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87 rare variants associated with blood pressure regulation in meta-analysis of 

~1.3 million individuals 

 

Power calculations  

Power estimation was performed in R 

(https://genome.sph.umich.edu/wiki/Power_Calculations:_Quantitative_Traits) and the additive 

variance formula came from Falconer D.S.1. With our Pan-Ancestry meta-analysis of up to 1,318,884 

individuals, we have 80% power to detect association with a variant with H2 of 0.003%, which 

corresponds to a variant with MAF of 0.01 and effect size of 0.039, or a variant with MAF=0.05 and 

effect size of 0.018 (Supplementary Figure 2). The effect sizes in our analyses are in terms of standard 

deviation (SD) units. 

 

EAWAS Study design 

We curated a list of 362 BP-associated loci that were known at the time of the analyses and 

conservatively defined known loci using both distance (±500kb) and LD such that variants outside of 

the known loci had r2 < 0.1 (in 1000 Genomes EUR) with the previously reported variants (Methods; 

Supplementary Table 4). Single variant association summaries for 382 SNVs with P<5x10-8 (derived 

from two-sided tests) outside of these regions (Stage 1) was requested from MVP, deCODE and 

GENOA. Results obtained from MVP, deCODE and GENOA was meta-analysed. Meta-analyses of 

Stage 1 and the results from meta-analyses of MVP, deCODE and GENOA was performed and any 

variant with P-value<5x10-8 and consistent direction of effects with no evidence for heterogeneity 

were considered new. 

Three hundred and forty-four SNVs (200 genomic regions; eight rare SNVs, 25 low-frequency SNVs; 

Methods) of the 382 BP-associated SNVs (91%) were associated with one or more BP traits at P<5x10-

8 in the combined EUR (Stage 2) meta-analyses involving up to ~1.165 million individuals (Table 1, 

Supplementary Table 5, Figure 2). An additional seven SNVs from seven genomic regions were only 

genome-wide significant in the PA (Stage 2) meta-analyses of ~1.3 million individuals (Supplementary 

Table 5), bringing the total number of BP-associated SNVs in Stage 2 to 355. Of the novel EUR BP-

associated SNVs, 41 (30 loci; three rare SNVs, four low-frequency SNVs) were associated with an 

additional BP trait in the PA meta-analyses in addition to the EUR associated trait. All the associations 

had consistent directions of effect across Stage 1 and also across Stage 2 and no evidence of 

heterogeneity (P>0.0001; Supplementary Table 5).  

 

 

Quality Control of novel BP-associated variants from EAWAS and RV-GWAS 

 

We adopted a single discovery-stage meta-analysis study design for both the EAWAS and RV-

GWAS primarily for reasons of statistical power. The data request studies were not statistically 

powered on their own to detect the effects of the subset of SNVs we selected for data request from 



MVP/deCODE/GENOA (EAWAS) or MVP (RV-GWAS) since these studies involved only around 

half the samples of the discovery. For a replication study, a sample size similar to, or larger than that 

used for the discovery, is required to have sufficient statistical power. In the absence of a well 

powered replication dataset, we have taken exhaustive measures to ensure the robustness of our 

findings.  

 

We ensured that novel BP-associated variants that we claim were not driven by a single study. All 

reported variants had data from  19 studies in the Stage 1 EAWAS and 2 studies in the RV-GWAS, 

reducing the likelihood of a false association. In addition, all the novel BP-associated variants we 

report had consistent directions of effect in the Stage 1 studies and the data request studies 

(MVP+deCODE+GENOA for EAWAS, MVP alone for RV-GWAS). We verify the assumption of the 

fixed effects meta-analysis model, we ensured there was no evidence of heterogeneity across the effect 

estimates from contributing studies. In addition, we performed random effects meta-analysis (Han and 

Eskin’s AJHG 2011 Random Effects Model) of novel BP-associated variants to minimise false 

discoveries due to study heterogeneity. The below plot (Supplementary Figure A) compares the -

log10(P-values) from the fixed effect and random effects meta-analyses for all the variants in the 

EAWAS for which data were requested in the look up studies (see Supplementary Table 5a). There is 

strong concordance, suggesting that a fixed effects meta-analysis model is appropriate. 

 

 

Supplementary Figure 4a: Comparison of the  P-values for association of the novel BP SNVs from 

the random effects meta-analyses and the fixed effects meta analyses as provided in Supplementary 

Table 5. -log10(P-values) are plotted. 

 

 
 

 

 

To ensure that the frequency of variants are not a result of inaccurate clustering/genotype calling, we 

confirmed that the allele frequencies were in the expected range by comparing the allele frequencies 

between Stage 1 and the data request studies (MVP+deCODE+GENOA for the EAWAS and MVP 

alone for RV-GWAS). In addition, we compared the allele frequencies to those in the reference 



datasets (gnomAD, UCSC, and 1000 Genomes). Allele frequencies were plotted to check for 

consistency and those not consistent were removed e.g. rs7775698. The plot below shows the 

comparison of MAFs of novel variants in EAWAS between Stage 1 and MVP+deCODE+GENOA. 

 

Supplementary Figure 4b: Minor Allele Frequencies (MAF) of the novel BP-associations from the 

from Stage 1 of the EAWAS and the data request studies (MVP+deCODE+GENOA) restricted to 

EUR. 

 

 

Where variants were only available in a small number of studies, we checked the cluster plots of the 

studies involved and such variants as rs201702041, rs200510006, rs142360750 and rs143226982 that 

were poorly clustered in the PROMIS study were removed. 

 

Within UK Biobank we performed our own QC for the genotyped variants rather than using the QC’d 

data as provided by UK Biobank, as we were specifically interested in the rare variants and knew that 

these were most vulnerable to clustering errors. Also described in detail within the section: “UK 

Biobank specific analyses” in this document. For the RV-GWAS and the FINEMAP analyses of UK 

Biobank we were able to perform additional checks for some of the variants. We compared the minor 

allele frequencies of the variants genotyped by arrays or imputed with those genotyped using whole 

exome sequencing. For the three novel BP-associated variants we identified in UK Biobank (rather 

than the EAWAS), the MAF was consistent between the imputed and WES data, suggesting the 

genotyping was robust. 

