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Mitigating Bunching with Bus-following
Models and Bus-to-bus Cooperation

Konstantinos Ampountolas, Member, IEEE, and Malcolm Kring

Abstract—Bus bunching is an instability problem where buses
operating on high-frequency public transport lines arrive at
stops in bunches. This work unveils that bus-following models
can be used to design bus-to-bus cooperative control strategies
and mitigate bunching. The use of bus-following models avoids
the explicit modelling of bus-stops, which would render the
resulting problem discrete, with events occurring at arbitrary
time intervals. In a follow-the-leader two-bus system, bus-to-bus
communication allows the driver of the following bus to observe
(from a remote distance) the position and speed of the leading bus
operating in the same transport line. The information transmitted
from the leader is then used to control the speed of the follower
to eliminate bunching. A platoon of buses operating in the
same transit line can be then controlled as leader-follower dyads.
In this context, we propose practical control laws to regulate
speeds, which would lead to bunching cure. A combined state
estimation and remote control scheme is developed to capture
the effect of disturbances and randomness in passenger arrivals.
To investigate the performance of the developed schemes the 9-km
1-California line in San Francisco with about 50 arbitrary spaced
bus stops is used. Simulations with empirical passenger data are
carried out. Results show bunching avoidance and improvements
in terms of schedule reliability of bus services and delays. The
proposed control is robust, scalable in terms of transit network
size, and thus easy to deploy by transit agencies to improve
communication and guidance to drivers, and reduce costs.

Index Terms—Bus bunching; bus-following models; bus-to-bus
cooperation; bus schedule reliability; linear gaussian control.

I. INTRODUCTION

BUSES can randomly fall behind schedule due to the
variability of passenger’s demand at bus stops and speed

heterogeneity [1]. In a high-frequency transit line with two
buses, if the lead bus is delayed at bus stops (or due to
traffic congestion) then the next bus stops will flock more
passengers waiting for boarding that would lead to further
delays due to extended on-off passenger activity. Moreover,
the following bus operating in the same line will pick up
fewer passengers, causing its commercial speed to be higher
than normal. Eventually, this positive feedback loop would
result in the two buses meeting up, with the lead bus having
more passengers than the following bus. Therefore, the two
buses pair up and travel as a single unit, although in reality
overtaking is possible. This reduces the reliability of the transit
network and forces passengers allotting more time at bus stops
to buffer this instability. This instability problem of high-
frequency transit lines is known as bus bunching [1], [2].
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Transit agencies often attempt to mitigate bus bunching by
including slack-time into their schedules and then asking bus
drivers to be punctual at specific control points along the
route (hold the bus up to a certain amount of time). This
cure is of limited effectiveness because the medicine (slack) is
sometimes worse than the illness (irregular headways) [2], [3].
A number of other control strategies have been proposed in the
literature to mitigate bunching and improve the reliability of
transit operations. Basic schemes include patching and stop-
skipping. Patching is a scheme where buses are dispatched
from a depot to fill gaps as they arise. Patching is reactive
and not optimal but can be used in case of emergency. Stop
skipping allows buses to recover from delays at the cost of
reliability and customer satisfaction [4].

Schedule- or headway-based holding strategies have several
forms with varying levels of complexity [5], [6], [7], [3], [8].
The most basic version involves having a bus waiting for
an amount of time before continuing on the loop and it is
therefore useful for both headway and schedule adherence.
While holding can be effective at reducing bus bunching it
reduces commercial speed. Commercial speed and headway
variance can be thought of as inversely proportional when a
basic holding plan is in place and it is up to the bus agencies
to find the right compromise between schedule reliability
and commercial speed. Static holding involves fixed time
buffers whereas dynamic holding responds to system events
and adjusts buffers in real-time. However, static slack does not
prevent large events from disrupting headways [7]. Dynamic
holding can respond better to large headway disruptions.
Recently a number of works showed that dynamic holding
strategies for transit lines run with or without a schedule
would increase commercial speed and return to equilibrium
after large disruptions [3], [8], [9].

The recent advances in bus automation and communica-
tion systems and the availability of real-time locational data
enabled the development of advanced control methods for
bunching cure. Modern buses are equipped with surveillance
and measurement equipment such as Automated Vehicle Loca-
tion (AVL), Global Positioning System (GPS) and Automated
Passenger Counter (APC) devices, and telecommunications
equipment to transmit information to traffic control centres in
real-time. Thus it is possible to fully observe and communicate
the true state of transit vehicles (speed, position, passenger
load) operating in the same transit line in real-time. In this
framework, cooperative two-way-looking strategies based on
the spacings in the front and back of each bus can be devel-
oped. A continuum idealisation of the bus bunching problem
is proposed in [3]. This model considers that bus stops are
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evenly spaced and bus delays due to on-off passenger activity
are analogous to the number of passengers boarding the bus. In
the same vein, a self-coordinating bus scheme where headways
are dynamically self-equalising and the natural headway of
the system tends to emerge spontaneously is proposed in [10].
A hybrid model predictive control scheme for Traffic Signal
Priority (TSP) and for regulating bus headways is proposed in
[11], [12]. TSP can be used to improve bus service reliability
and alleviate bunching as shown in [13], [14], [15], [16].

