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PARTIAL TRANSFORMATION GROUPOIDS ATTACHED TO GRAPHS
AND SEMIGROUPS

XIN LI

Abstract. We introduce the notion of continuous orbit equivalence for partial dynamical sys-
tems, and give an equivalent characterization in terms of Cartan-isomorphisms for partial C*-
crossed products. Both graph C*-algebras and semigroup C*-algebras can be described as C*-
algebras attached to partial dynamical systems. As applications, for graphs, we generalize and
explain a result of Matsumoto and Matui relating orbit equivalence and Cartan-isomorphism,
and for semigroups, we strengthen several structural results for semigroup C*-algebras concern-
ing amenability, nuclearity as well as simplicity of boundary quotients. We also discuss pure
infiniteness for partial transformation groupoids arising from graphs and semigroups.

1. Introduction

Recently, in the setting of ordinary topological dynamical systems, the notion of continuous or-
bit equivalence was introduced, and a C*-algebraic characterization was given involving Cartan-
isomorphisms (see [21]). We present a generalization to partial dynamical systems. This step
is important as many C*-algebras appear naturally as crossed products attached to partial dy-
namical systems, while the setting of ordinary dynamical systems is more restricted. Our main
motivation stems from graph C*-algebras and semigroup C*-algebras, both of which can be
described in a very natural way as C*-algebras of partial dynamical systems. This description
turns out to be very helpful for the study of structural properties of these C*-algebras.

In the case of graphs, we obtain a very easy explanation why all graph C*-algebras are nuclear
(Remark 3.6). This goes back to the observation that non-abelian free semigroups embed
into amenable groups. Furthermore, we generalize and explain results in [24, 25] about orbit
equivalence and Cartan isomorphism from shifts of finite type to general graphs (Theorem 3.9).
We note that a generalization of the results in [25] has been established independently in [3].

For semigroup C*-algebras and their boundary quotients, we are able to generalize several
structural results from [19]. The key idea is that using partial transformation groupoids, we
obtain structural results for our C*-algebras without assuming independence or the Toeplitz
condition, which were crucial in our previous approach (see [18, 19]). We obtain general charac-
terizations for nuclearity of semigroup C*-algebras (Theorem 3.15) and simplicity of boundary
quotients (Theorem 3.22).
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Furthermore, we study which partial transformation groupoids of graphs and semigroups are
purely infinite, in the sense of [27]. In the case of graphs, we are able to prove that the
partial system of a graph is residually topologically free and purely infinite if and only if the
corresponding graph C*-algebra is purely infinite (Corollary 4.4). For semigroups, we show that
the partial transformation groupoid corresponding to the boundary quotient is purely infinite
if and only if the semigroup is not left reversible (Theorem 4.5). We are also able to identify a
class of integral domains whose ax + b-semigroups have purely infinite partial transformation
groupoids (Theorem 4.6). These results strengthen and explain previous results in [19, 20].
Finally, we close with a remark (Proposition 4.7) on almost finite groupoids in the sense of [26,
§ 6].

2. Partial actions, transformation groupoids, C*-algebras and Cartan
subalgebras

In the following, groups are discrete and countable, and topological spaces are locally compact,
Hausdorff and second countable.

Definition 2.1. Let G be a group with identity e, and let X be a topological space. A partial
action α of G on X consists of

• a collection {Ug}g∈G of open subsets Ug ⊆ X,

• a collection {αg}g∈G of homeomorphisms αg : Ug−1 → Ug, x 7→ g.x such that
– Ue = X, αe = idX ;
– for all g1, g2 ∈ G, we have g2.(U(g1g2)−1∩Ug−1

2
) = Ug2∩Ug−1

1
, and (g1g2).x = g1.(g2.x)

for all x ∈ U(g1g2)−1 ∩ Ug−1
2

.

We call such a triple (X,G, α) a partial system, and denote it by α : Gy X or simply Gy X.

Let α : Gy X be a partial system. The dual action α∗ of α is the partial action (in the sense
of [28]) of G on C0(X) given by α∗g : C0(Ug−1)→ C0(Ug), f 7→ f ◦ g−1.

The transformation groupoid attached to the partial system α : Gy X is given by

G αnX := {(g, x) ∈ G×X: g ∈ G, x ∈ Ug−1} ,
with source map s(g, x) = x, range map r(g, x) = g.x, composition (g1, g2.x)(g2, x) = (g1g2, x)
and inverse (g, x)−1 = (g−1, g.x). We equip G αnX with the subspace topology from G ×X.
Usually, we write G nX for G αnX if the action α is understood. The unit space of G nX
coincides with X. Since G is discrete, G n X is an étale groupoid. Actually, if we set Gx :=
{g ∈ G: x ∈ Ug−1} andGx := {g ∈ G: x ∈ Ug} for x ∈ X, then we have canonical identifications
s−1(x) ∼= Gx, (g, x) 7→ g and r−1(x) ∼= Gx, (g, g−1.x) 7→ g.

Let us now recall the construction (from [28]) of the reduced crossed product C0(X) oα∗,r G
attached to our partial system α : Gy X. As with groupoids, we omit α∗ in our notation for the

crossed product. First of all, C0(X)o`1 G :=
{∑

g fgδg ∈ `1(G,C0(X)): fg ∈ C0(Ug)
}

becomes

a *-algebra under component-wise addition, multiplication given by
(∑

g fgδg

)
·
(∑

h f̃hδh

)
:=
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g,h α

∗
g(α
∗
g−1(fg)f̃h)δgh and involution

(∑
g fgδg

)∗
:=
∑

g α
∗
g(f
∗
g−1)δg, for fg ∈ C0(Ug) and f̃h ∈

C0(Uh).

As in [28], we construct a representation of C0(X) o`1 G. Viewing X as a discrete set, we
define `2X and the representation M : C0(X) → L(`2X), f 7→ M(f), where M(f) is the
multiplication operator M(f)(ξ) := f · ξ for ξ ∈ `2X. M is obviously a faithful representation
of C0(X). Every g ∈ G leads to a twist of M , namely Mg : C0(X) → L(`2X) given by
Mg(f)ξ := (f |Ug ◦ g) · ξ|Ug−1 . Here we view f |Ug ◦ g as an element in Cb(Ug−1), and Cb(Ug−1)

acts on `2Ug−1 just by multiplication operators. Given ξ ∈ `2X, we set ξ|Ug−1 (x) := ξ(x) if

x ∈ Ug−1 and ξ|Ug−1 (x) := 0 if x /∈ Ug−1 . In other words, ξ|Ug−1 is the component of ξ in `2Ug−1

with respect to the decomposition `2X = `2Ug−1 ⊕ `2U c
g−1 . So we have Mg(f)ξ(x) = f(g.x)ξ(x)

if x ∈ Ug−1 and Mg(f)ξ(x) = 0 if x /∈ Ug−1 .
Consider now the Hilbert space H := `2(G, `2X) ∼= `2G⊗ `2X, and define the representation

µ : C0(X)→ L(H) given by µ(f)(δg ⊗ ξ) := δg ⊗Mg(f)ξ. For g ∈ G, let Eg be the orthogonal

projection onto µ(C0(Ug−1))H. Moreover, let λ denote the left regular representation of G on
`2G, and set Vg := (λg ⊗ I) · Eg. Here I is the identity operator on H.

We can now define the representation µ×λ : C0(X)o`1G→ L(H),
∑

g fgδg 7→
∑

g µ(fg)Vg.

Following the original definition in [28], we set C0(X) or G := C0(X) o`1 G
‖·‖µ×λ

.

The following result follows from [1, Theorem 3.3], but we give a direct and short proof.

Proposition 2.2. The canonical homomorphism

(1) Cc(GnX)→ C0(X) o`1 G, θ 7→
∑
g

θ(g, g−1.t)δg,

where θ(g, g−1.t) is the function Ug−1 → C, x 7→ θ(g, g−1.x), extends to an isomorphism C∗r (Gn
X)

∼=−→ C0(X) or G.

Proof. As above, let µ×λ be the representation C0(X)o`1 G→ L(H) which we used to define
C0(X) or G. Our first observation is

(2) Im (µ× λ)(H) =
⊕
h∈G

δh ⊗ `2Uh−1 .

To see this, observe that for all g ∈ G, Im (Eg) ⊆
⊕

h δh ⊗ `2(Uh−1 ∩ U(gh)−1). This holds
since for x /∈ h−1.(Uh ∩ Ug−1) = U(gh)−1 ∩ Uh−1 , f |Uh(h.x) = 0 for f ∈ C0(Ug−1). Therefore,
π(C0(Ug−1))(δh ⊗ `2X) ⊆ δh ⊗ `2(Uh−1 ∩ U(gh)−1). Hence Im (Eg) ⊆

⊕
h δh ⊗ `2(Uh−1 ∩ U(gh)−1),

and thus, Im (Vg) ⊆
⊕

h δgh⊗ `2(Uh−1 ∩U(gh)−1) ⊆
⊕

h δh⊗ `2Uh−1 . This shows “⊆” in (2). For
“⊇”, note that for f ∈ C0(X), (µ × λ)(fδe) = µ(f)Ee, and for ξ ∈ `2Uh−1 , µ(f)Ee(δh ⊗ ξ) =
δh ⊗ (f |Uh ◦ h)ξ. So (µ × λ)(fδe)(H) contains δh ⊗ f · ξ for all f ∈ C0(Uh−1) and ξ ∈ `2Uh−1 ,
hence also δh ⊗ `2Uh−1 . This proves “⊇”.