 

Variants 1: Chromosome: 1; Position: 198,222,215 

 rsID: rs55833332 

 MAF in WES (both versions of calling/QC): 0.00747 

 MAF for the imputed variant in UKBB: 0.00816 

 MAF of variant in gnomAD v2.1.1 (for reference): 0.006475 (exomes), 0.008991 

(genomes) and 0.009749 (European non-Finnish) 



 

Variant 2:  Chromosome: 20; Position: 61,050,522 

 rsID: rs200383755 

 MAF in WES (both versions of calling/QC): 0.00680 

 MAF for the imputed variant in UKBB: 0.00601 

 MAF of variant in gnomAD v2.1.1 (for reference): 0.003412 (exomes), 0.003479 

(genomes) and 0.005443 (European non-Finnish) 

Variant 3 (was imputed): Chromosome:14; Position: 100,143,685 

 rsID: rs149250178 

MAF in WES (both versions of calling/QC): 0.00020 

 MAF for the imputed variant in UKBB: 0.00036 

 MAF of variant in gnomAD v2.1.1 (for reference): no variant (exomes), 0.003479 

(genomes) and 0.001104 (European non-Finnish) 

 

We compared the minor allele frequency (MAF) calculated using genotyped genotypes and imputed 

genotypes of the rare variants both genotyped and imputed in UKBB. We looked at this distribution 

as a function of the INFO score and identified that the MAF of the imputed variants with INFO>0.3 

had an almost perfect correlation (>0.9998) with the MAF of genotyped variants. Based on this 

comparison we only analysed rare variants with an INFO>0.3 in UKBB. We checked imputation 

quality for any BP-associated variant that was claimed and imputed. All variants we claim had 

imputation info score >0.8 in all Stage 1 studies. 

 

Associations of previously reported variants in the Stage 1 EAWAS and UKBB 

 

Of the 362 BP-associated loci reported prior to our analyses (i.e. pre-2018; Methods; Supplementary 

Table 4), 291 (80%) had one or more genome-wide significant associations in our UKBB GWAS 

that were in LD with the previously reported variant and 124 were genome-wide significant in the 

EAWAS. We confirmed 332 known loci at P≤5x10-5 and 344 (95%) were nominally significant 

(P≤0.05). 

 

Comparison of conditional analyses in the EAWAS and UKBB GWAS 

 

For eight of the known regions in Table 2 the common BP-associated SNVs were not available on 

Exome array, but independently associated rare/low-frequency variants had been identified. We 

therefore verified that these associations were valid using the dense genomic coverage in UKBB. At 

NOX4, ZFAT, GEM, MYO1C and LTBP4 the same variants (or proxies r2>0.9) were identified with 

FINEMAP in UKBB (Table 3) as with GCTA for the EAWAS (Table 2). At GEM and NOX4 two rare 

BP-associated SNVs were identified in both genes in addition to the previously reported common 

variant associations (Table 3; Supplementary Table 10).  At FBXL19, a rare missense variant was 

independent of the common variant signal in the EAWAS, (Table 2, Supplementary Table 10) while 

in the FINEMAP analyses in UKBB, an intron variant in STX4 was in LD (r2=0.88) with the FBXL19 

missense variant. (A second rare SNV, rs2234710, upstream of BCL7C, was independent of the STX4 

and common variant associations at this locus, in UKBB.) At FOXS1, a rare missense variant was 

identified as the top association in the EAWAS, while in the FINEMAP UKBB analyses an intronic 



variant in MYLK2, which is in LD (r2=1 in 1000 genomes EUR) with the FOXS1 variant was identified, 

and although the FOXS1 SNV is a more attractive candidate causal variant as it is missense, MYLK2 

is an attractive candidate gene as it is targeted by the drug Fostamatinib, which is used for the treatment 

of chronic immune thrombocytopenia and hypertension is reported as a side effect of Fostamatinib. 

Therefore it is likely that the rare/low-frequency associations at these loci are valid and independent 

of the established common variant associations. 

 

Annotation of BP-associated variants 

 

Across all 589 BP loci considered, 45% of the independent BP-associated rare variants were coding, 

while amongst the common variants, 20% were coding, in part reflecting the exome-centric design of 

the EAWAS. Twenty-one rare and 43 low-frequency variants were within regulatory elements 

including enhancers, promoters, CTCF binding sites, transcription factor binding sites and open 

chromatin regions highlighting genetic control of BP levels through gene expression. 

 

 

Gene-based association tests sensitivity analyses 

 

Amongst the genes that map to our newly identified BP-associated loci, ten from the EAWAS 

(SCMH1, FILIP1L, CEP97, G6PC2, PHC3, HAUS6, PLCB3, TBX5, SOS2, NEK9) and four from the 

RV-GWAS (NEK7, PHC3, TBX5, GATA5) were associated with BP (P<2.5x10-6). Analyses 

conditional on the top SNV in the gene showed that the associations were attributable to a single rare 

variant identified in the single variant analyses and not likely to be due to multiple rare SNVs 

(Supplementary Table 11). 

 

We tested the genes that mapped to the 362 previously reported BP loci. In the EAWAS, 21 genes 

within known loci, were associated with BP (P<2.5x10-6; Supplementary Table 11) and ten genes (two 

not in the EAWAS list, ZNF646 and COL17A1) were associated in the RV-GWAS (P<2.5x10-6; 

Supplementary Table 11). Analyses conditional on the top SNV in the gene, showed that six of these 

gene associations were due to multiple rare SNV associations (GEM, NPR1, DBH, COL21A1, NOX4 

and AGT: SKAT conditional P<1x10-4; Supplementary Table 11). To test whether the associations 

were due to LD with known common BP-associated variants, we also performed SKAT tests 

conditional on the known common variants in the individual loci. Five of the genes, NPR1, DBH, 

COL21A1, NOX4, GEM, were associated with BP independently of both the common variant 

associations and the top SNV in the gene (P≤1x10-5; Supplementary Table 11) confirming the findings 

in the single variant conditional analyses (Supplementary Table 10).  

 

To assess sensitivity to the MAF threshold, we repeated the gene-based tests using a MAF<0.05 

threshold. No genes with multiple rare/low-frequency SNVs were identified outside of known or novel 

regions (conditional SKAT P>0.0001; Supplementary Table 11). Of the 27 genes that were associated 

in the novel loci (P<2.5x10-6), the association at PLCB3 with DBP was due to multiple DBP-associated 

SNVs (P=2.63x10-6; Supplementary Table 11) consistent with the conditional single variant analyses 

that identified one rare and one low-frequency variant associated in this gene (Supplementary Table 



10). Of the 67 genes associated in known regions, nine (NPR1, DBH, COL21A1, NOX4, CEP120, 

LARP4, PLCE1, NOS3 and TBC1D32) were due to multiple SNVs, and the associations with NPR1, 

COL21A1, and CEP120 were not due to common variant associations (conditional SKAT P<1x10-5; 

Supplementary Table 11, 12). In total, seven genes, one in a novel region (PLCB3) and six in known 

regions (NPR1, DBH, COL21A1, NOX4, GEM and CEP120) were implicated in BP regulation with 

multiple SNVs associated in the genes that were not due to LD with established common SNV-BP 

associations. 