This work proposes for the first time in literature and
demonstrates that bus-following models (analogous to car-
following) can be used to design bus-to-bus cooperative con-
trol strategies and mitigate bunching. Car-following models
were traditionally employed to describe the behaviour of
closely spaced two-vehicle or stream of vehicles systems.
The basic assumption of a follow-the-leader model is that
the following driver reacts to a stimulus from the lead car
to maintain a specific (space or time [17]) headway between
the two cars. This behaviour assumes driver’s perception based
on visual contact between the two cars and very short reaction
times, which circumvents instabilities in case of stopped cars
or stop-and-go phenomena. In a bus-following model, the
visual contact is missing because the two buses are far apart
from each other. Moreover, a continuous-time bus-following
model includes some simplification because it does not take
into account the bus stops, where buses normally stop at
arbitrary time intervals. Remarkably, this work unveils that
bus-to-bus cooperation and driver’s response through real-time
information permit the use of continuous-time bus-following
models for bunching modelling and remote feedback control.

The rest of the paper is organised as follows. Section II
introduces the proposed bus-following model involving leaders
and followers that can be used to design advanced bus coop-
eration strategies. It also presents nonlinear and linear control
laws to regulate space (or time) headways and speeds, which
would lead to bunching cure remarkably without holding at bus
stops. Section III presents a rigorous combined state estima-
tion and control scheme based on Linear-Quadratic Gaussian
(LQG) control. This scheme captures the effect of bus stops,
traffic disturbances, driver/motor errors and randomness in
passenger arrivals by introducing stochastic variables in a bus-
following model. Section IV presents a simulation study for
the 9-km 1-California line in San Francisco and a comparative
study of the proposed follow-the-leader-based control laws
with schedule- and headway-based holding strategies proposed
in the literature. The case study benefits from empirical
passenger data obtained from the San Francisco Municipal
Transportation Agency. Conclusions are given in Section V.

II. MODELLING AND CONTROL BUNCHING WITH
BUS-FOLLOWING MODELS

A. Problem formulation

Consider two buses n (leader) and n+1 (follower) operating
in the same public transport line. Assume that both buses are
equipped with GPS devices reporting position x(t) and speed
ẋ(t) = v(t) at any time t. Also that bus-to-bus communication
allows the driver of the following bus to observe the position

and speed of his own bus and (from a remote distance)
that of a leading bus operating in the same line. We call
this class of follow-the-leader two-bus systems with a remote
sensing capability as bus-following models. A platoon of buses
operating in the same transit line can be then modelled as
leader-follower dyads.

Fig. 1 illustrates the typical block diagram of a two-bus
system with bus-to-bus cooperation. The kernel of the block
diagram is the control strategy (or controller), whose task is
to specify in real time the control inputs (e.g., acceleration or
deceleration), based on available measurements (GPS and APC
of the two-bus system), so as to achieve pre-specified goals
(e.g., maintain a desired space or time headway [17]) despite
the influence of the various disturbances (observation, motor,
and traffic). More precisely, GPS (and APC) information
from the lead bus is transmitted to the following bus (with
some noise). GPS signals can be corrupted unintentionally by
external interfering sources such as tinted vehicle windows and
buildings in urban canyons that block satellite transmission.
Also APCs usually track every person who gets on or off
the bus (including the operator) with some noise, which may
lead to some irregularities in the data. The idea is to use the
information transmitted from the leading bus to control the
speed of the following bus in order to eliminate bunching. The
driver of the following bus responds with a reaction time and
a muscular response to control the speed. Speed control can
be effectuated by a continuous adjustment of acceleration (or
deceleration) of the following bus (via the acceleration and
brake pedals), which is denoted ẍ(t) at time t. The applied
control to bus dynamics is being corrupted by noise, including
motor noise and traffic disturbances. Finally, the driver bus
system includes a closed-loop structure to provide feedback.
The feedback loop can inform the driver of the following bus
when they are ahead or behind schedule (or have too small
or too large a time or space headway) at all points along the
route (by comparison of bus position and speed with the lead
GPS data). Feedback can provide also information that may be
useful for avoiding bunching by appropriate instructions (e.g.,
follow a desired speed that allows fast recovery).