For x ∈ X, let Gx = {g ∈ G: x ∈ Ug−1} as before. Our second observation is that for every
x ∈ X, the subspace Hx := `2Gx ⊗ δx is (µ × λ)-invariant. It is clear that µ(f) leaves Hx

invariant for all f ∈ C0(X). For g, h ∈ G, Eg(δh ⊗ δx) = δh ⊗ δx if x ∈ Uh−1 ∩ U(gh)−1 , and if
that is the case, then Vg(δh ⊗ δx) = δgh ⊗ δx ∈ Hx.
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Therefore, H =
(⊕

x∈X Hx

)
⊕ (µ×λ)(C0(X)o`1G)(H)⊥ is a decomposition of H into µ×λ-

invariant subspaces. For x ∈ X, set ρx := (µ×λ)|Hx . Then C0(X)orG = C0(X) o`1 G
‖·‖⊕

x ρx .
Moreover, we have for x ∈ Uh−1 ,

ρx

(∑
g

fgδg

)
(δh ⊗ δx) =

∑
g

µ(fg)Vg(δh ⊗ δx) =
∑

g: x∈U(gh)−1

µ(fg)(δgh ⊗ δx)

=
∑

g: x∈U(gh)−1

δgh ⊗ fg(gh.x)δx =
∑
k∈Gx

δk ⊗ fkh−1(k.x)δx.(3)

Let us now compare this construction with the construction of the reduced groupoid C*-algebra
of G nX. Obviously, (1) is an embedding of Cc(G nX) as a subalgebra which is ‖·‖`1-dense

in C0(X) o`1 G. Therefore, C0(X) or G = Cc(GnX)
‖·‖⊕

x ρx .
Now, to construct the reduced groupoid C*-algebra C∗r (GnX), we follow [35, § 2.3.4] and

construct for every x ∈ X the representation πx : Cc(G n X) → L(`2(s−1(x))) by setting
πx(θ)(ξ)(ζ) :=

∑
η ∈ s−1(x) θ(ζη

−1)ξ(η). In our case, using s−1(x) = Gx × {x}, we obtain for

ξ = δh ⊗ δx with h ∈ Gx: πx(θ)(δh ⊗ δx)(k, x) = θ((k, x)(h, x)−1) = θ(kh−1, h.x). Thus,

(4) πx(θ)(δh ⊗ δx)(k, x) =
∑
k∈Gx

θ(kh−1, h.x)δk ⊗ δx.

By definition, C∗r (G nX) = Cc(GnX)
‖·‖⊕

x πx . Therefore, in order to show that ‖·‖⊕
x ρx

and

‖·‖⊕
x πx

coincide on Cc(GnX), it suffices to show that for every x ∈ X, πx and the restriction

of ρx to Cc(GnX) are unitarily equivalent. Given x ∈ X, using s−1(x) = Gx×{x}, we obtain
the canonical unitary `2(s−1(x)) ∼= Hx = `2(Gx)⊗ δx, so that we may think of both ρx and πx
as representations on `2(Gx)⊗ δx. We then have for x ∈ X, θ ∈ Cc(GnX) and h ∈ Gx:

ρx(θ)(δh ⊗ δx)
(1)
= ρx(

∑
g

θ(g, g−1.t)δg)(δh ⊗ δx)
(3)
=
∑
k∈Gx

δk ⊗ θ(kh−1, h.x)δx
(4)
= πx(θ)(δh ⊗ δx).

This yields the canonical identification C0(X) or G ∼= C∗r (GnX), as desired. �

Following [14], we define topological freeness as follows:

Definition 2.3. A partial system G y X is called topologically free if for every e 6= g ∈ G,
{x ∈ Ug−1: g.x 6= x} is dense in Ug−1.

Lemma 2.4. A partial system Gy X is topologically free if and only if
{x ∈ X: g.x 6= x for all e 6= g ∈ Gx} is dense in X.

Proof. The direction “⇐” is simple: If {x ∈ X: g.x 6= x for all e 6= g ∈ Gx} is dense in X, then
in particular, for every fixed e 6= g ∈ G, the set {x ∈ X: g.x 6= x if g ∈ Gx} is dense in X.
Hence {x ∈ Ug−1 : g.x 6= x} = {x ∈ X: g.x 6= x if g ∈ Gx} ∩ Ug−1 is dense in Ug−1 .

For “⇒”, note that because of topological freeness, we know that for every e 6= g ∈ G, the
open set {x ∈ Ug−1 : g.x 6= x} ∪ Ug−1

c
is dense in X. Therefore,

{x ∈ X: g.x 6= x for all e 6= g ∈ Gx} =
⋂

e 6=g∈G

{x ∈ X: g.x 6= x if g ∈ Gx}
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must be dense in X since it contains
⋂
e6=g∈G

(
{x ∈ Ug−1 : g.x 6= x} ∪ Ug−1

c)
which is dense in

X by the Baire category theorem. �

Corollary 2.5. A partial system Gy X is topologically free if and only if the transformation
groupoid GnX is topologically principal.

Recall (see [34]) that a topological groupoid G is called topologically principal if the set of
points in G(0) with trivial isotropy is dense in G(0). Here, x ∈ G(0) is said to have trivial isotropy
if for all γ ∈ G, s(γ) = t(γ) = x already implies γ = x.

Proof. In the case of the transformation groupoid G = G n X, x ∈ X has trivial isotropy if
whenever g ∈ G satisfies g ∈ Gx and g.x = x, then we must have g = e. Hence the set of
points with trivial isotropy is nothing else but {x ∈ X: g.x 6= x for all e 6= g ∈ Gx}. With this
observation, our corollary follows immediately from Lemma 2.4. �

Let us now introduce the notion of continuous orbit equivalence for partial systems, generalizing
[21, Definition 2.5].

Definition 2.6. Partial systems G y X and H y Y are called continuously orbit equivalent

if there exists a homeomorphism ϕ : X
∼=−→ Y and continuous maps a :

⋃
g∈G {g}×Ug−1 → H,

b :
⋃
h∈H {h}× Vh−1 → G (where Vh−1 is the domain of the partial homeomorphism attached to

h ∈ H) such that

ϕ(g.x) = a(g, x).ϕ(x),(5)

ϕ−1(h.y) = b(h, y).ϕ−1(y).(6)

Implicitly, we require here that a(g, x) ∈ Hϕ(x) and b(h, y) ∈ Gϕ−1(y).

Note that in particular, ϕ(Gx.x) = Hϕ(x).ϕ(x).

In analogy to [21, Theorem 1.2], we obtain

Theorem 2.7. Let Gy X and H y Y be topologically free partial systems. Then the following
are equivalent:

(i) Gy X and H y Y are continuously orbit equivalent,
(ii) the transformation groupoids GnX and HnY are isomorphic as topological groupoids,

(iii) there exists an isomorphism Φ : C0(X)or G
∼=−→ C0(Y )or H with Φ(C0(X)) = C0(Y ).

Moreover, “(ii) ⇒ (i)” holds in general (i.e., without the assumption of topological freeness).

Proof. The proof is completely analogous to the one of [21, Theorem 1.2]. Therefore, we refer
the reader to [21] for details, and only mention the key ideas.

For “(i) ⇒ (ii)”, observe that G n X → H n Y, (g, x) 7→ (a(g, x), ϕ(x)) and H n Y →
GnX, (h, y) 7→ (b(h, y), ϕ−1(y)) are continuous homomorphisms of groupoids which are inverse
to each other. Here ϕ, a and b are as in Definition 2.6. This uses topological freeness as in [21].

For “(ii) ⇒ (i)”, let χ : GnX → H n Y be an isomorphism of topological groupoids. Set

ϕ := χ|X , a as the composition
⋃
g∈G {g} × Ug−1 → G n X

χ−→ H n Y → H, and b as the

composition
⋃
h∈H {h} × Vh−1 → H n Y

χ−1

−→ G nX → G. Then it is easy to check that ϕ, a
and b satisfy the conditions in Definition 2.6. This does not use topological freeness.
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For “(ii)⇔ (iii)”, observe that by Corollary 2.5 and [34, Theorem 5.2], (C0(X)orG,C0(X)) ∼=
(C∗r (GnX), C0(X)) and (C0(Y ) or H,C0(Y )) ∼= (C∗r (H n Y ), C0(Y )) are Cartan pairs, in the
sense of [34]. Then apply [34, Proposition 4.13]. �

3. Examples: Inverse semigroups, graphs, and subsemigroups of groups

3.1. Inverse semigroups. Let S be an inverse semigroup and E the semilattice of idempotents
of S. We set S× = S\{0} and E× = E\{0}, i.e., we take away zero if S has a zero. Assume that
σ is a partial homomorphism from S to a group G which is idempotent pure, i.e., σ is a map
S× → G such that σ(st) = σ(s)σ(t) for all s, t ∈ S× with st ∈ S×, and that σ−1(e) = E×.