 

Rare variant gene-set enrichment analyses 

Lists of genes representing various pathways and biological processes were constructed from the 

following sources: GO (download from http://geneontology.org/ on December 9, 2018, using the files 

go-basic.obo and goa_human.gaf), GTEX (download from https://gtexportal.org on December 9, 

2018, using the file GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.gz), 

KEGG (downloaded from ftp.pathways.jp on December 9, 2018 using the files hsa.list and 

map_title.tab), MGI (downloaded from http://www.informatics.jax.org downloads/reports on 

December 9, 2018, using the files MPheno_OBO.ontology.obo, HMD_HumanPhenotype.rpt and 

MGI_PhenoGenoMP.rpt) and Orphanet (downloaded from http://www.orphadata.org/data/ORDO/ on 

December 9, 2018, using the files ordo.owl).  For GTEx, a gene set for a tissue was defined as the set 

of all genes with highest expression in that tissue.  In the cases of the ontologies (GO, MGI, Orpha) 

gene sets were constructed by first collecting the genes annotated to each specific node and then rolling 

these annotations up to each parent node recursively to the top of the ontology.  For the MGI data the 

mouse to human orthology mappings provided in the source files were used.  All gene references were 

mapped to entrez IDs using Homo_sapiens.gene_info file obtained from 

ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia.  Genes not listed as “protein-coding” 

genes in entrez genes were omitted, as were genes with no chromosomal mappings in the hg38 

reference genome assembly.  Gene sets with only a single gene were eliminated from further 

consideration. 

We tested whether genes near rare BP-associated SNVs were enriched in gene sets from Gene 

Ontology (GO), KEGG, Mouse Genome Informatics (MGI) and Orphanet (Methods; Supplementary 

Table 25). These (rare variant) genes from both known and novel loci were enriched in BP-related 

pathways (Bonferroni adjusted P<0.05, Methods; Supplementary Table 23) including “regulation of 

blood vessel size” (GO) and “renin secretion” (KEGG). Genes implicated by rare SNVs at known loci 

were enriched in “tissue remodeling” (GO) and “artery aorta” (GO). Genes implicated by rare SNVs 

at new BP-loci were enriched in rare circulatory system diseases (that include hypertension and rare 

renal diseases) in Orphanet. 

 

Information on new BP genes 

Below is provided some information on some interesting genes harbouring or neighbouring new BP-

associated rare/low-frequency variants. 

 

ZFHX3 

The low frequency missense variant rs62051555 (p.Gln2014His), located in exon eight of the 

transcription factor, zinc finger homeobox 3 (ZFHX3), is associated with increased levels of SBP and 



PP. Interestingly, ZFHX3 plays a role in the left-right patterning of cardiac atria during development, 

with changed expression of genes important for sidedness 2. Mice with cardiac-restricted knockdown 

of ZFHX3 have cardiomyopathy, impaired left ventricular function, atrial enlargement, altered atrial 

electrophysiology properties (increased conduction velocity) 2 and abnormalities in calcium 

homeostasis 3,2. They also have severely dilated and fibrosed atria with a large mass consistent with 

thrombus and a significantly shorter life span compared to control animals 2. The above abnormalities 

can increase susceptibility to atrial fibrillation (AF) 2. ZFHX3 has been reported multiple times to be 

associated with AF 4,5,6,7,8,9, a major risk factor for cardioembolic stroke10 11,12.  The association 

between AF and an increased risk for cardiovascular morbidity and mortality cannot be explained by 

thromboembolism alone, and patients with AF have increased beat-to-beat BP variability, which may 

adversely affect vascular structure and function 13, which can potentially influence BP.   

 

LAMA5 

Two low-frequency missense variants, rs11699758 (p.Val1757Ile) and rs13039398 (p.Arg1667Trp), 

residing in LAMA5, are associated with decreased SBP and PP. LAMA5 encodes an extracellular matrix 

laminin α5 chain. Laminins are a group of α/β/γ glycoprotein heterotrimers, which constitute the main 

noncollagenous component of basement membranes 14. Laminin α5 plays an important role in 

embryogenesis, and Lama5-/- mice embryos do not survive until birth 14. Particularly, laminin 

heterotrimers containing laminin α5 chain are involved in glomerulogenesis, and are essential for the 

formation of the glomerular basement membrane, so that Lama5-/- embryos have failed 

vascularization of glomeruli in kidneys and even present with kidney agenesis 15. 

Moreover, endothelial cell basement membrane laminin α5 is required for a normal shear response by 

resistance arteries 16. The loss of laminin α5 from endothelial basement membranes in Tek-

Cre::Lama5-/- mice results in an almost complete elimination of dilation in response to increased shear 

stress, which correlates with decreased endothelial cell cortical stiffness, decreased size of integrin 

beta1-positive/vinculin-positive focal adhesions and decreased junctional association of actin–myosin 

II 16. In vitro experiments suggest that arterial endothelial cells directly bind to laminin α5/β1/γ1 via 

β1 integrins and that this binding increases VE-cadherin stabilization at cell-cell junctions, required 

for an adequate shear response 16.  

LAMA5 is also a target of a therapy under investigation for treatment of stroke (Supplementary Table 

24). 

 

HSPA4 

The missense variant of HSPA4 (rs61755724, p.Ala159Thr) is associated with increase in DBP. Heat 

shock protein HSPA4 is a member of the HSP110 family and acts as a nucleotide exchange factor of 

HSP70 chaperones 17. Upregulated expression of Hspa4 is observed in murine hearts exposed to 

pressure overload and in failing human hearts 17. Furthermore, Hspa4-/- mice developed cardiac 

concentric hypertrophy and fibrosis with elevated expression levels of hypertrophic markers and an 

accumulation of polyubiquitinated proteins in neonatal hearts, suggesting that Hspa4-/- plays a role in 

protein quality control 17. 

 

MCL1 

The missense variant rs11580946 (p.Ala227Val), belonging to apoptosis regulator MCL1, is 

associated with decreased levels of SBP and PP. MCL1 participates in survival of haematopoietic stem 



cells 18, progenitor cells, effector lymphocytes and cardiomyocytes 19. Given its role in cell survival, 

MCL1 is a drug target for cancer-related phenotypes, with the small molecule inhibitor (antagonist) 

currently in 1 phase II trials and also for emergency treatment of acute angle-closure glaucoma and 

other conditions in which rapid reduction in intraocular pressure and vitreous volume is indicated 

(Supplementary Table 24). Cardiac-specific ablation of Mcl-1 in mice results in a rapidly fatal dilated 

cardiomyopathy, preceded by loss of myofibrils and cardiac contractility, abnormal mitochondria 

ultrastructure, defective mitochondrial respiration, and impaired autophagy 20.  

 

TBX5 

The newly identified rare variant rs77357563 (p.Asp111Tyr; predicted deleterious by SIFT) in TBX5, 

is adjacent to the known TBX3 region21-23 and highlights TBX5 as an additional candidate gene. TBX5 

is essential for normal cardiac development. Mutations in TBX5 are known to cause various congenital 

heart diseases24 and arrhythmias including Holt Oram syndrome and are associated with atrial 

fibrillation25.  