B. Deterministic control laws based on bus-following models

A first intuitive control law of a two-bus transit system
considers that driver’s response is proportional to the speed
difference and the difference between their actual space head-
way and a desired (scheduled) headway given by,

ẍn+1(t+ T ) = l1∆ẋn,n+1(t) + l2
[
∆xn,n+1(t)− xd

]
, (1)

where ∆ẋn,n+1(t) = ẋn(t) − ẋn+1 and ∆xn,n+1(t) =
xn(t)−xn+1; T is the reaction time of the bus driver n+1; l1,
l2 are control parameters; and xd is the desired space headway.
The desired headway xd can be specified from the scheduled
time headway of the corresponding bus line and an average
operational speed. Note that the desired space headway in
(1) (and subsequent laws below) might be non-identical on
different parts of the route due to uneven spacing of bus stops.
In this case the desired space headway can be determined
as a function of the time, i.e. xd(t), by taking into account
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Fig. 1. Block diagram of the bus-following model with bus-to-bus cooperation.

the spacing between consecutive bus stops, day-to-day traffic,
weather and other factors. The choice of the control parameters
l1 and l2 is performed via a trial-and-error procedure so as to
achieve a satisfactory control behaviour for a given two-bus
system; although optimised control gains could be determined
by appropriate control methodologies as in Section III. If the
two buses travel with the same speed the first term in (1) is
negligible and acceleration (or deceleration) is based on the
actual space headway of the two buses and a desired space
headway. A similar control law was first proposed by [18] for
car-following models. A difference with (1) is that the reaction
time T of the driver-bus system is in general higher than of a
driver-car system (approximately 1.5 s, see e.g., [19]). In a bus-
following model the visual contact is missing (the two buses
are far from each other) and reaction time depends on how
often GPS locational data from the leading bus are transmitted
(e.g. via wireless communication) to the follower and the state
of the following bus (traveling or stopped to drop-off or pick
up passengers). Obviously the driver cannot react whenever
the bus is stopped at bus stops. Bus-following models can be
validated with the use of empirical GPS data of bus-to-bus
cooperation to determine the reaction time T .

A family of more complex nonlinear control laws can be
developed by assuming that driver’s response is proportional
to the velocity difference and inversely proportional to the
difference between their actual space headway and a desired
headway given by,

ẍn+1(t+ T ) = βm,ln+1(t+ T )
[
∆ẋn,n+1(t)− vd

]
, (2)

where βm,ln+1 is the sensitivity of bus n+ 1 and is given by,

βm,ln+1(t+ T ) =


λẋm

n+1(t+T )[
∆xn,n+1(t)−xd

]l , if ∆xn,n+1(t) 6= xd,

0, otherwise,
(3)

where λ is a control gain, m, l are (positive integer or real)
constants, and vd is an additional parameter. The correction
term vd is introduced to circumvent instabilities whenever the
lead bus is stopped for dropping off or picking up passengers
and the corresponding speed is virtually zero. The product
λẋn+1(t+T ) in (2) guarantees good control behaviour when-
ever ẋn+1(t + T ) ≈ 0. Similar models (without considering
a desired space headway and correction term vd) for car-
following have been proposed in [20], [21].

An additional family of linear and nonlinear bus-following-
based control laws can be obtained from,

ẍn+1(t+ T ) =βm,ln+1(t+ T )
[
∆ẋn,n+1(t)− vd

]
+

µ
[
∆xn,n+1(t)− xd

]p
, (4)

where µ is a an additional control gain, p is (a positive integer
or real) constant, and βm,ln+1 is given by (3). Control law (4)
is similar (excluding the last term) to the so-called General
Motors Nonlinear (GM) model [21]. Note that for different
values of m, l and p in (2)–(4) different control laws can
be produced. Typical values are m = 1, l = 2, and p = 1
or p = 2. Remarkably, the bus-following control law in (4)
(with µ = 0) can be used to derive (under certain conditions)
a macroscopic relationship describing speed and flow of a
platoon of buses operating in dedicated bus lanes. Such
connection is in agreement with the recently proposed three-
dimensional vehicle and passenger Macroscopic Fundamental
Diagram (3D-vMFD and 3D-pMFD) for mixed traffic, bi-
modal urban road networks [22], [23]. Stability criteria of the
nonlinear control laws in (2)–(4) are difficult to prove, thus the
control gains λ and µ should be carefully specified with respect
to the physics of traffic and reaction time T . More rigorous
bus-following control laws can be developed by considering
motor system dynamics, stochastic variables and delays, as
described in Section III.