In this situation, we describe a partial action G y C∗(E) such that the (left) reduced
C*-algebra C∗λ(S) of S is canonically isomorphic to C∗(E) or G. This is the analogue of [29,
Theorem 5.2], but without the assumption that G is the universal group. Our observation gives
us more freedom in the choice of idempotent pure partial homomorphisms. This will lead to a
very simple criterion for nuclearity of inverse semigroup C*-algebras.

First, recall the definition of C∗λ(S): For s ∈ S, let λs : `2S× → `2S×, δx 7→ δsx if s∗s ≥ xx∗ and
δx 7→ 0 else. The reduced C*-algebra C∗λ(S) of S is the sub-C*-algebra of L(`2S×) generated
by {λs: s ∈ S}. Note that by construction, λ0 = 0 if 0 ∈ S. This is why we work with `2S×

instead of `2S. Let C∗(E) := C∗({λe: e ∈ E}) ⊆ C∗λ(S). In the following, we write e for
λe ∈ C∗(E). The full inverse semigroup C*-algebra C∗(S) of an inverse semigroup S is the
universal C*-algebra for *-representations of S by partial isometries. We mod out 0 if S has a
zero, as in [31].

Now let us describe the partial action G y C∗(E). For g ∈ G, let Dg be the sub-C*-
algebra (actually ideal) of C∗(E) given by Dg−1 = span({s∗s: s ∈ S×, σ(s) = g}). As σ is
idempotent pure, we have De = C∗(E). For every g ∈ G, we have a C*-isomorphism

α∗g : Dg−1 → Dg, s
∗s 7→ ss∗. The corresponding dual action is given as follows: Let Ê =

Spec (C∗(E)), and for every g ∈ G, set Ug = Spec (Dg) ⊆ Ê. It is easy to see that Ug−1 ={
χ ∈ Ê: χ(s∗s) = 1 for some s ∈ S× with σ(s) = g

}
. αg : Ug−1 → Ug is given by αg(χ) =

χ◦α∗g−1 . Given χ ∈ Ug−1 and s ∈ S× with σ(s) = g and χ(s∗s) = 1, we have αg(χ)(e) = χ(s∗es).

The same proof as in [29] gives an explicit identification of the universal groupoid of S, in the

sense of [32, § 4.3], but restricted to Ê, with the partial transformation groupoid G n Ê. We

have to restrict to Ê because in case 0 ∈ S, the unit space of the universal groupoid in [32,

§ 4.3] is Ê t {χ0}, where χ0 corresponds to the character sending every idempotent in E to 1,
even 0. As a consequence of this identification of groupoids, we obtain

Proposition 3.1. We have C∗λ(S) ∼= C∗r (G n Ê) and C∗(S) ∼= C∗(G n Ê), and there are
isomorphisms C∗λ(S)→ C∗(E) or G, λs 7→ (ss∗)δσ(s) and C∗(S)→ C∗(E) oG, s 7→ (ss∗)δσ(s).

In many situations, one is interested not only in the reduced C*-algebra of the inverse semigroup,
but also in its boundary quotient. Let us describe the partial system corresponding to this

quotient. Given a semilattice E, let Êmax be the subset of Ê consisting of those χ ∈ Ê
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such that {e ∈ E: χ(e) = 1} is maximal. We then set ∂Ê := Êmax ⊆ Ê. Now let E be the

semilattice of idempotents in an inverse semigroup S. As ∂Ê ⊆ Ê is closed, we obtain a short

exact sequence 0 → I → C0(Ê) → C0(∂Ê) → 0. Viewing I as a subset of C∗λ(S), we form
the ideal 〈I〉 of C∗λ(S) generated by I. The reduced version of the boundary quotient in Exel’s
sense (see [8, 9, 10, 12]) is given by ∂C∗λ(S) := C∗λ(S)/ 〈I〉. In the particular case of inverse
semigroups arising from right LCM semigroups, boundary quotients have been studied in [37].

Lemma 3.2. Let S be an inverse semigroup as above, with an idempotent pure partial homo-

morphism σ from S to a group G, with semilattice of idempotents Ê and partial system Gy Ê.

Then ∂Ê is G-invariant.

Proof. Let us first show that for every g ∈ G, g.(Ug−1 ∩ Êmax) ⊆ Ug∩ Êmax. Take χ ∈ Êmax with

χ(s∗s) = 1 for some s ∈ S with σ(s) = g. Then g.χ(e) = χ(s∗es). Assume that g.χ /∈ Êmax.

This means that there is ψ ∈ Êmax such that ψ(e) = 1 for all e ∈ E with g.χ(e) = 1, and
there exists f ∈ E with ψ(f) = 1 but g.χ(f) = χ(s∗fs) = 0. Then ψ ∈ Ug since g.χ(ss∗) = 1,
which implies ψ(ss∗) = 1. Consider g−1.ψ given by g−1.ψ(e) = ψ(ses∗). Then for every e ∈ E,
χ(e) = 1 implies χ(s∗ses∗s) = 1, hence χ(s∗(ses∗)s) = 1, so that g−1.ψ(e) = ψ(ses∗) = 1. But

χ(s∗fs) = 0 and g−1.ψ(s∗fs) = ψ(ss∗fss∗) = ψ(f) = 1. This contradicts χ ∈ Êmax. Hence

g.(Ug−1 ∩ Êmax) ⊆ Ug ∩ Êmax. To see that g.(Ug−1 ∩ ∂Ê) ⊆ Ug ∩ ∂Ê, let χ ∈ Ug−1 ∩ ∂Ê and

choose a net (χi)i in Êmax with limi χi = χ. As Ug−1 is open, we may assume that all the χi lie

in Ug−1 . Then g.χi ∈ Êmax, and limi g.χi = g.χ. This implies g.χ ∈ ∂Ê. �

Lemma 3.3. Let S be an inverse semigroup with an idempotent pure partial homomorphism σ

from S to an exact group G. Then the identification C∗λ(S) ∼= C0(Ê)orG from Proposition 3.1

identifies ∂C∗λ(S) with C0(∂Ê) or G.

Proof. It is easy to see that under the identification C∗λ(S) ∼= C0(Ê)orG from Proposition 3.1,
〈I〉 corresponds to I or G. Since G is exact, we obtain a short exact sequence 0 → I or G →
C∗λ(S)→ ∂C∗λ(S)→ 0 by [11, Theorem 22.9]. �

Corollary 3.4. Let S be an inverse semigroup with an idempotent pure partial homomorphism
σ from S to a group G. If G is amenable, then both C∗λ(S) and ∂C∗λ(S) are nuclear. If G is
exact, then both C∗λ(S) and ∂C∗λ(S) are exact.

Proof. By Proposition 3.1 and Lemma 3.3, both C∗λ(S) and ∂C∗λ(S) can be described as reduced
partial crossed products by G, hence as reduced C*-algebras of Fell bundles over G. Therefore,
our claims follow from [11, Theorem 20.7, Theorem 25.10 and Theorem 25.12]. �

3.2. Graphs. Let E = (E0, E1, r, s) be a (countable) graph with vertices E0, edges E1 and
range and source maps r, s : E1 → E0. Let E∗ be the set of finite paths in E , and let l(µ)
denote the length of a path µ ∈ E∗. The graph inverse semigroup SE is given by SE =
{(µ, ν) ∈ E∗ × E∗: s(µ) = s(ν)} ∪ {0}, where (µ, ν)∗ = (ν, µ) and

(µ, ν)(ζ, η) =


(µ, ν ′η) if ν = ζν ′,

(µζ ′, η) if ζ = νζ ′,

0 else.
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The semilattice EE of idempotents of SE is given by {(µ, µ) ∈ E∗ × E∗} ∪ {0}, hence can be
identified canonically with E∗ ∪ {0}. Multiplication in EE is given by

µ · ν =


µ if µ = νµ′,

ν if ν = µν ′,

0 else.

Note that we write µν for concatenation of paths and µ · ν for the product in EE .

It is easy to see that C∗λ(SE) is canonically isomorphic to the Toeplitz C*-algebra of E , and that
∂C∗λ(SE) is canonically isomorphic to the graph C*-algebra of E .

Remark 3.5. Note that we are using the convention that the partial isometry sµ for µ ∈ E1

has source projection es(µ) corresponding to the source of µ, and range projection dominated
by er(µ), the projection corresponding to the range of µ. This is the same convention as in [38],
but different from the one in [3, 16].

Let us construct an idempotent pure partial homomorphism on SE . Let FE1 be the free group
generated by E1. We view µ ∈ E∗ with l(µ) ≥ 1 as elements in FE1 in a canonical way. Define
σ : S×E → FE1 by setting σ(µ, ν) = µν−1 if l(µ), l(ν) ≥ 1, σ(µ, ν) = µ if l(µ) ≥ 1 and l(ν) = 0,
σ(µ, ν) = ν−1 if l(µ) = 0 and l(ν) ≥ 1, and σ(µ, ν) = e if l(µ) = l(ν) = 0. Here e is the identity
of FE1 . It is easy to check that σ is an idempotent pure partial homomorphism from SE to FE1 .
Clearly, σ is the universal one, in the sense of [29].

