorption to MSC recruitment and differentiation based on
genetically manipulated mice data. Tang et al. [88] dem-
onstrated that TGF-f1 released during OCs culture on bone
slices in vitro induces the migration of MSCs. They also
found high levels of active TGF-f1 in the bone resorption-
conditioned media (BRCM) when functional OCs were
cultured with bone slices in vitro, whereas active TGF-f1
was barely detectable in the conditioned media prepared
without bone slices. Moreover, BRCM prepared using OCs

generated from normal mice and bone slices prepared from
TGF-p1 1 knockout (TGF-B1-/-) mice was significantly
less effective in promoting the migration of BMSCs [88],
demonstrating that matrix-derived TGF-f1 plays a key role
in recruiting MSCs. Similarly, it has also been well dem-
onstrated that IGF-1 released from the bone matrix by
functioning OCs stimulated OB differentiation of MSCs by
activating the mammalian target of rapamycin (mTOR)
through the PI3K-Akt pathway [69].

4.2. Osteoclast-Secreted Factors Recruit Mesenchymal Stem
Cells and Promote Osteoblast Differentiation. Besides the
matrix-derived factors, increasing data also suggest that
factors directly secreted by OC lineage cells play a crucial
role in coupling osteoclastic bone resorption with osteo-
blastic bone formation. Henriksen et al. [55] performed a
research to address the anabolic effect of OC linage cells in
different stages. They collected the conditioned medium
(CM) from macrophages, pre-OCs, and mature functional
or nonresorbing OCs and tested their effects on osteogenesis
in vitro. Their results suggested that CM from macrophages
did not induce bone formation, while CM from mature OCs
promoted osteogenesis, both dependent on and independent
of their resorptive activity. Kim et al. [56] also conducted a
research to explore when the coupling factors are taking
effect during osteoclastogenesis. They found that CM from
OCs in the early stage of differentiation predominantly
enhanced the migration of osteoblastic lineage cells, con-
firming that OCs play an important role in the coupling by
stimulating pre-OBs migration.

To date, increasing studies have identified numerous
secreted molecules from OCs and explored their potential
roles in bone remodeling. In Table 1, we have summarized
the OC-secreted factors and their effects on MSC migration,
OB differentiation in vitro, or bone formation in vivo.
Among them, factors including Afamin [56], CXCL16 [98],
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TaBLE 1: Summary of osteoclast-secreted factors on bone remodeling.
Factor secreted by osteoclasts Effect on bone remodeling Reference
Osteoclast-derived enhancing factors of bone formation
Afamin secreted by osteoclasts in the early stage of differentiation
stimulates preosteoblasts migration in vitro via the Akt-signaling
. . pathway
Afamin Afamin Afamin can prevent Wnt proteins from aggregating and deliver Wnt [56, 92]
ligands to its receptors on the cell surface, which plays an important role
in osteogenesis
Synthesis of BMPs has been confirmed in osteoclasts using
BMP6 Bone morphogenic protein 6 immunocytochemistry and in situ hybridization [93, 94]
BMP6 promotes osteoblast differentiation
C3 gene expression increases during osteoclastogenesis, and the cleavage
C3a Complement component 3a product C3a is detected in the conditioned medium of osteoclasts [95]
C3a promotes osteoblast differentiation
. . CT-1 promotes osteoblast differentiation
CT-1 Cardiotrophin-1 Neonatal Ct-1-/— mice have decreased osteoblast numbers and BV/TV (56
CTHCRI is secreted by mature bone-resorbing osteoclasts
CTHCRI Collagen triple repeat CTHCRI stimulates osteoblast differentiation [97]
containingl Osteoclast-specific deletion of CTHCRI in mice resulted in osteopenia
due to reduced bone formation
. . TGF-p1 released from the bone matrix during bone resorption induces
CXCL16 Chemok11ri1 eailfl_)l(éc motif) CXCL16 production in osteoclasts, which promotes migration of [98]
& osteoblast progenitors in bone remodeling
Osteoclasts can synthesize and secrete biologically active HGF, which
HGF Hepatocyte growth factor ~ promotes osteoblast proliferation and increases osteopontin expression  [99, 100]
in osteoblasts
PDGE-BB Platelet-derived growth factor PDGEF-BB induces MSC migration, but it inhibits osteoblast [53, 101-103]
BB differentiation
. . S1P stimulates MSC migration and promotes osteoblast differentiation
SIP Sphingosine-1-phosphate Raising S1P levels in adult mice markedly increased bone formation [104-106]
Osteoclast-secreted SLIT3 synchronously inhibits bone resorption and
N . stimulates bone formation
SLIT3 slit guidance ligand 3 SLIT3 injection in mice markedly rescued bone loss after ovariectomy [107]
surgery
Tartrate-resistant acid TRAP promotes osteoblast differentiation
TRAP TRAP overexpressing transgenic mice have an increased rate of bone  [108, 109]
phosphatase
turnover
Vesicular Vesicular TNF receptor Mature OCs secrete vesicular RANK, which binds osteoblastic RANKL [110]
RANK superfamily member 11A  and promotes bone formation via triggering RANKL reverse signaling
Wnt10b Wat family member 10b Wntl0b expression increases du'rmg (')ste.oclastogenesw [104]
Wntl0b promotes mineralization
Osteoclast-derived inhibiting factors of bone formation
LIF Leukemia inhibitor factor LIF inhibits TGFbl-induced osteoblast migration [98]
Sema4D suppresses bone formation by inhibiting IGF-1 signaling
Sema4D Semaphorin 4D Sema4d-/- mice show an osteosclerotic phenotype due to augmented [111]
bone formation
SOST Sclerostin SOST is expressed in osteocl.asts erm aged mice zhind‘1nh1b1ts osteoclast- [112]
mediated stimulation of mineralization
Exosomal miR- Exosomal miR-214-3p miR-214-3p reduces bone formation in elderly women with fractures and [113, 114]