III. STOCHASTIC BUS-FOLLOWING MODELS &
LINEAR-QUADRATIC GAUSSIAN CONTROL

Human operator behaviour for follow-the-leader models
in presence of control being corrupted by noise has been
studied extensively in the 60s and later on [24], [25], [26],
[27], [28]. These models assume closely spaced two-vehicle
systems with basic vehicle motion dynamics, where each
driver is required to track only the vehicle ahead. In the
sequel, we propose a continuous-time bus-following model for
bunching modelling that considers basic bus motion dynamics
and uncertainties of different variables of the problem (bus
stops, traffic disturbances, randomness in passenger arrivals).
A combined state estimation and remote feedback control
scheme based on Linear-Quadratic Gaussian (LQG) control
[29], [30] is also developed. This unveils that the bus bunching
problem can be viewed as a classic problem of relative space
(or time) and speed regulation with noise in control theory.
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Consider the bus-following model with bus-to-bus cooper-
ation as in Fig. 1. The lead bus dynamics can be represented
by vehicle motion as,

xn(t+ T ) = an,1xn(t) + εn,1(t), (5)
ẋn(t+ T ) = an,2ẋn(t) + εn,2(t), (6)

where T is the reaction time, xn(t), ẋn(t) = vn(t) are state
variables, an,1, an,2 are constant modelling parameters and
εn,1, εn,2 are zero-mean white gaussian noise with known
variance. This linear model provides a mathematical descrip-
tion of the leading bus motion without considering any forces
that affect the motion, i.e., a control term in (5)–(6) is absent.
The basic idea of the bus-following model is to control the
speed of the following bus (based on the location and speed
of the leader) in order to eliminate bus bunching. Thus the
following bus dynamics can be given by,

xn+1(t+ T ) = a1xn+1(t) + b1un+1(t) + εn+1,1(t), (7)
ẋn+1(t+ T ) = a2ẋn+1(t) + b2un+1(t) + εn+1,2(t), (8)

where xn+1(t), ẋn+1(t) = vn+1(t) are state variables,
un+1(t) = ẍn+1(t) is the control variable, a1, a2, b1, b2
are constant modelling parameters and εn+1,1, εn+1,2 are
zero-mean white gaussian noise with known variance. In the
bus model (7)–(8), un+1(t) represents the control applied by
the driver (acceleration or deceleration) via the acceleration
and brake pedals. The stochastic variables εn+i,j , for all
i = 0, 1, j = 1, 2 are introduced to capture the effect of
bus stops, traffic disturbances, driver errors and randomness in
passenger arrivals (other noise in Fig. 1). From acceleration or
deceleration a target velocity for the follower can be calculated
that is easily understood by a driver.

Expressions (5)–(8) provide a continuous-time bus-
following model that does not allow for direct consideration of
the bus stops (where buses stop at arbitrary time intervals) and
passenger loads. Nevertheless, uncertainty and variability of
different variables of the problem can be captured by the noise
terms in (5)–(8). The number of bus stops (fixed and known)
and historical (or fusion with real-time) data of passenger
activity for a specific line can reflect the typical time variation
of passenger arrivals. In addition, traffic and driver/motor noise
can be obtained with different sensors in real-time. This is the
price to pay for avoiding the explicit modelling of bus-stops
which would render the resulting problem discrete (Discrete
Event Dynamic System) and would lead to complex models
difficult to use for control purposes without relaxations.

Expressions (5)–(8) can be combined into a discrete-time1

linear system with noise given by,

x(k + 1) = Ax(k) + Bu(k) + γ(k), (9)

where x ∈ R4×1 (with elements xn+i,j , ẋn+i,j for all i = 0, 1,
j = 1, 2) is the state vector of both leader and follower
position and velocity, and u ≡ un+1 is the control; A ∈ R4×4

(with elements an+i,j , for all i = 0, 1, j = 1, 2) and
B ∈ R4×1 (with elements bn+1,i, i = 1, 2) are the state

1For control implementation purposes, we define a discrete time index k
such that t = kT with T the sampling period (reaction time) and denote
x(k) = x(kT ) analogously for all variables.

and control matrices, respectively; γ ∈ R4 (with elements
εn+i,j , for all i = 0, 1, j = 1, 2) is a Gaussian noise process
with known covariance matrix Γ given by E{γ(k)} = 0,
E
{
γ(ki) · γT(kj)

}
= Γ ·δij , Γ � 0, where δ is the Kronecker

delta function. We also assume that the initial state x(0)
has a known mean x0 and covariance matrix Π0 given by,
E{x(0)} = x0, E

{
[x(0)− x0] · [x(0)− x0]

T
}

= Π0.
The system output vector y ∈ R2 for the augmented system

(9) is given by,

y(k) = Hx(k) + ζ(k), (10)

where ζ is the observation noise (see feedback loop in Fig. 1)
and H is the observation matrix consisting of 0’s and 1’s such
that a number of elements or linear combinations of elements
of x are correlated in (10). More precisely, H matrix allows
the lead bus state variables to be compared with those of the
following bus. An appropriate choice is,

H =

[
1 0 −1 −αhd
0 1 0 −1

]
, (11)

where α is a constant parameter and hd is a desired (sched-
uled) time headway between two buses, which is known
from the timetable. Parameter α is introduced to capture the
correlation between actual space headway xn − xn+1 and
a desired headway xd, where xd is assumed to be a linear
function of the following bus velocity ẋn+1 and the desired
time headway hd, i.e. xd ∝ αẋn+1(t)hd. Note that in general,
the desired spacing is a nonlinear function of the velocity of
the following bus, time headway, passenger load and traffic
conditions in the transit line.