Remark 3.6. Let us show how a modification of σ produces an easy argument for nuclearity of
graph C*-algebras. We write F+

E1 for the free semigroup generated by E1. Let F+
2 and F2 be the

free semigroup and the free group on two generators. Clearly, there is a semigroup embedding
F+
E1 ↪→ F+

2 (E1 is countable by assumption). Moreover, by [17], we have an embedding F+
2 ↪→

F2/F′′2, where F′′2 is the second commutator subgroup of F2. Hence we obtain an embedding
F+
E1 ↪→ F+

2 ↪→ F2/F′′2. By universal property of FE1 , we obtain a homomorphism FE1 → F2/F′′2,
which has to factorize as FE1 → FE1/F′′E1 → F2/F′′2, such that the diagram

F+
E1� _

��

� � // F+
2
� � // F2/F′′2

FE1 // FE1/F′′E1

OO

commutes. Thus, the canonical homomorphism F+
E1 → FE1/F′′E1 is injective.

Now let σ′′ be the composition S×E
σ−→ FE1 → FE1/F′′E1 . σ

′′ is again a partial homomorphism,
and σ′′ is idempotent pure because F+

E1 → FE1/F′′E1 is injective. Moreover, FE1/F′′E1 is solvable,
in particular amenable. Hence Corollary 3.4 implies that both the Toeplitz C*-algebra as well
as the graph C*-algebra of E are nuclear.

Let us now come back to σ : S×E → FE1 , and describe the corresponding partial actions

FE1 y ÊE and FE1 y ∂E , where ∂E := ∂ÊE .
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We start with FE1 y ÊE . For g ∈ FE1 , Ug−1 is empty unless g ∈ Im (σ), i.e., g = αβ−1

for some paths α, β ∈ (E∗ \ E0) ∪ {e}, and if α, β both lie in E∗ \ E0, then s(α) = s(β). For

such g, Ug−1 consists of those χ ∈ ÊE such that there exists (µ, ν) ∈ S×E with χ(ν) = 1 and
σ(µ, ν) = αβ−1. For such χ with (µ, ν) as above, (g.χ)(ζ) = χ(νζ ′) if ζ = µζ ′ and (g.χ)(ζ) =
0 otherwise. By Proposition 3.1, the Toeplitz C*-algebra of E is canonically isomorphic to

C∗λ(SE) ∼= C∗r (FE1 n ÊE) ∼= C0(ÊE) or FE1 .
Following [38] (see also [13]), the partial system FE1 y ∂E can be described explicitly as

follows: As a set, we identify ∂E with E∞∪{α ∈ E∗: s(α) /∈ E0
0}, where E∞ is the set of infinite

paths in E . To describe the topology, let µ ∈ E∗ and set

Z(µ) = {ν ∈ E∗ ∪ E∞: ν = µν ′ for some ν ′ ∈ E∗ ∪ E∞} .

Given a finite subset F of r−1(s(µ)), let Z(µ \ F ) = Z(µ) \
⋃
ν∈F Z(µν). Then

∂E ∩ Z(µ \ F ), µ ∈ E∗, F ⊆ r−1(s(µ)) finite

is a basis for the topology of ∂E . The FE1-action is just given by the restriction of the partial

system FE1 y ÊE , which has been described above. By Lemma 3.3, the graph C*-algebra
of E is canonically isomorphic to ∂C∗λ(SE) ∼= C∗r (FE1 n ∂E) ∼= C0(∂E) or FE1 (compare [8,
Theorem 20.9]).

It is known (see [3, Proposition 2.3], and also Lemma 3.7) that FE1 n ∂E is topologically
principal, or equivalently (see Corollary 2.5), that FE1 y ∂E is topologically free, if and only if
E satisfies condition (L). Recall that E satisfies condition (L) if every loop has an entry, i.e., for
every µ = µ1 · · ·µn ∈ E∗ with µi ∈ E1, n ≥ 1 and s(µn) = r(µ1), there is ν ∈ E1 and 1 ≤ i ≤ n
with r(ν) = r(µi) and ν 6= µi.

Let us now relate our transformation groupoid to the groupoid attached to topological Markov
shifts or graphs (see [25] and [3]), and our notion of continuous orbit equivalence for partial
systems to continuous orbit equivalence for topological Markov shifts or graphs (see [25] and
[3]). Once these relations are established, we will see that Theorem 2.7 applied to graphs
generalizes [25, Theorem 2.3] and gives an alternative interpretation for [3, Theorem 5.1].

Let E be a graph as above. We compare the transformation groupoid FE1n∂E with the groupoid
GE from [3, § 2.3] (see [25, § 2.2] for the case of topological Markov shifts). The groupoid GE is
given by GE =

{
(α, n, β) ∈ ∂E × Z× ∂E : n = k − l for k, l ∈ Z+ and σk(α) = σl(β)

}
. Here, we

identify ∂E with E∞ ∪ {α ∈ E∗: s(α) /∈ E0
0} and define for µ = µ1µ2µ3 . . . in E∞ with l(µ) ≥ 2

(µi ∈ E1) σ(µ) = µ2µ3 . . . , and σ(µ) = s(µ) if µ ∈ E1. For µ ∈ E0, σ is not defined. An equation
like σk(α) = σl(β) always implicitly means that σk(α) and σl(β) are defined, i.e., l(α) ≥ k and
l(β) ≥ l. Moreover, we write Z+ = {z ∈ Z: z ≥ 0}.

Lemma 3.7. FE1 n ∂E and GE are isomorphic as topological groupoids.

Proof. It is easy to see that GE → FE1 n ∂E , (λν, n, µν) 7→ (λµ−1, µν) and FE1 n ∂E →
GE , (λµ−1, µν) 7→ (λν, l(λ) − l(µ), µν) are mutually inverse (continuous) groupoid homomor-
phisms. (Note that these expressions for the maps only make sense for l(µ), l(ν) ≥ 1. But there
is an obvious way to define these maps for l(µ) = 0 or l(ν) = 0.) �
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Let us also compare the notion of (continuous) orbit equivalence for graphs introduced in [3,
Definition 3.1] (see also [25, § 2.1] for the case of topological Markov shifts) with continuous
orbit equivalence of the corresponding partial systems. Let E and F be two graphs, with σE
and σF as above, and partial systems FE1 y ∂E and FF1 y ∂F . E and F are (continuously)
orbit equivalent in the sense of [3, Definition 3.1] if there exists a homeomorphism ϕ : ∂E → ∂F
together with continuous maps k, l : ∂E → Z+ and k′, l′ : ∂F → Z+ such that

(7) σ
k(ζ)
F (ϕ(σE(ζ))) = σ

l(ζ)
F (ϕ(ζ)) for all ζ ∈ ∂E ,

(8) σ
k′(η)
E (ϕ−1(σF(η))) = σ

l′(η)
E (ϕ−1(η)) for all η ∈ ∂F .

Lemma 3.8. If FE1 y ∂E and FF1 y ∂F are continuously orbit equivalent, then E and F are
orbit equivalent.

If E and F satisfy condition (L), then the converse holds, i.e., if E and F are orbit equivalent,
then FE1 y ∂E and FF1 y ∂F are continuously orbit equivalent.

Proof. Assume that FE1 y ∂E and FF1 y ∂F are continuously orbit equivalent via ϕ : ∂E ∼= ∂F
and continuous maps a, b as in Definition 2.6. As ∂E =

(⊔
ζ∈E1 ζ∂E

)
t E0 \ E0

0 , it suffices to

define k and l on
⊔
ζ∈E1 ζ∂E (on the remaining part, just set k and l to be 0). For ζ ∈ E1

and ζξ ∈ ζ∂E , we know that a(ζ−1, ζξ) has the reduced form λκ−1, so that we can define k
and l on ζ∂E by setting k(ζξ) := l(λ) and l(ζξ) := l(κ). These maps k and l are obviously
locally constant, hence continuous. Moreover, we know that ϕ(ζ−1.(ζξ)) = (λκ−1).ϕ(ζξ), which
means that there exists ω ∈ ∂F with ϕ(ζξ) = κω and ϕ(ξ) = ϕ(ζ−1.(ζξ)) = λω. Therefore,

σ
l(λ)
F (ϕ(σE(ζξ))) = σ

l(λ)
F (ϕ(ξ)) = σ

l(λ)
F (λω) = ω = σ

l(κ)
F (κω) = σ

l(κ)
F (ϕ(ζξ)). Thus, (7) holds. k′

and l′ are defined in a similar way, using b.