 

TGFB2 

We observed rare variants in both intergenic and intronic regions, one rare intergenic variant 

rs12135454 is located near TGFB2. Prior work has indicated the TGFβ pathway as important in the 

genetics of BP traits26. Mutations in TGFB2 cause Loeys-Dietz syndrome 4, a condition which includes 

aortic aneurysm, bicuspid aortic valve and arterial tortuosity.27 

 

 

  



Mendelian Randomisation to assess the effect of metabolites on BP 

 

We tested for pleiotropic effects of the IVs used for the 3-methylglutarylcarnitine(2) using two models. 

Firstly, we included any of the 14 metabolites in the analyses that shared at least one IV with 3-

methylglutarylcarnitine(2) in a multi-variable MR model (three metabolites in total). Secondly, we 

included glycine in a multi-variable MR model with 3-methylglutarylcarnitine(2) as these two 

metabolites shared several IVs but glycine was not in our list of 14 metabolites analysed and we have 

recently shown that glycine is causal for BP28. 3-methylglutarylcarnitine(2) was consistently and 

significantly associated with DBP (P < 0.05) in the multi-variable MR models. Notably, we found that 

3-methylglutarylcarnitine(2) was independently associated with DBP adjusting for the effect of 

glycine. Sensitivity analysis from multi-variable MR-Egger showed little evidence that the Egger 

intercept was deviated from zero for both models (Pintercept > 0.01).       

 

We found genetically determined 3-methylglutarycarnitine (2) was predictive of DBP in both 

univariable and multivariable MR analyses (Supplementary Table 18).  3-methylglutarylcarnitine 

belongs to the class of organic compounds known as acyl carnitines involved in long-chain fatty acid 

metabolism in mitochondria and in leucine metabolism. It is a diagnostic metabolite of 3-hydroxy-3-

methylglutaryl-coenzyme A lyase deficiency, an inborn error of metabolism in which the body cannot 

process leucine or generate ketones29, with dilated cardiomyopathy as a complication30. Leucine has 

been shown to increase hypothalamic mTORC1 leading to an increase in BP31. A prospective clinical 

study also found that 3-methylglutarycarnitine was significantly lower in maternal first-trimester 

serum of fetal congenital heart defects (CHDs) than healthy controls32. 

 

Kidney expression data 

Datasets, expression and SNP genotyping 

The cis-eQTL meta-analysis was carried out using data from two projects: TRANScriptome of renaL 

humAn TissuE (TRANSLATE) Study (N=186) and The Cancer Genome Atlas (TCGA) study (N=99).  

The same quality control filters, data processing and analyses methods were applied to both datasets. 

Gene expression was quantified in terms of transcripts per million (TPM) using Kallisto33. Outlier 

samples were removed based on a statistic described in Wright et al. 34 or based on pairwise correlation 

between samples, where samples with median correlation <0.8 were excluded as per ‘t Hoen et al. 35. 

Only genes on autosomal chromosomes were selected for the analysis. Gene expression threshold was 

set at TPM>0.1 in at least 20% of samples within each study/sequencing batch and read counts ≥ 6. A 

gene was also removed if its interquartile range was zero. Only genes that passed all of the above 

RNA-seq quality control filters in both studies were used in the analysis.  

Gene-level TPM values were normalised as follows. First, log2 of TPM values were normalised across 

samples using robust quantile normalisation. Second, the normalised gene expression values were 

transformed using rank-based inverse normal transformation. Third, to account for hidden variation in 

RNA-seq data due to technical processing (such as batch effects or sample processing in pre-

sequencing stage), we used probabilistic estimation of expression residuals (PEER) method36 and 

estimated 30 hidden factors for TRANSLATE Study and 15 for TCGA. The numbers of hidden factors 

were chosen based on sample sizes of each dataset as recommended in GTEx eQTL analyses37,38.  



In TRANSLATE Study, genotyping was done using Infinium HumanCoreExome-24 BeadChip arrays 

and the allele calls were made using Genome Studio. In TCGA, genotyping was done using Affymetrix 

Genome-Wide Human SNP Array 6.0 and the allele calls were made using Birdseed. The following 

quality control filters were applied to genotype data. Samples were excluded if their genotyping rate 

was <95%, their heterozygosity rate was outside ± 3 standard deviations from the mean, they had 

cryptic relatedness with other individuals, were of non-white European genetic ancestry or had 

discordant sex information (inconsistency between declared and genotyped sex). Genetic variants were 

excluded if their genotyping rate was <95%, they mapped to Y chromosome or mitochondrial DNA, 

they had ambiguous chromosomal location, they violated Hardy-Weinberg equilibrium (HWE) 

(P<0.001) or if their minor allele frequency (MAF) was <5%.  

 

Genotype imputation was conducted using minimac339 with Haplotype Reference Consortium data as 

the reference panel. The imputation was performed on Michigan Imputation Server39. Post-imputation, 

we excluded duplicate variants, non-SNPs, variants with low imputation coefficient (R2<0.4), low 

frequency variants (MAF<5%) and variants that violated HWE (P<10-6). 

 

cis-eQTL meta-analysis 

The association between gene expression and genotype was conducted using multiple linear regression 

with normalised gene expression as the dependent variable and genotype dosage, sex, top three 

genotype-derived principal components and the estimated hidden factors (30 for TRANSLATE Study 

and 15 for TCGA) as independent variables. The estimated coefficients from both studies were 

combined using inverse variance method. Only SNPs within 1Mb from the closest bound of a gene 

were considered. The correction for multiple testing for analysis of each gene with its in-cis SNPs was 

conducted using the permutation test, where the distribution of the smallest meta-combined P-value 

was determined using 2,000 permutations. At each permutation, the genotype sample labels were 

permuted but kept coupled with the sample labels of the top three genotype principal components for 

TRANSLATE Study data and TCGA data, separately. For each gene, the associations between its 

expression and its in-cis SNPs were re-estimated and the smallest meta-combined P-value recorded. 

Finally, for each gene the SNP with the smallest meta-combined P-value was identified and adjusted 

using the corresponding empirical distribution of the smallest meta-combined P-values for that gene.  

False discovery rate was determined using q-values from the qvalue R package. The permutation 

corrected P-values were used for calculating the false discovery rate (FDR) with a cut-off of 5%.  

A threshold for nominal meta-combined P-values for SNPs that did not have the smallest meta-

combined P-values was calculated as follows. First, a global permutation-adjusted P-value, pt, was 

chosen to be the permutation-adjusted P-value for the gene with FDR closets to 5%. Then for each 

gene, a threshold for meta-combined nominal P-values was chosen to be the probability of observing 

a value less than or equal to pt using the gene's empirical distribution of the smallest meta-combined 

P-values. 

In total, 16,333 genes with at least one in-cis SNP and 4,862,143 SNPs with at least one in-cis gene 

were used in the analysis, resulting in 60,984,484 models. After correction for multiple testing, 4,431 

genes passed FDR 5% cut-off. There were 425,096 statistically significant gene-SNP pairs that passed 

nominal P-value cut-offs: 317,425 unique SNPs associated with 4,431 genes.  