Noise vector ζ ∈ R2 is a Gaussian process with
known covariance matrix Z given by E{ζ(k)} = 0,
E
{
ζ(ki) · ζT(kj)

}
= Z · δij , Z � 0. We assume that the sys-

tem (9)–(10) is reachable and observable; and the initial state
condition x0 is uncorrelated with the input noise γ(k) and
observation noise ζ(k), i.e., E

{
γ(k) · xT

0

}
= E

{
ζ(k) · xT

0

}
=

0. Finally both noise inputs are assumed uncorrelated (al-
though can be correlated), i.e., E

{
γ(k) · ζT(k)

}
= 0.

The control objective is to regulate the speed of the fol-
lowing bus with minimum effort so as to maintain the actual
space (or time) headway of a two-bus system to a desired pre-
specified headway, and as a consequence to avoid bunching. A
quadratic criterion that considers this objective has the form,

L = E

{ ∞∑
k=0

{
q1

[
xn(k)− xn+1(k)− xd

]2
+q2

[
ẋn(k)− ẋn+1(k)

]2
+ ru(k)2

}}
, (12)

where q1 ≥ 0, q2 ≥ 0 and r > 0 are weighting constants.
The first term in (12) is responsible for the minimisation
of deviations of the space headway from a desired spacing.
The second term is responsible for normalising the speeds
between the two buses. Note that an additional correction
term vd (cf. (2)) may be introduced in the second term to
circumvent speed instabilities whenever the lead bus is stopped
for collecting passengers and the corresponding speed is



AMPOUNTOLAS AND KRING: MITIGATING BUNCHING WITH BUS-FOLLOWING MODELS AND BUS-TO-BUS COOPERATION 5

virtually zero. Clearly the third term is responsible for avoiding
bunching with minimum control effort. Weights q1, q2 must
be chosen such that the corresponding subgoals are satisfied.
More precisely, q1 = 1/xd and q2 = 1/vc are appropriate
values, where vc is the commercial speed. Commercial speed
is defined as the average operational speed of the buses,
including cruising, passenger alighting and boarding. Weight
r influences the magnitude of the control reactions and is
selected through a trial-and-error procedure so as to achieve a
satisfactory control behaviour for a given application transport
line. The infinite time horizon in (12) is taken in order to obtain
a time-invariant feedback law according to the LQG theory.

To design the combined state estimation and control scheme,
we assume at time k > k0 availability of portable information
I(k) = {y(k0), u(k0),y(k0 +1), u(k0 +1), . . . ,y(k)}. Based
on this information and the system (9)–(10) we aim to derive
a control law,

u(k) = R
[
I(k − 1), k

]
, (13)

such that the cost criterion (12) is minimised. According to
the LQG theory [29], [30] the control law (13) has the form,

u(k) = −Lx̂(k), (14)

where L ∈ R1×4 (depends on A,B and q1, q2, r) is a time-
invariant control gain, which is calculated by the solution
of the corresponding deterministic Linear-Quadratic (LQR)
control problem (see [31]); and x̂(k) is the output of the
optimal state estimator, i.e. Kalman Filter. The estimate x̂(k)
is generated in real-time by the recursive estimator:

x̂(k) = Ax̂(k− 1) + Bu(k− 1) + K[y(k− 1)−Hx̂(k− 1)],
(15)

where x̂(0) = x0 is known and K ∈ R4×2 (depends on A,H,
Γ,Z) is a time-invariant (might be time-variant) estimator
gain, which is calculated by a recursive Riccati equation ac-
cording to the Kalman Filter theory [31]. Due to the celebrated
Separation Theorem the two problems namely control and
estimation can be solved separately by forgetting completely
the stochastic aspects and control problem, respectively. The
Separation Theorem guarantees that the overall LQG control
design is optimal in the sense that the control law (14)
minimises the cost criterion (12). The stability of control
law (14) may be mathematically guaranteed under certain
assumptions (presence of white noise disturbances). In case of
strong plant uncertainty and lack of robustness of the LQG,
advanced LQG/LTR (Loop Transfer Recovery) control [32],
[33], [34] or robust control [35] schemes can be employed.