Now assume that E and F satisfy condition (L), and suppose conversely that E and F are
orbit equivalent. Because of condition (L), our partial systems FE1 y ∂E and FF1 y ∂F are
topologically free. Therefore, to prove that they are continuously orbit equivalent, all we have
to show is that for every g ∈ FE1 and x ∈ Ug−1 , there exists an open neighbourhood U of x and
h ∈ FF1 such that ϕ(g.x̄) = h.ϕ(x̄) for all x̄ ∈ U , and analogously for ϕ−1. In our case, since
FE1 is generated by E1, it suffices to consider g ∈ (E1)−1. Take ζ ∈ E1 and x ∈ ζ∂E . Choose
λ, κ ∈ F∗ with l(λ) ≥ k(x), l(κ) ≥ l(x), such that ϕ(x) ∈ κ∂F and ϕ(ζ−1.x) ∈ λ∂F , and for
all ζξ ∈ ζ∂E with ϕ(ζξ) ∈ κ∂F and ϕ(ξ) = ϕ(ζ−1.(ζξ)) ∈ λ∂F , we have k(ζξ) = k(x) and
l(ζξ) = l(x). Such λ and κ exist because k and l are continuous, hence locally constant. Set
U := {ζξ ∈ ζ∂E : ϕ(ζξ) ∈ κ∂F and ϕ(ξ) ∈ λ∂F}. U is obviously an open neighbourhood of x.
Set k := k(x) and l := l(x). For all ζξ ∈ U , we have σkF(ϕ(ξ)) = σkF(ϕ(σE(ζξ))) = σlF(ϕ(ζξ)).
Thus, when we write λ = λ′λ′′ with l(λ′) = k and κ = κ′κ′′ with l(κ′) = l, we even know that
(λ′)−1.ϕ(ξ) = σkF(ϕ(ξ)) = σlF(ϕ(ζξ)) = (κ′)−1.ϕ(ζξ), and hence ϕ(ζ−1.(ζξ)) = (λ′(κ′)−1).ϕ(ζξ)
for all ζξ ∈ U . Thus ϕ has the desired property. The proof for ϕ−1 is analogous. �

Lemma 3.7, Lemma 3.8 and Theorem 2.7 imply the following

Theorem 3.9. Let E and F be graphs. Consider the statements

a) FE1 n ∂E and FF1 n ∂F are isomorphic as topological groupoids,
b) GE and GF are isomorphic as topological groupoids,
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c) there exists an isomorphism Φ : C∗(E)
∼=−→ C∗(F) with Φ(C∗(EE)) = C∗(EF),

d) FE1 y ∂E and FF1 y ∂F are continuously orbit equivalent,
e) E and F are orbit equivalent.

We always have a) ⇔ b), a) ⇒ c) as well as a) ⇒ d) ⇒ e). If E and F satisfy condition (L),
then all these statements are equivalent.

This generalizes [25, Theorem 2.3] and gives an alternative proof for the corresponding parts
of [3, Theorem 5.1]. Note that in [3], it is proven that a), b) and c) are always equivalent.

3.3. Subsemigroups of groups. Let us discuss C*-algebras attached to subsemigroups of
groups. Given a subsemigroup P of a group G (or any left cancellative semigroup), the left
reduced semigroup C*-algebra C∗λ(P ) of P is defined as the sub-C*-algebra of L(`2P ) generated
by the left multiplication operators Vp : `2P → `2P, δx 7→ δpx. Here δx is the delta function in
x ∈ P , and these δx form the canonical orthonormal basis of `2P . The canonical commutative
subalgebra Dλ(P ) is given by Dλ(P ) = C∗λ(P ) ∩ `∞(P ). Here is an alternative description
of Dλ(P ): Let IV be the inverse semigroup of partial isometries on `2P generated by Vp,
p ∈ P , i.e., IV =

{
V ∗p1Vq1 · · ·V

∗
pnVqn : n ∈ N, pi, qi ∈ P

}
. We can define a partial homomorphism

σ : I×V → G, V ∗p1Vq1 · · ·V
∗
pnVqn 7→ p−1

1 q1 · · · p−1
n qn. To see that σ is well-defined, note that every

V ∈ IV has the property that there exists g ∈ G such that for every x ∈ P , either V δx = 0
or V δx = δgx. And σ is defined in such a way that σ(V ) = g. Now the closed linear span
span(σ−1(e)) of σ−1(e), where e is the identity of G, coincides with Dλ(P ). All this is explained
in [18, 19] (see [18, Remark 3.12] for the alternative description of Dλ(P )).

Let us now describe the canonical partial action Gy Dλ(P ). We first describe the dual action
α∗. For g ∈ G, let Dg−1 := span(

{
V ∗V : V ∈ I×V , σ(V ) = g

}
). Dg−1 is an ideal of Dλ(P ),

and it follows from the alternative description of Dλ(P ) that De = Dλ(P ). We then define
α∗g as α∗g : Dg−1 → Dg, V

∗V → V V ∗ for V ∈ I×V with σ(V ) = g. This is well-defined: If

we view `2P as a subspace `2G and let λ be the left regular representation of G, then every
V ∈ I×V with σ(V ) = g satisfies V = λgV

∗V . Therefore, V V ∗ = λgV
∗V λ∗g. This shows that

α∗g is just conjugation with the unitary λg. This also explains why α∗g is an isomorphism. Of
course, we can also describe the dual action α. Set ΩP := Spec (Dλ(P )) as the spectrum of

the commutative C*-algebra Dλ(P ), and for every g ∈ G, let Ug−1 := D̂g−1 . Obviously, Ug−1 ={
χ ∈ ΩP : χ(V ∗V ) = 1 for some V ∈ I×V with σ(V ) = g

}
. Define αg by αg(χ) := χ ◦ α∗g−1 .

Proposition 3.10. There is a canonical isomorphism C∗λ(P ) ∼= Dλ(P ) or G determined by
Vp 7→ VpV

∗
p δp. Here we form the partial crossed product for the partial action G y Dλ(P )

defined above, and δg denote the canonical partial isometries in Dλ(P ) or G.

Proof. Our strategy is to describe both C∗λ(P ) and Dλ(P ) or G as reduced (cross sectional)
algebras of Fell bundles, and then to identify the underlying Fell bundles.

Let us start with C∗λ(P ). We have already defined IV and σ. Now we set Bg := span(σ−1(g))
for every g ∈ G. We want to see that (Bg)g∈G is a grading for C∗λ(P ), in the sense of [7,
Definition 3.1]. Conditions (i) and (ii) are obviously satisfied. For (iii), we use the faithful
conditional expectation E : C∗λ(P ) � Dλ(P ) = Be from [18, § 3.1]. Given a finite sum x =
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g xg ∈ C∗λ(P ) of elements xg ∈ Bg such that x = 0, we conclude that 0 = x∗x =

∑
g,h x

∗
gxh,

and hence 0 = E(x∗x) =
∑

g x
∗
gxg (here we used that E|Bg = 0 if g 6= e). This implies that

xg = 0 for all g. Therefore, the subspaces Bg are independent. It is clear that the linear span of
all the Bg is dense in C∗λ(P ). This proves (iii). If we let B be the Fell bundle given by (Bg)g∈G,
then [7, Proposition 3.7] implies C∗λ(P ) ∼= C∗r (B) because E : C∗λ(P ) � Dλ(P ) = Be is a faithful
conditional expectation satisfying E|Be = idBe and E|Bg = 0 if g 6= e.

Let us also describe Dλ(P ) or G as a reduced algebra of a Fell bundle. We denote by Wg

the partial isometry in Dλ(P ) or G corresponding to g ∈ G, and we set B′g := DgWg. Recall

that we defined Dg−1 = span(
{
V ∗V : V ∈ I×V , σ(V ) = g

}
) earlier on. It is easy to check that

(B′g)g∈G satisfy (i), (ii) and (iii) in [7, Definition 3.1]. Moreover, B′e = De = Dλ(P ), and it
follows immediately from the construction of the reduced partial crossed product that there is
a faithful conditional expectation Dλ(P )orG� Dλ(P ) = B′e which is identity on B′e and 0 on
B′g for g 6= e. Hence if we let B′ be the Fell bundle given by (B′g)g∈G, then [7, Proposition 3.7]
implies Dλ(P ) or G ∼= C∗r (B′).

To identify C∗λ(P ) and Dλ(P )orG, it now remains to identify B with B′. We claim that the map
span({V : σ(V ) = g}) → span({V V ∗Wg: σ(V ) = g}),

∑
i αiVi 7→

∑
i αiViV

∗
i Wg is well-defined

and extends to an isometric isomorphism Bg → B′g, for all g ∈ G.

All we have to show is that our map is isometric. We have ‖
∑

i αiVi‖
2 =

∥∥∥∑i,j αiαjViV
∗
j

∥∥∥
Dλ(P )

and ‖
∑

i αiViV
∗
i Wg‖2 =

∥∥∥∑i,j αiαjViV
∗
i VjV

∗
j

∥∥∥
Dλ(P )

. Since Vi = ViV
∗
i λg and V ∗j = λg−1VjV

∗
j ,

we have ViV
∗
j = ViV

∗
i λgλg−1VjV

∗
j = ViV

∗
i VjV

∗
j . Hence, indeed, ‖

∑
i αiVi‖

2 = ‖
∑

i αiViV
∗
i Wg‖2,

and we are done.

All in all, we have proven that C∗λ(P ) ∼= C∗r (B) ∼= C∗r (B′) ∼= Dλ(P ) or G. �

Remark 3.11. A straightforward computation shows that actually, VpV
∗
p δp = δp for all p ∈ P .

Thus the isomorphism in the Proposition 3.10 is given by Vp 7→ δp for all p ∈ P .

Our next goal is to write C∗λ(P ) as a quotient of a C*-algebra of an inverse semigroup in a
canonical way. Let S := Il(P ) be the inverse semigroup of partial bijections of P generated by

p : P
∼=−→ P, x 7→ px (p ∈ P ). The semilattice of idempotents E of S is given by the set of

constructible ideals J =
{
p−1

1 q1 · · · p−1
n qnP : pi, qi ∈ P

}
(see [18, § 2.1]). It is easy to see that S

is canonically isomorphic to the inverse semigroup IV constructed above. The homomorphism
I×V → G from above yields an idempotent pure partial homomorphism from S to G such that
for every s ∈ S×, s(x) = σ(s) · x if x ∈ dom(s).