214-3p

in ovariectomized mice

PDGE-BB [101, 102], and S1P [104, 105] secreted by OCs can
promote the migration of MSC or OB progenitors, and factors
such as BMP6 [98], C3a [95], CT-1 [96], CTHCRI [97], HGF
[99, 100], SLIT3 [107], Trap [108, 109], and vesicular RANK
[110] exhibit enhancing effects on OB differentiation in vitro
or bone formation in vivo. However, some other factors such
as Sema4D [111], sclerostin [112], and exosomal miR-214-3p
[113] show an inhibiting effect on bone formation. These
factors may act as a “fine-tuning” mediator of the bone

remodeling process in the BMUs, by inhibiting the remod-
eling process under some special conditions. Besides, these
factors are often highly expressed in OCs from aged or
ovariectomized mice, suggesting that they may play a role in
bone remodeling disorders during aging. Overall, on the basis
of the current findings, most OC-secreted factors show en-
hancing effects on MSC recruitment or OB differentiation,
indicating an essential role of OCs in maintaining normal
bone formation during the remodeling process.
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FIGURE 2: Schematic illustration of the interaction between osteoclast (OC) and osteoblast (OB) lineage cells in bone remodeling. OC
precursors are activated by TGF-f, M-CSF, and RANKL secreted by osteocytes and attracted to prospective resorption sites. Once attached
to the bone matrix, OC precursors can differentiate into mature OCs. Mature OCs will further acidify and resorb the mineralized bone
matrix by pumping hydrogen ions into resorptive captivity through their ruftled border structure. During bone resorption, OC can release
several coupling factors, such as matrix-derived TGF-f, matrix-derived IGF-1, Afamin, CXCL16, PDGF-BB, and SIP et al., which recruit

circulated mesenchymal stem cells (MSCs) to the resorption area.

Besides, OC also secretes some other coupling factors, such as BMP6,

SLIT3, C3a, TRAP, CT-1, and RANK et al., which further promote the differentiation from MSCs towards OBs. Additionally, the ephrinB2/
ephB4 interaction between OC and OB precursors suppresses the bone resorption activity of OCs, whereas such interaction could trigger OB

differentiation of OB precursors and enhance bone formation.