The final control law reads,

u(k) = l1∆ˆ̇xn,n+1(k) + l2[∆x̂n,n+1(k)− l3 ˆ̇xn+1(k)], (16)

where l1, l2 and l3 are elements of matrix L. Note that (16) is
similar to (1) with l3 = 0 and deterministic state vector, which
corresponds to the standard linear-quadratic control solution
without the Kalman Filter. The real-time application of the
LQG scheme calls for estimates of x̂(k) via (15) (starting from
known x̂0) based on which the scheme executes the control
law (16) and returns the control (acceleration or deceleration)
for application to the driver. Thus the required calculations

in real-time are limited to the parallel execution of (15)–(16),
while the control and estimation gains L and K are calculated
off-line (although may be time-variant and updated on-line).
It should be noted that the bus-following model given by (9)
is generic and could be applied to transit lines with arbitrary
geometry and characteristics. Although the first bus in service
for a particular transit line remains uncontrolled (see (5)–(6)),
all the other buses in service can be controlled as leader-
follower dyads. Thus a platoon of buses operating in the same
transit line can be modelled and controlled as leader-follower
dyads using (9), (15), (16). If essential, the first bus in service
can be under control too, e.g. by including a control term in
the state space model (5)–(6) of the leading bus.

IV. EMPIRICAL PASSENGER DATA &
APPLICATION

A. Simulation environment and setup

A simulation environment was designed in Matlab to reflect
real world bus lines including arbitrary placed stops and on-
off passenger activity. It emulates a closed-loop bus line and
includes a depot where buses leave the depot at pre-specified
time intervals (schedule) and return to the depot when they
complete one loop. In case of bunching, overtaking is allowed
as in reality. Variability in the headways is introduced via
randomness in passenger arrivals at bus stops. The probability
of passenger arrival is variable with time and between different
bus stops to emulate passenger behaviour in on/off-peak times.
In utilising empirical data, the stop locations, speed limits,
schedule, bus capacity, and passenger behaviour are accounted
for and, when applicable, are time-variant. The simulator is
stochastic, i.e., the same seed is initialised with different
random number generators so that different replications to
produce different results for the same demand scenario.

The simulator assumes that delays at bus stops due to on-off
passenger activity are analogous to the number of passengers
alighting and boarding the bus. Alighting and boarding times
of the passengers are set to 1-3 s and 2-5 s, respectively. In
case that real passenger activity data at stops are not available,
the number of people getting off at a bus stop is a random
number between 0 and the number of passengers at the bus.
Bus capacity is 30 pax. The maximum speed of a bus is 45
km/h. The controlled acceleration is bounded in the interval
[−2.0, 2.5] m/s2. In addition, a random but bounded time
delay is added to simulate buses slowing to a stop (in the
interval [0, 10] s) and accelerating to operating speed after
stopping (in the interval [0, 20] s). The simulator includes
an Application Programming Interface (API) that allows the
simulator to interact in real-time with an external control
strategy or algorithm, exchange data, pass inputs (i.e., controls)
and receive outputs (i.e., position, velocity, on-off passenger
activity and load). At regular intervals headway data, state
and control trajectories are gathered for post-analysis and
visualisation. The simulator allows the user to adjust bus
schedules and speed, start, pause and exit the simulation. A
Graphical User Interface (GUI) displays the location of bus
stops and passenger queues, bus positions and passenger load.
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B. Empirical passenger data and control strategies

To investigate the efficiency of the developed approaches to
the problem of bus bunching, two different public transport
lines are considered. The first case is a 2-km closed-loop
transport line with 10 arbitrary spaced bus stops. The second
case is the 9-km 1-California line in San Francisco (service
area of California St, Clay St, and Sacramento St) with
about 50 arbitrary spaced bus stops, depicted in Fig. 2. For
each line, we compare the behaviour of the follow-the-leader
control laws (2) (denoted “Lambda”), (4) (denoted “GM”), and
(16) (denoted “LQR”) with four different control strategies
proposed previously in the literature, namely conventional
schedule-based control, forward headway-based control [7],
backward headway-based control [10], and two-way looking
headway-based control [3]. A no-control case where buses
traveling with a nominal speed is used as baseline for com-
parison. The schedule-based control is applied with holding at
bus stops to meet scheduled departure times (if applicable).