 



The BP SNVs (N= 358 at 214 loci, see Supplementary Table 4b) were considered or proxies (r2>0.8) 

if the sentinel SNV was not available. For reporting we only considered genes passing the 5% FDR 

cut-off and significant cis-eQTL signal(s) at P < 5 × 10−8. We reviewed the results for the most strongly 

associated cis-eQTL for the corresponding transcript.  If the BP SNV and the eQTL were the same or 

in high LD (r2>0.7), the BP SNV was reported as an eQTL. The results are summarized in 

Supplementary Table 21.  

 

 

Colocalisation of BP associations and eQTL 

 

Colocalisation analyses using the common variant results identified 32 unique BP-associated loci 

where the new BP-associated variant colocalised with the eQTL for 54 unique genes in GTEx tissues 

highlighting potential candidate genes. Many of the novel BP variants in genes including those in 

PHACTR1, TIE1, CTSK, LTBP1, CRIM1, TIPARP that colocalised with gene expression in GTEx in 

specific cardiovascular tissues, are also associated with CVD related phenotypes40-53. TIE1 is involved 

in angiopoietin function in vascular remodelling and inflammation54. In the mouse, mutations in Tie1 

cause many cardiovascular phenotypes including small heart development, abnormal vascular 

endothelial cell morphology, abnormal endocardium morphology and abnormal heart atrium 

morphology44,55. Together these observations make TIE1 a plausible candidate gene. Crim1 

KST264/KST264 mice implicate Crim1 in the regulation of vascular endothelial growth factor-A 

activity during glomerular vascular development52. Tiparp negative mice have kidney defects, 

including defects in smooth muscle cell number and location56. 

 

Tissue and cell enrichment analyses using DEPICT 

 

We used DEPICT (Data-driven Expression Prioritized Integration for Complex Traits) as a 

complementary enrichment analysis to (1) identify tissues and cells in which genes at novel and 

previously reported BP loci are highly expressed and  2) to test for enrichment in gene sets associated 

with biological annotations, which included molecular pathways and phenotype data from mouse 

knockout studies. Two analyses were performed one involved all BP variants reported previously for 

BP traits (that were genome-wide significant in our dataset; Supplementary Table 9, 10) and a second 

set including all previously reported BP variants and variants at new loci, i.e. newly validated genome-

wide significant SNVs (including the rare variants identified in the RV-GWAS) and any independent 

variants at these loci (Supplementary Tables 5, 6, 8).  We report significant enrichments with a false 

discovery rate of 1%. We found the most significant enrichments were observed for the urogenital 

system (P=1.25x10-16), cardiovascular system (P=2.01x10-13) and endocrine system (P=1.78x10-11) 

(Supplementary Table 23). 

 

Enrichment of BP-associated SNVs in DNase I-hypersensitive sites 

 

To investigate cell-type-specific enrichment within DNase I-hypersensitive sites we used FORGE, 

which tests for enrichment of SNVs within DNase I-hypersensitive sites in 299 cell types from the 

Epigenomics Roadmap Project and 125 cell lines from ENCODE57. All common and rare non-coding 

novel and conditionally independent validated variants from EAWAS, and SNVs from the RV-GWAS 



(all P<5.0x10-8) were included (Supplementary Tables 5, 6, 8). BP-trait specific analyses were not 

performed. We supplemented this listing to include all novel rare, low frequency and common variants 

from FINEMAP (variants not in LD (r2>0.6) with a previously reported BP SNV (851 variants; 

Supplementary Table 10). In total 1,055 variants were included in the input from which 37 that were 

not in 1000 genomes Phase I and 64 that were in LD (r2>0.8) with the data were excluded leaving 954 

for analysis. Enrichment was calculated by taking the Bonferroni corrected P-values from a binomial 

test comparing overlap of the supplied SNPs with 100 background SNP sets. 

 

Significant results (Bonferroni corrected P-value<0.01) were observed across 15 tissues 

(Supplementary Table 23) in the ENCODE dataset. The strongest enrichments were in blood vessels, 

heart, skin, connective tissue, lung and epithelium (Z-score >6). These enriched tissues are similar to 

those reported for common BP associated SNVs26. Testing for enrichment in the Epigenomics 

Roadmap project indicated striking enrichment of BP SNVs in fetal kidney and fetal lung tissues (renal 

pelvis, renal cortex, renal kidney and lung, Z score=300) and significant enrichment across a further 

12 tissues (new Supplementary Table 23).  

 

 

Phenome-wide associations of the new common SNV BP loci  

 

Two BP-associated loci were in high LD (r2>0.8) with alcohol consumption variants. Variants at four 

new BP loci were in high LD with red blood cell trait associated SNVs, in particular haemoglobin, and 

one of these was also shared with iron traits (Figure 3). One locus was in LD with platelet traits and 

one with a plasminogen related trait. The new BP variants were also in high LD with variants 

associated with eye diseases for which hypertension is a risk factor: two with age-related macular 

degeneration and two with exfoliation glaucoma. The BP associated variant in CASC16 was shared 

with Parkinson’s disease. Telomere length has also been linked to aging and a variant at the MYNN 

locus was in LD with a telomere length associated variant.    

 

Colocalization of BP-associated SNVs with cardiometabolic traits in the EAWAS 

 

High blood pressure is one of several risk factors that act in concert increase risk for cardiovascular 

disease (CVD). To explore the genetic relations between blood pressure and other CVD risk factors 

(obesity, elevated blood total cholesterol, low density lipoprotein cholesterol [LDL], and triglyceride 

levels,  high density lipoprotein [HDL] cholesterol levels, and diabetes),  we conducted colocalization 

analyses using our  blood pressure genetic results in conjunction with summary GWAS of other risk 

factors (body mass index58, LDL cholesterol59, triglycerides59, HDL cholesterol59, fasting glucose60, 

type 2 diabetes61 and coronary artery disease (CAD)62) using the COLOC package63 in R to determine 

whether the same causal variant at each locus was associated with both blood pressure and CVD risk 

factor (Methods). At a posterior probability of both traits colocalising (H4) >90% (Supplementary 

Table 15), we found that blood pressure (DBP, SBP, PP) shared associated SNVs with CAD on 

chromosome 6 (SLC29A1/RP11-344J7.4 locus) , chromosome 19 (APOE/APOC1/GIPR/QPCTL), 

chromosome 20 (KCNB1/B4GALT5), chromosome 21(AP000318.2); with lipids (HDL cholesterol , 

LDL cholesterol and triglycerides) on chromosome 1(CD164L2), chromosome 3 (LINC02029), 

chromosome 4 (PPP3CA and PDGFC), chromosome 5 (C5orf67), chromosome 6 (SLC29A1 and 



LINC01625), chromosome 7 (KLF14), chromosome 12 (BCL7A), chromosome 19 (ZC3H4); with 

BMI on chromosome 1(ZZZ3), chromosome 2 (ACMSD),chromosome 4(PPP3CA), chromosome 5 

(RP11-6N13.1), chromosome 6 (FOXO3), chromosome 7(HIP1 and KLF14), chromosome 

16(CNOT1), chromosome 19 (ZC3H4); with fasting glucose on chromosome 2 

(SPC25/ABCB11/G6PC2), chromosome 11 (MTNR1B/SNRPGP16); and with type 2 diabetes on 

chromosome 3 (PPARG).  