As explained in [31, Corollary 3.2.13], the isometry `2P → `2S×, δp 7→ δp induces surjective
homomorphisms C∗(E) � Dλ(P ) and C∗λ(S) � C∗λ(P ). The first surjection allows us to view

ΩP = Spec (Dλ(P )) as a closed subspace of Ê. More precisely, χ ∈ Ê lies in ΩP if for all
constructible ideals X,X1, . . . , Xn of P with X =

⋃n
i=1Xi, χ(X) = 1 implies χ(Xi) = 1 for

some 1 ≤ i ≤ n.

The following lemma is easy to check:
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Lemma 3.12. ΩP is a G-invariant subspace with respect to the canonical G-action on Ê. The
corresponding partial system G y ΩP coincides with α, the dual action of α∗ : G y Dλ(P )
constructed before Proposition 3.10.

Moreover, the surjection C∗λ(S) � C∗λ(P ) from [31, Corollary 3.2.13] corresponds to the

obvious map C(Ê) or G� C(ΩP ) or G under the identifications given by Proposition 3.1 and
Proposition 3.10.

Here is a sufficient condition for topological freeness of Gy ΩP :

Proposition 3.13. If P contains the identity e ∈ G, and if the group of units P ∗ in P is
trivial, i.e., P ∗ = {e}, then Gy ΩP is topologically free.

Proof. For p ∈ P , let χp ∈ Ê be defined by χp(X) = 1 if and only if p ∈ X, for X ∈ J .
Obviously, χp ∈ ΩP . It turns out that {χp: p ∈ P} is dense in ΩP . Basic open sets in ΩP

are of the form U(X;X1, . . . , Xn) = {χ ∈ ΩP : χ(X) = 1, χ(Xi) = 0 for all 1 ≤ i ≤ n}. Here
X,X1, . . . , Xn are constructible ideals of P . Clearly, U(X;X1, . . . , Xn) is empty if X =

⋃n
i=1 Xi.

Thus, for a non-empty basic open set U(X;X1, . . . , Xn), we may choose p ∈ X such that
p /∈

⋃n
i=1Xi, and then χp ∈ U(X;X1, . . . , Xn).

Let p ∈ P and g ∈ G satisfy g.χp = χp. This equality only makes sense if χp ∈ Ug−1 , i.e.,
there exists Y ∈ J with Y ⊆ g−1 · P and p ∈ Y . Then g.χp(X) = χp(g

−1 · (X ∩ g · Y )). So
g.χp(X) = 1 if and only if p ∈ g−1 · (X ∩g ·Y ) if and only if gp ∈ X ∩g ·Y if and only if gp ∈ X,
while χp(X) = 1 if and only if p ∈ P . Hence g.χp = χp implies that for every X ∈ J , gp ∈ X if
and only if p ∈ X. For X = pP , we obtain gp ∈ pP , and for X = gpP , we get p ∈ gpP . Hence
there exist x, y ∈ P with gp = px and p = gpy. So p = gpy = pxy and gp = px = gpyx. Thus
xy = yx = e. Hence x, y ∈ P ∗. Since P ∗ = {e} by assumption, we must have x = y = e, and
hence gp = p. This implies g = e. In other words, for every e 6= g ∈ G, g.χp 6= χp for all p ∈ P
such that χp ∈ Ug−1 . Hence it follows that {χ ∈ Ug−1 : g.χ 6= χ} contains {χp ∈ Ug−1 : p ∈ P},
and the latter set is dense in Ug−1 as {χp: p ∈ P} is dense in ΩP . �

Coming back to the comparison of C∗λ(S) and C∗λ(P ), it was shown in [31, Theorem 3.2.14] that
the following are equivalent:

• the canonical map C∗λ(S) � C∗λ(P ) is injective,
• the canonical map C∗(E) � Dλ(P ) is injective,
• J is independent.

Recall that J is called independent if for all X,X1, . . . , Xn ∈ J , X =
⋃n
i=1Xi implies X = Xi

for some 1 ≤ i ≤ n.

In view of [18, 19], it makes sense to view the full C*-algebra C∗(S) of the inverse semigroup
S = Il(P ) as the full semigroup C*-algebra of P . Thus we set C∗(P ) := C∗(S), and let
λ : C∗(P ) � C∗λ(P ) be the composite C∗(P ) = C∗(S) � C∗λ(S) � C∗λ(P ). Because of our
descriptions as transformation groupoids (see Proposition 3.1), the following generalizations of
[19, Theorem 6.1] are immediate.

Theorem 3.14. If Gn Ê or GnΩP is amenable, then λ : C∗(P ) � C∗λ(P ) is an isomorphism
if and only if P is independent.
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Theorem 3.15. Consider the following statements:

(i) C∗(P ) is nuclear,
(ii) C∗λ(P ) is nuclear,

(iii) Gn ΩP is amenable,
(iv) λ : C∗(P ) � C∗λ(P ) is an isomorphism.

We always have (i) ⇒ (ii) ⇔ (iii). If P is independent, then (iii) ⇒ (iv) and (iii) ⇒ (i), so
that (i), (ii) and (iii) are equivalent.

It is an open problem whether all the items (i) to (iv) are equivalent for semigroups which
are independent.

Corollary 3.16 (compare Proposition 3.46 in [31]). If P is a subsemigroup of an amenable
group G, then (i), (ii) and (iii) from Theorem 3.15 hold, and (iv) is true if and only if P is
independent.

Proof. By Proposition 3.1, both C∗(P ) and C∗λ(P ) can be written as (full or reduced) partial
crossed products by G, and hence as (full or reduced) C*-algebras of Fell bundles over G.
Therefore, by [11, Theorem 20.7 and Theorem 25.10], C∗(P ) and C∗λ(P ) are nuclear. (iii) holds
because we know that (ii)⇔ (iii). Finally, our claim about (iv) follows from Theorem 3.14. �

Now set ∂ΩP := ∂Ê, where E is the semilattice of idempotents of S = Il(P ).

Lemma 3.17. We have ∂ΩP ⊆ ΩP .

Proof. Let X,X1, . . . , Xn ∈ J satisfy X =
⋃n
i=1 Xi. Then for χ ∈ Êmax, χ(Xi) = 0 implies that

there exists X ′i ∈ J with χ(X ′i) = 1 and Xi ∩ X ′i = ∅. Thus if χ(Xi) = 0 for all 1 ≤ i ≤ n,
then let X ′i, 1 ≤ i ≤ n be as above. Then for X ′ =

⋂n
i=1 X

′
i, χ(X ′) = 1 and X ∩X ′ = ∅. Thus

χ(X) = 0. This shows Êmax ⊆ ΩP . As ΩP is closed, we conclude that ∂Ê ⊆ ΩP . �

As ∂ΩP is G-invariant, the following makes sense.

Definition 3.18. The boundary quotient of C∗λ(P ) is given by ∂C∗λ(P ) := C(∂ΩP ) or G.

By construction and because of Proposition 3.10, there is a canonical projection C∗λ(P ) �
∂C∗λ(P ). Morever, if P is a subsemigroup of an exact group G, then ∂C∗λ(P ) is isomorphic to
∂C∗λ(S) ∼= C(∂ΩP ) or G. Let us now generalize the results in [19, § 7.3].

Lemma 3.19. ∂Ê = ∂ΩP is the minimal non-empty closed G-invariant subspace of Ê.

Proof. Let C ⊆ Ê be non-empty, closed and G-invariant. Let χ ∈ Êmax be arbitrary, and

choose X ∈ J with χ(X) = 1. Choose p ∈ X and χ ∈ C. As Up−1 = Ê, we can form p.χ, and
we know that p.χ ∈ C. We have p.χ(pP ) = χ(P ) = 1, so that p.χ(X) = 1 as p ∈ X implies
pP ⊆ X (X is a right ideal). Set χX := p.χ. Consider the net (χX)X indexed by X ∈ J with
χ(X) = 1, ordered by inclusion. Passing to a convergent subnet if necessary, we may assume

that limX χX exists. But it is clear because of χ ∈ Êmax that limX χX = χ. As χX ∈ C for all

X, we deduce that χ ∈ C. Thus Êmax ⊆ C, and hence ∂Ê ⊆ C. �

In particular, ∂ΩP is the minimal non-empty closed G-invariant subspace of ΩP . Another
immediate consequence is
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Corollary 3.20. The transformation groupoid Gn ∂ΩP is minimal.

To discuss topological freeness of Gy ∂ΩP , let

G0 =
{
g ∈ G: X ∩ g · P 6= ∅ 6= X ∩ g−1 · P for all ∅ 6= X ∈ J

}
,

as in [19, § 7.3]. Clearly, G0 = {g ∈ G: pP ∩ g · P 6= ∅ 6= pP ∩ g−1 · P for all p ∈ P}. Further-
more, [19, Lemma 7.19] shows that G0 is a subgroup of G.

Proposition 3.21. Gy ∂ΩP is topologically free if and only if G0 y ∂ΩP is topologically free.

Proof. “⇒” is clear. For “⇐”, assume that G0 y ∂ΩP is topologically free, and suppose that
G y ∂ΩP is not topologically free, i.e., there exists g ∈ G and U ⊆ Ug−1 ∩ ∂ΩP such that

g.χ = χ for all χ ∈ U . As Êmax = ∂ΩP , we can find χ ∈ Ug−1 ∩ Êmax with g.χ = χ.