To fine tune the proposed controllers different passenger
demand scenarios were used in the simulator. A trial-and-error
procedure involves the suitable choice of the control gains l1
and l2 (l3 can be obtained via l2) for (16), λ and µ for (2)
or (4), so as to achieve a satisfactory control behaviour and
performance with respect to schedule adherence and reliability
of bus service. Initially the 2-km line was used to investigate
the behaviour of the deterministic control laws for the bus-
following model with only two buses operating in the same
line, for different demand scenarios with time horizon of
2 h. The most satisfactory results with respect to schedule
adherence, bunching avoidance, and reliability of bus service
were obtained with control gains (l1, l2) = (0.075, 2.5) for
the control law (16), λ = 0.005 for the control law (2), and
(λ, µ) = (0.00045, 0.5) for the control law (4) with m = 1,
l = 2, and p = 1. The optimal solution for control law (16)
with (l1, l2) = (0.075, 2.5) is obtained by the LQG theory
with q1 = 1/xd, q2 = 1/vc and r = 10−4, where commercial
speed vc = 10 km/h, desired time headway hd = 7 min and
xd ∝ αẋn+1(t)hd = αvchd, where α is a unit correction
parameter. Then tests for the 1-California line were conducted
with real passenger (on-off activity) data obtained from the San
Francisco Municipal Transportation Agency (SFMTA) [36].
See the caption in Fig. 2 for details on the data format.
Aggregated data were also be available for specific time
periods (AM peak, PM peak, Midday, School) and for a whole
day. Therefore tests were conducted for different peak periods
(with a time horizon of 3-4 hours) and a whole day. For all
reported results the reaction time T of the bus driver is set to
30 s (10 s and 60 s were also tested), this includes GPS latency
and delays due to stops. Note that this time is significantly
higher than of a driver-car system (closely spaced cars).

C. Results and sensitivity analysis

Fig. 3 displays the control trajectories (acceleration or decel-
eration) for two different sets of control gains (l1, l2) (control
law (16)) and λ (control law (2)). It can be seen that the control
trajectories in LQR are smoother than in the Lambda. Note that
control is activated every 30 s but the trajectories include also

TABLE I
PERFORMANCE OF DIFFERENT STRATEGIES FOR 1-CALIFORNIA LINE.

Control Strategy Commercial Headway Bunching
Speed (km/h) Adherence Avoidance

1. No control 14.6 0.4282 N (6)
2. Forward-headway [7] 13.2 0.2573 Y (0)
3. Backward-headway [10] 13.3 0.2665 Y (0)
4. Two-way looking [3] 13.9 0.3103 N (1)
5. Schedule-based 13.0 0.2241 Y (0)
6. Lambda Eq. (2) 13.8 0.3079 Y (0)
7. GM Eq. (4) 12.9 0.2167 Y (0)
8. LQR Eq. (16) 12.6 0.1794 Y (0)

the acceleration or deceleration of the bus due to stops. Both
controllers apply mainly deceleration to avoid bunching (the
following bus is delayed), although acceleration is observed
when is possible. Note that bunching is observed under no-
control in this scenario. The spike (oscillatory) behaviour of
the Lambda controller is attributed to its nonlinear nature. In
general, the Lambda controller is very sensitive to the choice
of gain λ and its stability cannot be studied easily.

Table I displays the performance of the six control methods
for the 1-California line in terms of commercial speed (in
km/h), headway adherence, and bunching avoidance. These
results obtained from the average of twelve replications (differ-
ent seeds used for the same demand scenario in the simulator)
for each control strategy. The last column in Table I reports in
parentheses the average (rounded up) number of bunches over
twelve replications and if bunching is avoided (Y or N). Com-
mercial speed is the average operational speed of the buses,
including cruising, passenger alighting and boarding. Headway
adherence is defined as the ratio of standard deviation of
headway deviation (difference between actual and scheduled
headway) over scheduled headway, i.e. std(h−hd)/hd where
h and hd are the actual and scheduled headways, respectively.
The headway adherence provides insights for the reliability of
the bus lines. A value close to 0 indicates a small deviation
from the scheduled headway and thus high reliability of bus
services. On the other hand, high values of headway adherence
results to high waiting times for the passengers at bus stops.
As can be seen in Table I the no control case exhibits the
highest commercial speed among all control methods because
no holding is applied at bus stops, as expected. However, the
lower commercial speed in case of control, due to holding
at bus stops in schedule-based control or acceleration and
deceleration in follow-the-leader-based control laws) proves
beneficial for the reliability of bus services. Thus, the ranking
of the control methods with respect to headway adherence is
the opposite. As can be seen, Lambda, GM, and LQR lead
to a reduction of headway adherence and waiting times for
the passengers (shown later in Fig. 5) compared to no con-
trol and headway-based strategies. Remarkably the schedule-
based control exhibits better headway adherence compared to
headway-based strategies, though it requires holding. Bunch-
ing is observed under no-control (6 times) and two-way
looking headway-based control (1 time) for this particular
demand scenario. The LQR control exhibits the best reliability
among all strategies, while it is the slowest, slower is faster
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Fig. 2. The service area of 1-California line and corresponding passenger activity graph, source [36]. Left y-axis is the scale for the on-off activity at each
bus stop; Right y-axis is the scale for the solid line showing total load; Solid line indicates the total number of passengers that ride through stops; The bars
are the number of passengers that get on (shown in black) or off (shown in gray) at each bus stop.
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Fig. 3. Control trajectories for LQR and Lambda. Circles indicate points of
control activation.

effect, i.e., better reliability and customer satisfaction.
Fig. 4 presents the results obtained from the application of

the control laws (2) and (16), and no control to the 1-California
line with empirical AM peak data with scheduled headway 7
min (420 s). Figs Figs 4(a)–4(c) depict the obtained trajectories
of a stream of buses operating in line 1. In Figs 4(b) and 4(c)
buses were controlled in pairs with a follow-the-leader like
model and bus-to-bus cooperation, as in Fig. 1. Circles on the

trajectories indicate the control points, thus circles disappear
the time after a lead bus reach its destination (obviously no
circles present on the trajectory of the first bus in the line). As
can be seen, bus bunching is observed under no control (Fig.
4(a)) while it is avoided with control. LQR is seen to perform
better from Lambda control (cf. Fig. 4(b) with Fig. 4(c)).

