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Mice deficient in recombination-activating genes 1 and 2 (RAG1 and RAG2) are considered a robust 

model to study the immune response in whole organisms. This is based on the immunologic concept 

that Rag1 and Rag2 are essential regulators of genes that encode immunoglobulin and T-cell receptor 

(TCR). Rag1 and Rag2 are expressed exclusively in lymphocytes and are essential in the 

development and maturation of T and B cells, key components of the adaptive immune system. In 

the absence of Rag1 or Rag2, lymphocyte development is arrested resulting in T and B cell 

deficiency. Rag1 knockout (Rag1 KO) mice have been extremely useful to study the role of the 

immune system in cancer, immunodeficiency disorders, inflammatory conditions, autoimmune 

diseases, lymphoid tissue pathologies and graft versus host disease. Exploiting adoptive transfer has 

provided a useful experimental approach to investigate the influence of different cell populations in 

adaptive immunity as well as the importance of the interaction between adaptive and innate immune 

responses in pathophysiological processes.   

Rag1 KO mice have also been employed to study immune responses in cardiovascular disease, 

including atherosclerosis, aneurysms and hypertension. Double knockout ApoE/Rag1 and 

LDLR/Rag1 mice are resistant to atherosclerosis indicating a role for immune cells in atherogenesis 

(1).  On the other hand, Rag1 deficiency had no effect on Ang II-induced aortic abdominal aneurysm 

in ApoE-/- mice suggesting that lymphocytes are not involved in aortic aneurysm formation (2). In 

their pivotal studies, the Harrison group was the first to show that blood pressure elevating responses 

to Ang II and DOCA-salt are blunted in Rag1 KO and that adoptive transfer of T cells, but not B 

cells, reestablished the hypertensive response to Ang II (3,4). It was thus concluded that the immune 

system, and especially T lymphocytes, have an important causal role in the development of 

hypertension, and that T cells may be an attractive target in the treatment of hypertension. This 

notion has gained increasing acceptance over the past 15 years. 

However, not all evidence from Rag1-/- mice supports a role for adaptive immunity in the 

pathophysiology of hypertension as highlighted by Seniuk et al in the current issue (5). In Rag1-/- 



mice, identical to those studied by the Harrison group (3,4), Ang II and high salt diet unexpectedly 

induced a significant increase in blood pressure with associated vascular remodeling and target organ 

damage, responses that were unaffected by adoptive T-cell transfer (5). Based on these findings, the 

authors negated a role for B and T cells in the development of hypertension and target organ damage. 

Ji et al also failed to show that Rag1 KO mice are protected from Ang II-induced hypertension (6) 

and Uchida et al demonstrated that total lymphocyte deficiency in Rag1-/- mice had no effect on 

systolic blood pressure prior to and during Ang II infusion (2). Moreover, in a model of arterial 

injury, immune deficiency in Rag1 KO mice was associated with augmented, rather than reduced, 

neointima formation, effects that were attenuated by CD8 T cells, but not by CD4 T cells (7).  

These provocative findings (2,5-7), which challenge those that initially demonstrated blunted 

hypertension responses  in Rag1-deficient mice (3), raise a number of important questions. Firstly, 

why does the same Rag1 immunodeficient mouse model yield diametrically opposed results?  

Secondly is the Rag1 KO animal the most appropriate pre-clinical model to study immune responses 

in hypertension? Thirdly, could it be possible that the adaptive immune system is not critically 

involved in the pathophysiology of vascular injury and hypertension?  

Reasons for the lack of reproducibility by Seniuk (5), and others (2,6,7), of the earlier 

hypertension studies in Rag1 KO mice (3) are unclear but are likely complex and multifactorial. Ji et 

al attributed the unexpected Ang II prohypertensive response in Rag1-/- mice to a spontaneous 

mutation (6), a notion not supported by Seniuk et al (5).  Factors that may contribute to variation in 

responses include genetic drift over multiple generations, especially in C57BL6 mice, the 

background strain for Rag1-/- mice. Not all C57BL/6 strains are genetically equivalent as highlighted 

by the International Mouse Phenotyping Consortium (8). Another factor includes the habitat of the 

mice where husbandry conditions, such as pathogen status, bedding, water, room temperature, noise, 

light/dark cycles, and housing conditions can impact the phenotype (8). Moreover, the microbiome 

can have a significant effect on the mouse phenotype (8). This is especially relevant when studying 



the immune system in hypertension because both the immune response and development of 

hypertension have been causally and independently linked to the microbiome. Finally, an important 

factor to consider when studying  Rag1-/- mice (or other immunodeficient models) is the possibility 

that ‘basal’ levels of T and B cells differ between mice, since genetic efficiency varies from from 

mouse to mouse. Accordingly, it may be prudent to establish immune cell criteria before 

experimentation, for example inclusion of models only if <2% of circulating CD45 cells are CD3 or 

CD20.  