 

Supplementary Figure 5. Co-localisation of the newly identified BP-associated loci with cardiometabolic 
traits using the UKBB GWAS data The locus number is provided for the novel locus with the nearest gene(s) 
in parentheses 
 

 
 
  



 

 

Mendelian Randomisation (MR) analyses of CVDs  

 

We applied Mendelian randomisation (MR) to estimate the effects of blood pressure on CVD traits in 

a two-sample MR framework.  The MR approach was based on the following assumption: (i) the 

genetic variants used as instrumental variables (IVs) are associated with blood pressure. (ii) the genetic 

variants are not associated with any confounders of the exposure-outcome relationship. (iii) the genetic 

variants are associated with the outcome only through change in BP i.e. a lack of pleiotropy. 

 

The inverse-variance weighted (IVW) method with a multiplicative random-effect model64, MR-Egger 

and MR-PRESSO were used. We also performed several sensitivity analyses to assess the robustness 

of our results to potential violations of the Mendelian Randomisation assumptions given these analyses 

have different assumptions for validity.  To assess instrument strength, we computed the F statistic65 

for the association of genetic variants with SBP, DBP and PP, respectively.  MR-Egger regression 

generates valid estimates even if not all the genetic instruments are valid, as long as the InSIDE 

(Instrument Strength Independent of Direct Effect) assumption holds66 and also test if there is 

unbalanced pleiotropy.  MR-PRESSO permits removal of outlier IVs67.  To minimise pleiotropy, we 

removed SNVs associated with cardiovascular traits, including cholesterol level 

(LDL/HDL/triglycerides), smoking, Type 2 diabetes (T2D) and Atrial Fibrillation (AF) 

(Supplementary Table 16c).  Although these methods may have different statistical power, the 

rationale is that if these methods give a similar conclusion regarding the association of BP and CVD, 

then we are more confident in inferring that the positive results are unlikely driven by violation of the 

MR assumptions68.   

 

We performed a genetic analysis of BP plus BP trait specific analyses of SBP, DBP, PP (online 

methods) using both previously published and newly identified BP SNVs.  We considered any stroke, 

any ischemic stroke, large artery stroke, cardioembolic stroke, small vessel stroke and coronary artery 

disease (CAD) (online methods).  As expected, blood pressure was positively associated with increased 

stroke (any stroke) risk (odds ratio (95% confidence interval) = 1.42 (1.36 - 1.49) per increase of one 

standard deviation in inverse-normal transformed of generic blood pressure (BPgeneric), P = 5.70  

10-50; 1.71 (1.61 - 1.82) per increase of one standard deviation of inverse-normal transformed of SBP, 

P = 1.35  10-67; 1.53 (1.44 - 1.64) per increase of one standard deviation in inverse-normal 

transformed of DBP, P = 2.34  10-37; 1.39 (1.31 - 1.47) per increase of one standard deviation of 

inverse-normal transformed of PP, P = 3.62  10-28).  MR-EGGER and MR-PRESSO gave similar 

results (Supplementary Table 16) and no significant pleiotropy was detected (P>0.01 for the MR-

EGGER intercept; Supplementary Table 16). The positive association with stroke subtypes were 

statistically significant (P<0.00069; Figure 4, Supplementary Table 16), with the largest effect size of 

blood pressure on large artery stroke while smallest effect was with cardioembolic stroke.  SBP was 

the primary association - with the largest effect size, with any of the CVD traits investigated (Figure 

4, Supplementary Table 16), suggesting that SBP is the most sensitive BP measure, consistent with 

clinical practice.  

 



In MR-Egger, we tested if the intercept estimate deviated from zero for the inference of genetic 

pleiotropy, i.e. where certain genetic variants affect the outcome through a different biological pathway 

from BP.  In practice, there was little evidence that the MR-Egger intercept deviated from zero for any 

BP traits and any CVD traits, e.g. SBP and large artery stroke (intercept = 0.0026, SE = 0.0025, P = 

0.31).     

 

With MR-PRESSO, we used the outlier test embedded in the R package ‘MR-PRESSO’ to remove 

outlier due to pleiotropy and estimated the causal effects by IVW method before and after outlier 

removal.   The causal effects (OR) after outlier-corrected were similar to the ‘raw’ estimates 

(Supplementary Table 16: with MR-PRESSO results), indicating that there was little evidence for 

genetic pleiotropy.   

To quantify the strength of the selected instrumental variants for each “exposure (BP) – outcome 

(CVD)” pairs, we computed F-statistics (Supplementary Table 16).  The F-statistics for the 964 SNVs 

for the “BP generic – Any Stroke” ranged from 11 to 767 with a median of 44, well above the threshold 

of F > 10 typically recommended for MR analysis 69. 

When performing a multi-variable MR analyses including both SBP and DBP in the model for the 

inference of their effects on stroke, we found that the effect of SBP is still significant after adjusting 

for DBP, but not vice versa.   Interestingly, we found that the effect of SBP on large artery stroke 

(P=7.21  10-23; OR(95%CI)=2.62 (2.16, 3.17)per increase of one standard deviation of inverse-

normal transformed of SBP) after adjusting for DBP is larger than the univariate MR estimation 

(P=1.30  10-33; 2.19 (1.93, 2.48)), while the effect of DBP becomes negatively associated with stroke 

risk (P=6.28  10-2; 0.832 (0.686, 1.01)) adjusting for SBP (although this did not pass our P-value 

threshold for significance).  This is consistent with the findings from the univariable MR analysis of 

PP on stroke risk, which showed that PP has the largest effect on large artery stroke. 

 

We also performed sensitivity analysis using multivariable MR-Egger to correct for pleiotropy70.  

Similar to the univariable MR-Egger results, there was little evidence that the multi-variable MR-

Egger intercept deviated from zero for any BP traits and any CVD outcomes (Pintercept > 0.01).  

 

 

  



Variance explained by BP-associated SNVs 

We used 5,390 individuals from the Danish cohort within EPIC-CVD71 to calculate variance explained 

as these participants were not used as part of the discovery set, genotyped using the Illumina Human 

CoreExome BeadChip array. SBP and DBP were measured twice at baseline and the average was used. 

Using a genetic risk score to represent all the known and new BP associations, we fitted a linear 

regression of each transformed BP trait against age, age2, sex, BMI, top 10 genetic principle 

components, and CVD event (defined as any first CVD event) as a factor to obtained the variance 

explained by covariates (R2
covariants).  We then fit a second linear model for the transformed BP trait 

with all covariates plus a GRS to obtain the variance explained by all variables (R2
all).  Thus, the 

variance explained by GRS of BP genetic variants was: 

R2
GRS = R2

all - R
2
covariants 

We considered five different levels of GRS for each BP trait: (i) all independent common variants 

(MAF >= 0.01); (ii) all independent rare variants (MAF < 0.01); (iii) all independent SNVs within 

known loci; (iv) all independent SNVs within novel loci; (v) all independent SNVs. 