Figs 4(d)–4(f) display the headway distributions under the
three control methods (headways collected every 1 s). A larger
concentration of values around the scheduled headway (420
s) indicates a smaller deviation from the schedule and higher
reliability. As can be seen from the distributions, LQR (mean
419 s, std 58 s) exhibits the best performance followed by
Lambda (mean 412 s, std 128 s) and no control (mean 411
s, std 170 s). The ranking of the strategies with respect to
headways is in agreement with the findings in Table I (see
schedule adherence and reliability of bus service).

The spread of travel times between stops is a good indi-
cator of reliability. To provide an aggregate quantification of
travel times and assess the sensitivity to bus frequency and
passengers demand, we plot for each bus stop the standard
deviation (indicated by black bars) and calculate the mean of
the standard deviations (MSD) of travel times between stops
for the entire public transport line (1-California line).

Figs 5(a)–5(c) display the obtained results for the three
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Fig. 4. (a)–(c): Time-space diagrams depicting the trajectories of a stream of buses operating in the same line under different control methods. Horizontal
dotted lines indicate the location of bus stops; circles indicate points of control activation. (d)–(f): Distribution of bus headways under different control methods.

control cases. As can be seen, the smallest deviation (i.e.,
most reliable control method) is the LQR method (see Fig.
5(c)), followed the Lambda law, and no control, respectively.
Similar to the travel times, graphs of customers waiting per
stop are only interesting in relative terms. Thus, we plot
the customers waiting per stop and calculate a system-wide
mean of number of customers waiting (NCW). Note that more
popular stops have higher means and maximums regardless
of control method and that there is large variability across
space. Figs 5(d)–5(f) display the obtained results for the three
control cases. Note that NCW is highly reliant on stochastic
arrival events and thus the differences are quite moderate.
Concluding, the ranking of the strategies in Fig. 5 is in
agreement with the findings in Table I, confirming that the

variability of travel times between stops is a good measure of
schedule adherence.

V. CONCLUSIONS AND OUTLOOK
The paper addressed the problem of bus bunching in transit

lines. The presented methodological framework combines bus-
following models and bus-to-bus cooperation. In contrast to
previous works, the use of bus-following models avoids the
explicit modelling of bus-stops which would render the result-
ing problem discrete, with events occurring at arbitrary time
intervals. The proposed framework unveils that the bunching
problem can be viewed as a regulation problem in control
theory. It allows for the devise of practical linear and nonlinear
laws for remote bus control to regulate space or time headways
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(a) No control: MSD = 14.2 (d) No control: NCW=40.2

(b) Lambda law: MSD = 13.2 (e) Lambda law: NCW=34.4

(c) LQR law: MSD = 12.0 (f) LQR law: NCW=33.1
Fig. 5. (a)–(c): Comparison of inter-stop travel times; (d)–(f): Comparison of waiting customers data.

and speeds, which would lead to bunching cure. Remote
control can be combined with state estimation for reliable
bus operations. Results from the application of the proposed
framework to the 9-km 1-California line in San Francisco
with about 50 arbitrary spaced bus stops showed bunching
avoidance and significant improvements in terms of schedule
reliability of bus services and delays.

The proposed control laws are easy to implement and can
be used for real-time bunching control in real-life settings.
For implementation, a tablet, smartphone, or other external
device to be mounted in each bus could be utilised. The system
provides speed assistance to the bus driver by displaying the

reference speed obtained from the developed control laws. Of
course a successful deployment of such a system assumes
that drivers are complying with the instructions of the system.
With the emergence of connected and automated vehicles (e.g.,
conditional level 3 or high automation level 4), it is envisaged
that the developed framework will be able to provide a nominal
reference speed to a cooperative adaptive cruise control system
for buses.

The validation of bus-following models with respect to
the bus drivers reaction time to instructions given by an
automatic control strategy with empirical GPS data of bus-to-
bus cooperation via wireless communication should be studied.
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We also aim to investigate the compliance of bus drivers
to instructions and its impact to control and the role of
feedback. Finally, stability of bus-following models and the
impact of time-delays on stability are future research directions
of particular importance.
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