For every X ∈ J with χ(X) = 1, choose x ∈ X and ψX ∈ Êmax with ψX(xP ) = 1, so that
ψX(X) = 1. Consider the net (ψX)X indexed by X ∈ J with χ(X) = 1, ordered by inclusion.
Passing to a convergent subnet if necessary, we may assume that limX ψX = χ. As U is open,
we may assume that ψX ∈ U for all X. Then ψX(xP ) = 1 implies that ψX ∈ Ux ∩ U .

Hence for sufficiently small X ∈ J with χ(X) = 1, there exists x ∈ X such that x−1.(Ux ∩ U)
is a non-empty open subset of ∂ΩP . We conclude that (x−1gx).ψ = ψ for all ψ ∈ x−1.(Ux ∩U).
This implies that x−1gx /∈ G0 as G0 y ∂ΩP is topologically free. So there exists p ∈ P with

pP ∩ x−1gx · P = ∅ or pP ∩ x−1g−1x · P = ∅. Let χX ∈ Êmax satisfy χX(xpP ) = 1. If
pP ∩ x−1gx · P = ∅, then xpP ∩ gx · P = ∅, so that xpP ∩ g−1xp · P = ∅. Hence g.χX 6= χX if
χX ∈ Ug−1 . If pP ∩ x−1g−1x · P = ∅, then xpP ∩ g−1x · P = ∅, so that xpP ∩ g−1xp · P = ∅.
Again, g.χX 6= χX if χX ∈ Ug−1 .

For every sufficiently small X ∈ J with χ(X) = 1, we can find x ∈ X and χX as above. Hence
we can consider the net (χX)X as above, and assume after passing to a convergent subnet that
limX χX = χ. As χ ∈ U ⊆ Ug−1 ∩ ∂ΩP , it follows that χX ∈ U ⊆ Ug−1 ∩ ∂ΩP for sufficiently
small X. So we obtain g.χX 6= χX , although g acts trivially on U . This is a contradiction. �

Corollary 3.22. If G0 y ∂ΩP is topologically free, then ∂C∗λ(P ) is simple.

Proof. This follows from Lemma 3.19, Proposition 3.21 and [33, Chapter II, Proposition 4.6].
�

Theorem 3.23. Let P = 〈S,R〉+ be a monoid given by a positive r-complete presentation
(S,R) in the sense of [6]. Assume that for all u ∈ S, there is v ∈ S such that R does not
contain any relation of the form u · · · = v · · · . Also, suppose that P embeds into a group G such
that (G,P ) is quasi-lattice ordered in the sense of [30]. Then G0 = {e} and ∂C∗λ(P ) is simple.

Proof. In view of Corollary 3.22, it suffices to prove G0 = {e}. Let g ∈ G0. Assume that
gP ∩ P 6= P . Then g ∈ G0 implies that this intersection is not empty. Hence, we must
have gP ∩ P = pP for some p ∈ P because (G,P ) is quasi-lattice ordered. As p 6= e, there
exists u ∈ Σ with pP ⊆ uP . By assumption, there exists v ∈ Σ such that no relation in R
is of the form u · · · = v · · · . By r-completeness, uP ∩ vP = ∅ (see [6, Proposition 3.3]), so
that gP ∩ vP = ∅. This contradicts g ∈ G0. Hence, we must have gP ∩ P = P , and similarly,
g−1P ∩P = P . These two equalities imply g ∈ P ∗. But P ∗ = {e} because (G,P ) is quasi-lattice
ordered. Thus g = e. �
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We would like to mention that results on simplicity of boundary quotients have been obtained
in the special case of right LCM semigroups in [37, Theorem 4.12].

Remark 3.24. By going over to the opposite semigroup, we obtain analogous results for the
right versions C∗ρ(P ) and ∂C∗ρ(P ).

Examples 3.25. Theorem 3.23 implies that for every graph-irreducible right-angled Artin
monoid A+

Γ in the sense of [4], ∂C∗λ(A+
Γ ) is simple. Also, for the Thompson monoid F+ =

〈x0, x1, . . . | xnxk = xkxn+1 for k < n〉+, we get that ∂C∗ρ(F+) is simple.
Corollary 3.22 and [20, Corollary 5.10] imply that for every countable Krull ring R with

P(R)inf 6= ∅ or P(R)fin infinite (see [20] for details), ∂C∗λ(RoR×) is simple.

4. Purely infinite groupoids

Our goal is to exhibit examples of purely infinite groupoids. More precisely, we study groupoids
attached to graphs, groupoids corresponding to boundary quotients of semigroup C*-algebras,
and groupoids underlying semigroup C*-algebras of ax+ b-semigroups.

First of all, it is easy to see that for a partial dynamical system G y X, the transformation
groupoid GnX is purely infinite in the sense of [27] if and only if every compact open subset
of X is (G, CO)-paradoxical in the sense of [15, Definition 4.3], where CO is the set of compact
open subsets of X.

The following lemma is easy to see, and will be used several times:

Lemma 4.1. Let E be a semilattice. Every compact open subset A ⊆ Ê can be written as a
disjoint union A =

⊔m
i=1 Ui of basic open sets Ui of the form

U(e; e1, . . . , en) =
{
χ ∈ Ê: χ(e) = 1, χ(e1) = . . . = χ(en) = 0

}
, e, e1, . . . , en ∈ E.

This lemma will be helpful because given a partial system G y Ê (or G y X for any G-

invariant subspace X ⊆ Ê), and we want to show that every compact open subset is (G, CO)-
paradoxical, then it suffices to show this for basic open sets of the form U(e; e1, . . . , en).

4.1. Graphs. Let us first recall a necessary and sufficient condition from [16], in terms of
graphs, for pure infiniteness of graph C*-algebras. Let E = (E0, E1, r, s) be a graph, and we
use the same notation as in § 3.2. Note that since our notation differs from the one in [16] (see
Remark 3.5), we have to reverse all the arrows in the condition for pure infiniteness.

For v, w ∈ E0, we write w ← v if there exists a path µ ∈ E∗ from v to w, i.e., with
r(µ) = w and s(µ) = v, and we write w 6← v if there is no such path. For v ∈ E0, let
Ω(v) = {w ∈ E0: w 6= v, w 6← v}. v ∈ E0 is called a breaking vertex if |r−1(v)| = ∞ and
0 < |r−1(v) \ s−1(Ω(v))| <∞.

Moreover, we call µ ∈ E∗ a loop if l(µ) ≥ 1 and r(µ) = s(µ). We say that E satisfies condition
(K) if for all v ∈ E0, whenever there exists a loop µ with r(µ) = v = s(µ), there exists another
loop µ′ with r(µ′) = v = s(µ′) and µ · µ′ = 0 in EE .

Furthermore, a subset M ⊆ E0 is called a maximal tail if
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• for every v ∈ E0, whenever there is w ∈M with v ← w, then v ∈M ;
• for every v ∈M with 0 < |r−1(v)| <∞, there exists η ∈ E1 with r(η) = v and s(η) ∈M ;
• for all v, w ∈M , there exist y ∈M with v ← y and w ← y.

We say that v ∈ E0 connects to a loop if there is a loop µ with r(µ) = w = s(µ) with v ← w.
[16, Theorem 2.3] says that C∗(E) is purely infinite if and only if E satisfies the following

condition:

(PI) There exist no breaking vertices in E , E satisfies condition (K), and every vertex in each
maximal tail M connects to a loop in M .

Lemma 4.2. Suppose that E satisfies condition (PI). Let v ∈ E0 satisfy |r−1(v)| = ∞. Then
there exist infinitely many loops µ1, µ2, . . . ∈ E∗ with r(µi) = v = s(µi) of the form µi = ζiηi for
pairwise distinct ζi ∈ E1.

Proof. Since v is not a breaking vertex, we must have |r−1(v) \ s−1(Ω(v))| ∈ {0,∞}.
If |r−1(v) \ s−1(Ω(v))| = ∞, then there exist infinitely many pairwise distinct ζi ∈ E1 with

r(ζi) = v, and there is ηi ∈ E∗ with r(ηi) = s(ζi), s(ηi) = v. Then ζiηi are the required loops.
If |r−1(v) \ s−1(Ω(v))| = 0, then consider the subset M := {w ∈ E0: w ← v}. It is easy to

see that M is a maximal tail, with v ∈ M . By condition (PI), v has to connect to a loop µ in
M . This means that there is w ∈ E0 such that w lies on µ and v ← w. But then, w has to
lie in M , so that w ← v by definition of M ; hence v lies on a loop v ← w ← v. Let ζ1 · · · ζn
be such a loop. Then ζ1 ∈ r−1(v), but ζ1 /∈ s−1(Ω(v)) as s(ζ1) ← v, for instance via ζ2 · · · ζn.
Hence 0 < |r−1(v) \ s−1(Ω(v))|, which is a contradiction. �

Let F n ∂E be the transformation groupoid attached to F y ∂E as in § 3.2.

Theorem 4.3. If E satisfies condition (PI), then F n ∂E is purely infinite.