4.3. Osteoclast and Osteoblast Cell-Cell Contact: A Potential
Mechanism of Transition in Bone Remodeling. OCs and OB
lineage cells can also communicate through cell-cell contact
to achieve the coupling of bone resorption and formation.
Traditionally, it has been thought that OCs and OBs do not
occur simultaneously at the same BMUs, and direct contact
between mature OBs and functioning OC:s is relatively rare
[115]. In recent years, direct OC-OB contact in vivo has been
detected using transmission electron microscopy [31] and
intravital two-photon imaging [116]. Furuya et al. demon-
strated that mature OCs became nonresorptive when they
made contact with mature OBs, and intermittent admin-
istration of the parathyroid hormone (PTH) led to an in-
crease in cell-cell contact between OCs and OBs, which
causes bone anabolic effects [116].

How does the cell-cell contact cause bidirectional effects
between OCs and OBs? EphrinB2/EphB4 interaction be-
tween OCs and OBs plays a role in the transition from bone
resorption to the formation. Ephrin/Eph family members
are local mediators of cell function through contact-de-
pendent manner during various developmental processes
[117, 118]. Interaction between ephrin-expressing and Eph-
expressing cells leads to bidirectional signal transduction.
Mature OCs express ephrinB2, whereas OB precursors

express EphB4 (Figure 2). Forward signaling through the
EphB4 receptor into OB precursors enhances osteogenic
differentiation by reducing RhoA activity, while reverse
signaling through ephrinB2 ligand into OCs suppresses OC
function by inhibiting the osteoclastogenic c-Fos-NFATcl
cascade [119]. However, it has also been suggested that mice
lacking ephrinB2 showed no skeletal abnormalities [119].
Thus, the role of ephrinB2/EphB4 interaction between OCs
and OBs in the transition from bone resorption to formation
needs further confirmation.

5. Summary and Perspectives

The skeletal system provides mechanical support, protects
vital organs, and controls mineral homeostasis in the human
body. It is the constant bone remodeling throughout one’s
life that removes the old and damaged bone, keeping the
skeletal system healthy. During the recent decade, many
studies have demonstrated mechanisms for how osteoclastic
bone resorption contributes to the subsequent bone for-
mation in bone remodeling (Figure 2) and provided a well-
rounded understanding of the roles of OCs in maintaining
proper bone remodeling.
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Osteoporosis, the most prevalent disorder of bone
remodeling by far, is characterized by the heightened activity
of OCs [6, 7]. Currently, the available treatments of osteo-
porosis comprise antiresorptive agents, such as bisphosph-
onate and denosumab, and anabolic treatments such as PTH
[6, 13]. However, most antiresorptive agents that suppress OC
differentiation will concomitantly impair bone formation
because of the coupling effect, leading to an unsatisfactory
long-term effect and potentially increasing the likelihood of
long-term adverse events, such as osteonecrosis of the jaw
[120]. Thus, new agents under development for osteoporosis
may try to retain the OC coupling factors while inhibiting OC
functions. Odanacatib, a small-molecule inhibitor of CTSK,
can decrease bone resorption without affecting OBs and
appears to promote bone formation [106, 121, 122], probably
because of the suppression on OC activity rather than the
inhibition on OC viability, thus allowing continuous crosstalk
between OCs and OBs. Unfortunately, because of the un-
foreseen cerebrovascular events, the clinical development of
odanacatib was terminated. The side effects may result from
the off-target effects of CTSK inhibitors on other members of
the cathepsin family, such as cathepsins B, L, and S. None-
theless, the experience learned from the underlying biology of
CTSK inhibitors could guide future therapeutic approaches
for osteoporosis: dissociating the inhibition of bone resorp-
tion from the coupled reduction in bone formation. This may
be a promising strategy in the development of a new drug and
we believe that a better outcome will be achieved when proper
strategies are made to coordinate OCs and OBs in managing
bone remodeling disorders.
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