 

We found the percentage of variance in BP explained by the BP-associated SNVs were consistent with 

previous reports. 

 

Supplementary Table 26: 

Percentage of variance explained for BP traits in the EPIC-CVD Danish cohort.  

BP trait 
Number of SNPs for constructing the GRS      

ALL COMM RARE KNOWN NOVEL      

SBP 778 734 44 507 271      

DBP 742 708 34 494 248      

PP 802 760 42 569 233      

           

BP trait 
% variance explained by GRS      

ALL COMM RARE KNOWN NOVEL      

SBP 4.54 4.55 0.17 4.54 0.62      

DBP 3.541 3.421 0.183 3.311 0.601      

PP 5.39 5.4 0.05 5.09 0.59      

ALL = GRS of all associated variants for any BP trait      

COMM = GRS of all common and low-frequency variants (MAF >= 0.01)       

RARE = GRS of all rare variants (MAF < 0.01)       

KNOWN = GRS of all known variants        

NOVEL = GRS of novel variants identified in current study      
  



UK Biobank specific analyses 

 

The UK Biobank (UKBB) is a large prospective study of 502,642 participants aged 40–69 years when 

recruited between 2006–2010 at 22 assessment centres across the United Kingdom72,73. The study has 

collected and continues to collect a large amount of phenotypic measurements including systolic and 

diastolic blood pressure (BP). 

 

Processing, quality control and analyses of the data provided by UK Biobank, were performed at two 

sites independently and were confirmed to be concordant at each step of the process. 

 

Blood pressure measurement  

BP was measured twice in a seated position after two minutes rest with a one minute rest before the 

second measurement [UK Biobank. UKB : Resource 100225 - Blood-pressure measurement 

procedures using ACE - Version 1.0. Available at: 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100225. Accessed October 2, 2017]. An appropriate 

cuff and an Omron 705IT digital BP monitor, was used to measure BP in the majority of participants 

(UK Biobank data fields: SBP: f.4080.0.0 and f.4080.0.1; DBP: f.4079.0.0 and f.4079.0.1). If the 

largest cuff size was too small for the participant, or the electronic BP monitor failed, a 

sphygmomanometer with an inflatable cuff was used in conjunction with a stethoscope to perform a 

manual measurement (UK Biobank data fields: SBP: f.93.0.0 and f.93.0.1; DBP: f.93.0.0 and f.93.0.1). 

Of the 502,642 UKBB participants, 488,366 had both BP measurements and genotype data available, 

we therefore restricted phenotype quality control (QC) to these individuals. At baseline there were 

446,611 participants with two automated BP measurements; 14,133 participants with one automated 

and one manual measurement and 26,615 with both manual measurements. The 1,007 samples with 

only one blood pressure measurement at baseline were excluded. Comparison of the BP distributions 

obtained using automated and manual approaches were concordant and reassured us both approaches 

were accurate. Individuals missing SBP or DBP at baseline assessment were removed (n=1,834). The 

mean of both measurements at baseline for a given participant was calculated to create an overall 

measure for SBP, DBP and PP. Phenotype QC was performed in R version v3.3.  

Blood pressure measurement quality control  Participants were excluded from analysis if  

1. the difference between the first and second blood pressure measurement > 99.9th percentile 

(n=857); 

2. covariates were missing: Age (n=0), gender (n=0), BMI (n=3105) using respectively UK 

Biobank data fields: f.21003.0.0, f.31.0.0 and f.21001.0.0; 

3. they were pregnant at time of blood pressure measurement (n=131) UK Biobank data field: 

f.3140.0.0;  

4. BMI >99.9th or <0.01 percentile (n=970). 

In total 483,515 participants remained following quality control.  

Adjustment of BP measurement for treatment effect For all UKBB participants that were on anti-

hypertensive medication at time of blood pressure measurement (n=48,800) we added 15mmHg to the 

mean observed SBP, 10mmHg to the mean observed DBP and 5mmHg to the mean observed PP.  

Definition of hypertension UKBB participants were defined as having hypertension when at least one 

of the following criteria was met: 

1. Mean observed SBP ≥ 140 mmHg 

2. Mean observed DBP ≥ 90 mmHg 

3. History of hypertension: which was defined using the “non-cancer illnesses and associated first 

diagnosis timestamp” collected through the verbal interview (UK Biobank data field: 

f.20002.0.0) at baseline assessment for each UKBB participant. That is, where the following 

codes: “1065 hypertension”, “1072 essential hypertension” are present in data field 

f.20002.0.0. No ICD codes were used to define hypertension.  



4. Use of anti-hypertensive medication: at a baseline survey, we used responses to the 

“Medication for cholesterol, blood pressure or diabetes” question for males and responses to 

the “Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones” 

question for females, both collected through the touchscreen questionnaire and providing 

information on regular medication use (UK Biobank data fields: f.6177.0.0 and f.6153.0.0, 

respectively). If a participant selected “2 Blood pressure medication” we defined this 

participant as having a current status of taking anti-hypertensive medication (27,931 females, 

22,630 males).  

255,794 individuals were defined as hypertensive and 227,721 were non-hypertensive. 

 

 

Genotype quality control (Supplementary Figure) 

We used both the Affymetrix UK Biobank/BiLEVE array genotypes and the Human Reference 

Consortium imputed genotypes [ref Bartlett et al.]. Genotype QC was performed using PLINK1.9 and 

R v3.3 

Defining a European set of UK Biobank participants Approximately 22,000 UKBB participants had 

a self-reported ethnic background outside of Europe73. Deviation from Hardy Weinberg Equilibrium 

(HWE) is often an indicator of a poorly genotyped variant. However, due to the ethnic diversity of the 

UKBB cohort, deviations from HWE could also be due to violation of the assumptions of HWE e.g. 

large differences in allele frequency in an ethnically mixed cohort. We therefore sought to define a 

genetically European group of UKBB participants using principal component analyses (PCA) with 

FlashPCA274. High-quality autosomal variants were selected for PCA based on an overall call rate 

≥99%; minor allele frequency (MAF) >=0.05 and HWE P≥10-5. Regions of the genome known to 

exhibit long-range linkage disequilibrium (LD) were removed ( chr6:25–33.5 Mb, chr8:8–12 Mb, 

chr17:40.4–42.4 Mb) to ensure the PCs were picking up ancestry and not LD. These variants were 

then LD pruned so no pair of variants within a 100 variant window had R2>0.2. A final round of LD 

pruning was performed in a 1000 variant window.  