Proof. By Lemma 4.1, it suffices to show that basic open sets of the form U(µ;µ1, . . . , µn) are
(F, CO)-paradoxical. By passing even further to finite unions if necessary, it suffices to treat
the basic open sets U(µ;µ1, . . . , µn) with |r−1(s(µ))| =∞ (and µ1, . . . , µn ≤ µ), or basic open
sets of the form U(µ).

Let us consider the first case. Set U := U(µ;µ1, . . . , µn). Let v = s(µ). Since |r−1(v)| =∞,
Lemma 4.2 tells us that there are infinitely many loops µ1, µ2, . . . ∈ E∗ with r(µi) = v = s(µi)
of the form µi = ζiηi for pairwise distinct ζi ∈ E1. Hence we can find, among the ζi, edges
ζ, ζ ′ ∈ E1 with r(ζ) = r(ζ ′) = v and µζ · µ1 = . . . = µζ · µn = 0 = µζ ′ · µ1 = . . . = µζ ′ · µn = 0.
Therefore, for χ ∈ ∂E , χ(µζ) = 1 implies χ(µi) = 0 for all 1 ≤ i ≤ n, so that χ ∈ U , and
similarly for ζ ′. Moreover, µζ ·µζ ′ = 0 yields that χ(µζ) = 1 implies χ(µζ ′) = 0 and vice versa.
Setting g = µζµ−1 ∈ F, h = µζ ′µ−1 ∈ F, we obtain g.U ⊆ U , h.U ⊆ U and g.U ∩ h.U = ∅.

In the second case, let v = s(µ). By Lemma 4.2 and condition (PI), we can find α =
α1 · · ·αn ∈ E∗ with v = r(α) and |r−1(αi)| < ∞ (1 ≤ i ≤ n) such that there is a loop β ∈ E∗
with r(β) = s(α) = s(β). Therefore, by passing to finite unions if necessary, we may assume
by condition (K) that there exist two loops ζ and ζ ′ with r(ζ) = v = s(ζ), r(ζ ′) = v = s(ζ ′)
and ζ · ζ ′ = 0. Again, setting g = µζµ−1 ∈ F, h = µζ ′µ−1 ∈ F, we obtain g.U ⊆ U , h.U ⊆ U
and g.U ∩ h.U = ∅. �

It is clear that condition (PI) implies that F y ∂E is residually topologically free, in the
sense of [15, Definition 3.4 (ii)]. Moreover, [15, Theorem 4.4] tells us that if F y ∂E is
residually topologically free and if every compact open subset of ∂E is (F, CO)-paradoxical,
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then C∗(E) ∼= C(∂E)or F must be purely infinite (using that F is free and [11, Theorem 22.9]).
All in all, we obtain from Theorem 4.3:

Corollary 4.4. For a graph E, F y ∂E is residually topologically free and purely infinite if
and only if C∗(E) is purely infinite.

4.2. Boundary quotients of semigroup C*-algebras. Let P be a subsemigroup of a group

G. Let E be the semilattice of idempotents of S = Il(P ). We write Ω for ΩP , Ωmax for Êmax

and ∂Ω for ∂ΩP = ∂Ê.

Theorem 4.5. Gn ∂Ω is purely infinite if and only if there exist p, q ∈ P with pP ∩ qP = ∅.
Proof. Obviously, if pP ∩ qP 6= ∅ for all p, q ∈ P , then ∂Ω degenerates to a point. For the
converse, let U = {ψ ∈ ∂Ω: ψ(X) = 1, ψ(X1) = . . . = ψ(Xn) = 0} be a basic open subset for
some X,X1, . . . , Xn ∈ J . By Lemma 4.1, it suffices to show that U is (G, CO)-paradoxical.
Since Ωmax is dense in ∂Ω, there exists χ ∈ Ωmax with χ ∈ U . As χ lies in Ωmax, χ(Xi) = 0
implies that there exists Yi ∈ J with Xi ∩ Yi = ∅ and χ(Yi) = 1. Let Y := X ∩

⋂n
i=1 Yi.

Certainly, Y 6= ∅ as χ(Y ) = 1. Moreover, for every ψ ∈ ∂Ω, ψ(Y ) = 1 implies ψ ∈ U .
Now choose x ∈ Y . By assumption, we can find p, q ∈ P with pP ∩ qP = ∅. For ψ ∈ ∂Ω,
xp.ψ(xpP ) = ψ(P ) = 1. Similarly, for all ψ ∈ ∂Ω, xq.ψ(xqP ) = 1. Thus xp.U ⊆ xp.∂Ω ⊆ U ,
xq.U ⊆ xq.∂Ω ⊆ U and (xp.U) ∩ (xq.U) ⊆ (xp.∂Ω) ∩ (xq.∂Ω) = ∅ since xpP ∩ xqP = ∅. �

This strengthens and explains [19, Corollary 7.23]. It also generalizes [37, Theorem 4.15].

4.3. Groupoids from ax + b-semigroups. Let R be an integral domain with quotient field
K. Consider the ax + b-semigroup R o R×, viewed as a subsemigroup of K oK×. Let E be
the semilattice of idempotents in S = Il(RoR×).

Theorem 4.6. Let R be an integral domain with Jac(R) = (0) and R× 6= R∗. Then (K o
K×) n Ê is purely infinite.

Proof. Let U be the basic open subset

U(x+ I;x1 + I1, . . . , xn + In)

=
{
χ ∈ Ê: χ((x+ I)× I×) = 1; χ((x1 + I1)× I×1 ) = . . . = χ((x+ I)× I×) = 0

}
,

where Ii ⊆ I ( R. By Lemma 4.1, it suffices to show that U is (K oK×, CO)-paradoxical.
Set J :=

⋂n
i=1 Ii. Obviously, J 6= (0). Therefore 1 + J * R∗. Otherwise, by [2, Proposi-

tion 1.9], J ⊆ Jac(R) = (0), which is a contradiction. So we can choose a ∈ (1 +J) \R∗, a 6= 0,
as R× 6= R∗. Then J * aR. Otherwise, there would exist r ∈ R with a − 1 = ar, so that
a(1− r) = 1 contradicting a /∈ R∗. Choose b1 ∈ J , δ ∈ J \ aR and set b2 := b1 + δ.

For k = 1, 2, (bk, a).U = U(bk+ax+aI; bk+ax1+aI1, . . . , bk+axn+aIn). Since bk+ax+aI ⊆
ax + aI + J ⊆ a(x + I) + J ⊆ (1 + J)(x + I) + J ⊆ x + I, every χ ∈ (bk, a).U satisfies
χ((x+ I)× I×) = 1. Moreover, we have (xi + Ii)∩ (bk + ax+ aI) = bk + (xi + Ii)∩ (ax+ aI) =
bk + (axi + Ii) ∩ (axi + aI) since xi − axi = (1− a)xi ∈ J .

We claim that Ii ∩ aI = aIi. “⊇” is clear. If r ∈ Ii ∩ aI, then r = as for some s ∈ I, so that
s = (1− a+ a)s = (1− a)s+ as ∈ J + Ii ⊆ Ii. This proves “⊆”.

Hence (xi + Ii) ∩ (bk + ax + aI) = bk + axi + aIi. Therefore, every χ ∈ (bk, a).U satisfies
χ((xi + Ii)× I×i ) = 0. This shows that for k = 1, 2, (bk, a).U ⊆ U .
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Also, (b1+ax+aI)∩(b2+ax+aI) = ∅ as b2−b1 = δ /∈ aR. Hence (b1, a).U∩(b2, a).U = ∅. �

This strengthens and explains [20, Theorem 1.3].

4.4. Almost finite groupoids. Apart from purely infinite groupoids, Matui also introduced
almost finite ones in [26]. We would like to end with the following obervation concerning the
relation between almost finiteness and amenability:

Proposition 4.7. Let G be a group acting on a compact space X. Assume that there exists
x ∈ X with trivial stabilizer group, i.e., Gx = {g ∈ G: g.x = x} = {e}. If the transformation
groupoid GnX is almost finite, then G is amenable.

Proof. Let E ⊆ G be a finite subset with E = E−1. For every ε > 0, we have to find a finite
subset F ⊆ G such that for every s ∈ E, |sF4F | / |F | < ε.

Set C := E × X ⊆ G n X. Let x ∈ X be as above, i.e., {g ∈ G: g.x = x} = {e}.
Since G n X is almost finite, we can find an elementary subgroupoid K of G n X such that
|CKx \Kx| / |Kx| < ε

2
. Let F = {g ∈ G: (g, x) ∈ K}. F is contained in the image of K under

the canonical projection GnX → G, (g, x) 7→ g. Therefore, F is a finite subset of G. We have
Kx = {(g, x): g ∈ F} and CKx \ Kx = {(g, x): g ∈ EF \ F} =

⋃
s∈E {(g, x): g ∈ sF \ F}.

Therefore, ε
2
> |CKx \Kx| / |Kx| ≥ |sF \ F | / |F | for all s ∈ E. For s ∈ E, F \ sF =

F \ (F ∩ sF ) = s(s−1F \ (s−1F ∩ F ) = s(s−1F \ F ). Hence |F \ sF | = |s−1F \ F | < ε
2
|F | by

our computation above. (Note that by assumption, E = E−1.)
Therefore, for every s ∈ E, |sF4F | / |F | = |sF \ F | / |F |+ |F \ sF | / |F | < ε. �
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