Another consideration often overlooked in Rag1-/- mice is that immune cells besides B- and T- 

lymphocytes are present and functionally active and may contribute variably to immune and 

inflammatory responses. Natural killer (NK) cells are derived from the same common lymphoid 

precursor (CLP) as lymphocytes and are present in Rag1 KO animals. Innate lymphoid cells (ILC) 

are also from the lymphoid lineage and similar to NK cells, they do not have Rag1-mediated 

recombined antigen receptor. They are ubiquitously expressed in Rag1 KO mice and play an 

important role in cell-cell interaction of the immune system. This cell population is sub-grouped 

according to the expression profile of transcription factors [ILC1 (T-bet+), produces the Th1 

cytokine IFNγ; ILC2 (GATA3+), produces Th2 cytokines, IL-5 and IL-13; ILC3 (RoRγT+), 

produces IL-17, IFNγ and GM-CSF; and ILCreg (Sox4+), produces  IL-10 and TGFβ]. Therefore, 

even though RAG1-/- animals  exhibit severe immunodeficiency with B and T cell deficiency, the 

presence of functionally active NK and ILCs suggests that these mice are still able to mount an 

immune response.  

Although Rag1-deficient mice are well established models to study the immune system in 

pathological processes, the suitability to recapitulate human disease has been questioned (8). This 

may be particularly pertinent in the context of human hypertension where there is still little 

conclusive clinical evidence that immune activation and inflammation cause hypertension. While 

numerous studies have demonstrated associations between chronic inflammatory and immune 



diseases (eg psoriasis, rheumatoid arthritis, SLE and hypertension (4), causality has not been 

established. On the contrary, some observations from clinical studies actually suggest the opposite. 

Human immunodeficiency virus is associated with hypertension and cardiovascular disease (9) and 

some immunosuppressive drugs, such as calcineurin inhibitors, can cause hypertension. Patients with 

immunotherapy-induced cytokine release syndrome (CRS), a highly inflammatory condition, is 

associated with hypotension (not hypertension) (10). Additionally, treatment of patients with 

psoriasis and spondyloarthritis with IL-17 antibodies, secukinumab and ixekizumab, caused an 

increase in blood pressure (11),  even though Ang II-induced hypertension is blunted in mice  with 

IL-17-deficiency (12). In the Canakinumab Anti-inflammatory Thrombosis Outcomes Study 

(CANTOS), IL-1β inhibition reduced cardiovascular event rates but did not significantly influence 

blood pressure (13).  Furthermore, anti-cancer treatment with ibrutinib and rituximab, which target B 

cells, is associated with a significantly increased risk of hypertension (14), while no blood pressure 

effects were observed in Rag1 KO animals transplanted with B cells (3).   

While extensive experimental evidence indicates that immune cells and inflammation are 

involved in hypertension-associated vascular injury and target organ damage (5), immune activation 

as a cause of hypertension still remains unclear. Irreproducibility of hypertension resistance in Rag1-

/- mice and the lack of clinical evidence linking immune activation causally to hypertension, 

highlight the importance of further interrogating the exact role of the immune system in the 

pathophysiology of blood pressure elevation. The study in this issue (5) is also a call to action to 

revisit the mouse models used to study involvement of T- and B lymphocytes in hypertension and the 

relevance in human disease.  
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Figure legend 

Schematic summarizing different hypertension phenotypes in Rag1-/- mice and possible mechanisms 

responsible for this. Using the same immunodeficient mouse model, B6.Rag1-/-, Jackson 

Laboratories. Guzik et al (4) demonstrated that development of hypertension in response to pro-

hypertensive factors is blunted while Senuik et al (6) showed that Ang II-infused Rag1-/- mice 

develop hypertension similar to wildtype mice.
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