Having generated 50 PCs, we adopted the method of Astle et al.75, to identify ancestral outliers to be 

remove. In brief, a ‘genetic distance’,  

, between individual i and a hypothetical median ‘‘white British’’ 

participant was calculated, where Em represents the eigenvalue corresponding to PC, m (i.e. the genetic 

variance explained by PCm), Pim represents the score of individual i on PCm, Cm represents the median 

score on PCm of participants with self-reported White ancestry (defined as “British”, “Irish”, “White” 

or “Any other White background”).  

We used a threshold of genetic distance > 0.2 to identify non-Europeans, which resulted in the 

exclusion of 23,511 non-European participants.  

Batch level variant and sample QC Genotype QC was performed with the above defined European 

subset of participants, separately for each of the 106 UKBB genotyping batches. The following 

thresholds were applied to remove variants: call rate ≤ mean (call rate) - [ 3 x SD (call rate)]; HWE P-

value < 1x10-12 (MAF<0.01) or HWE P-value < 1x10-6 (MAF≥0.01). Variants that failed either call 

rate or HWE within a batch were excluded from the corresponding batch prior to batch-level sample 

QC. Within batch, samples with call rate < mean (call rate) - [3 x SD (call rate)] or Heterozygosity > 

(mean +/- 3SD) were removed (n=11,944).  

Variant and sample QC across all batches Variants that failed QC in >48 batches (UKBB array) or > 

3 batches (UK BiLEVE array) were excluded (n=23,221 SNVs). We excluded samples who’s genetic 

sex and phenotypically defined sex (as provided by the UKBB) were discordant (n=136 samples).  



After variant and sample QC across all batches we performed a second PCA with FlashPCA274 using 

the same approach to select variants for PCA as described above. A genetic distance measure of 0.175 

calculated using 8PCs (as described above) was used to remove a further 3,015 individuals of non-

European ancestry.  

Definition of an unrelated set of UK Biobank participants For analyses of hypertension, we chose 

not to use a mixed effects model due to limitations with calculating a full kinship matrix. Therefore, 

using the fully QC’d data, we defined a subset of unrelated UKBB participants using the kinship 

information provided by UKBB that lists the kinship coefficient of pairs of individuals up to 3rd degree 

relatives. We calculated sample call rate to guide which participant within a pair of relatives to remove. 

All pairs that shared individual(s) were aggregated into families. From each of these families the 

sample with the highest call rate was retained. If individuals within the family had the same call rate 

we chose the one that occurred first in the file.  

Imputation The pre-imputation variant QC, phasing and imputation performed on the combined 

UKBB and UK BiLEVE data has been described in detail elsewhere73. The genetic data were imputed 

using the Haplotype Reference Consortium (HRC) panel. Additional variants were available in the 

interim release of imputed using 1000G/UK10K data in 150,000 UKBB participants but were not part 

of the HRC imputation panel. We extracted 30,315 variants that were readily available in the first 

release UKBB imputation dataset and were genotyped on the exome array but not either of the 

Affymetrix arrays used by UKBB. After QC of these variants and using an information score threshold 

>0.3, 157,666 variants were available for analysis in ~150,000 participants from the interim release.  

Variants for which both genotype and imputation data were available, we used the imputed variant if 

the genotyping call rate was <0.98 and the variant was imputed with an information score >0.7. We 

used the genotyped data for all variants that did not satisfy these criteria. All variants that passed QC 

and were available in either the genotyped or imputed data alone were also analysed. 

 

In total, 39,312,035 imputed variants with info>0.3 of which 31,835,351 were low frequency or rare 

were analysed in GWAS of UKBB. A further 784055 genotyped variants were analysed of which 

405,033 were rare or low-frequency. 

 

Final dataset used for exome content analyses Following QC, 156,481 variants from the UK-Biobank 

full release and 18,947 variants from the interim release were analyzed in 364,510 European 

participants with SBP, DBP and PP measurements. Following QC and transformation, 157,666 Exome 

array variants (62,032 genotyped and 95,634 imputed) were tested for association with HTN in up to 

364,565 unrelated European participants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 6. Flowchart summarizing quality control procedures applied to genetic data 

in UKBB 

 

 
 

 

 

Analyses of SBP DBP and PP  

Each of the continuous traits (SBP, DBP and PP) were regressed on baseline age, baseline age squared, 

gender, BMI and genotyping array using the lm function in R. The residuals from these regression 

models were rank transformed and inverse normalised and the resulting transformed SBP, DBP and 

PP residuals were analysed using linear mixed models implemented in BOLT-LMM (Version: v2.3). 

The set of QCd variants used for the second PCA were also used for BOLT-LMM model building. 

In total, 784,045 directly genotyped and 39,312,035 imputed variants (175,430 were Exome array 

variants of which 59,824 variants were genotyped and 115,606 variants were imputed) were analysed 

for association with SBP, DBP and PP in up to 445,415 individuals of European ancestry from UKBB.  

Analyses of hypertension  

Genetic analysis of exome array variants was performed for hypertension as a binary outcome in 

364,510 unrelated individuals (192,235 hypertensive cases and 172,275 controls) of European ancestry 

using SNPTEST (Version: v2.5.4-beta3). Analyses were adjusted for baseline age, baseline age 

squared, gender, BMI, genotyping array and the first eight ancestry principal components (PCs).  

 

  



Supplementary Figures 

 

Supplementary Figure 2. Power estimation for Stage 2 meta-analyses (EAWAS: PA – 1,318,884 
participants; EA – 1,164,961 participants; RV-GWAS: 670,472 participants). 

 



Supplementary Figure 3 (a) Expression of genes implicated by the rare SNVs in GTEx v7 tissues. We 

used FUMA GWAS. 

 

 

  



Supplementary Figure 3 (b) Tissue enrichment of rare variant gene expression levels in GTEx v7. We 

used FUMA GWAS to perform these analyses. 

 

 

 



Supplementary Figure 4. Mendelian randomization analysis for blood pressure level and risk of 
cardiovascular diseases.  
 

a. SBP -> All Stroke DBP -> All Stroke PP -> All Stroke 

   

b. SBP -> Ischemic Stroke DBP -> Ischemic Stroke PP -> Ischemic Stroke 

   

c. SBP -> Large Artery Stroke DBP -> Large Artery Stroke PP -> Large Artery Stroke 

   

d. SBP -> Cardioembolic Stroke DBP -> Cardioembolic Stroke PP -> Cardioembolic Stroke 
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e. SBP -> Small Vessel Stroke DBP -> Small Vessel Stroke PP -> Small Vessel Stroke 

   

f. SBP -> Coronary Artery Disease DBP -> Coronary Artery Disease PP -> Coronary Artery Disease 

   

   

Supplementary Figure 4. Mendelian randomization analysis for blood pressure level and risk of 

cardiovascular diseases.  

Associations between genetically determined blood pressure traits (SBP, DBP and PP) and risk of All Stroke 

(a), Ischemic Stroke (b), Large Artery Stroke (c), Cardioembolic Stroke (d), Small Vessel Stroke (e) and 

Coronary Artery Disease (f) based on four MR methods: IVW, MR-Egger, Simple median and Weighted 

median.  
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