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CONTINUOUS ORBIT EQUIVALENCE RIGIDITY

XIN LI

Abstract. We take the first steps towards a better understanding of continuous orbit equiv-
alence, i.e., topological orbit equivalence with continuous cocycles. First, we characterise con-
tinuous orbit equivalence in terms of isomorphisms of C*-crossed products preserving Cartan
subalgebras. This is the topological analogue of the classical result by Singer and Feldman-
Moore in the measurable setting. Secondly, we turn to continuous orbit equivalence rigidity,
i.e., the question whether for certain classes of topological dynamical systems, continuous orbit
equivalence implies conjugacy. We show that this is not always the case by constructing topo-
logical dynamical systems (actions of free abelian groups, and also non-abelian free groups)
which are continuously orbit equivalent but not conjugate. Furthermore, we prove positive
rigidity results. For instance, it turns out that general topological Bernoulli actions are rigid
when compared with actions of nilpotent groups, and that topological Bernoulli actions of du-
ality groups are rigid when compared with actions of solvable groups. The same is true for
certain subshifts of full shifts over finite alphabets.

1. Introduction

From its very beginning on, the theory of operator algebras was closely related to ergodic
theory and dynamical systems. The bridge between these subjects is built by crossed product
constructions, attaching von Neumann algebras to measure-preserving dynamical systems and
C*-algebras to topological dynamical systems.

In the setting of von Neumann algebras, the crossed product construction, also called group-
measure space construction, played an important role in the classification of injective factors.
Similarly, in the C*-algebraic setting, crossed products attached to topological dynamical sys-
tems provide interesting examples which are challenging to classify and lead to new insights.

If we want to further develop the relationship between operator algebras and dynamical systems,
the following question will be crucial:

How much information do these crossed product constructions contain about the underlying
dynamical systems?
It turns out that the crossed product itself might contain very little information, but if we
consider the crossed product together with a commutative subalgebra (which is canonically
given), then our question can be answered in a systematic way.
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To explain this in the measurable and von Neumann algebraic setting, let Gy X and H y Y
be probability measure preserving actions. Here, our measure spaces are standard, our groups
are discrete and countable, and they act by Borel automorphisms. We say that G y X and
H y Y are orbit equivalent if there exists an isomorphism of measure spaces ϕ : X → Y
with ϕ(G.x) = H.ϕ(x) for a.e. x ∈ X . Moreover, we let G ⋉ X and H ⋉ Y be the measured
transformation groupoids attached to Gy X and H y Y . If our actions are (essentially) free,
then G ⋉ X and H ⋉ Y are nothing else but the orbit equivalence relations R(G y X) and
R(H y Y ) viewed as measured groupoids. Here is a classical result:

Theorem 1.1 ([24, 5, 6]). Let G y X and H y Y be (essentially) free probability measure
preserving actions. The following are equivalent:

• Gy X and H y Y are orbit equivalent;
• G⋉X and H ⋉ Y are isomorphic as measured groupoids (or equivalence relations);

• there is a vN-isomorphism Φ : L∞(X)⋊G
∼=
−→ L∞(Y )⋊H with Φ(L∞(X)) = L∞(Y ).

The interested reader may consult [26, 8, 27] for more details.

Our first result carries over Theorem 1.1 to the topological setting. Let Gy X and H y Y be
topological dynamical systems. This means that G and H are countable discrete groups acting
by homeomorphisms on locally compact Hausdorff spaces X and Y .

We say that G y X and H y Y are continuously orbit equivalent if there exists a homeo-

morphism ϕ : X
∼=
−→ Y with inverse ψ = ϕ−1 : Y

∼=
−→ X and continuous maps a : G×X → H ,

b : H ×Y → G such that ϕ(g.x) = a(g, x).ϕ(x) and ψ(h.y) = b(h, y).ψ(y) for all g ∈ G, x ∈ X ,
h ∈ H and y ∈ Y . Note that G and H carry the discrete topology. This notion of continuous
orbit equivalence has been studied in special cases (see [11, 1, 25]), but not – at least to the best
of the author’s knowledge – in the general setting. There is also a weaker notion of (topological)
orbit equivalence which has been studied intensively for Zn-actions on the Cantor set in the
remarkable papers [11, 9, 10].

Moreover, let G⋉X and H ⋉ Y be the transformation groupoids attached to G y X and
H y Y . Here is the topological analogue of Theorem 1.1:

Theorem 1.2. Let Gy X and H y Y be topologically free systems, and assume that X and
Y are second countable. The following are equivalent:

• Gy X and H y Y are continuously orbit equivalent;
• G⋉X and H ⋉ Y are isomorphic as topological groupoids;

• there is a C*-isomorphism Φ : C0(X)⋊r G
∼=
−→ C0(Y )⋊r H with Φ(C0(X)) = C0(Y ).

Here and in the sequel, “topologically free system” stands for “topologically free topological
dynamical system”. Because of Theorem 1.2, it seems that – at least for our purposes – con-
tinuous orbit equivalence is a good topological analogue of orbit equivalence in the measurable
setting.
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In the measurable setting, orbit equivalence rigidity has established itself as a key notion. The
idea is to find classes of actions for which orbit equivalence already implies conjugacy. Indeed,
impressive orbit equivalence rigidity results have been obtained in [28, 7, 15, 16, 17, 14, 13].
Viewing continuous orbit equivalence as the topological analogue of orbit equivalence, a natural
question is whether there are rigidity phenomena for continuous orbit equivalence.

The only result known in this context is due to [1], which says that if Z y X and Z y Y are
topologically free systems on compact spaces X and Y such that one of them is topologically
transitive, then Z y X and Z y Y must already be conjugate if they are continuously
orbit equivalent. Apart from this, not much else seems to be known about continuous orbit
equivalence rigidity.

The main goal of the present paper is to take the first steps towards a better understanding of
continuous orbit equivalence rigidity.

First of all, we construct examples of topological dynamical systems which are continuously
orbit equivalent but not conjugate. This ensures that the comparison between continuous orbit
equivalence and conjugacy is really interesting. A first class of examples is given by products
of odometer actions. A second family of examples is constructed from boundary actions of
non-abelian free groups and odometer actions, inspired by [25].

Secondly, we prove positive results in continuous orbit equivalence rigidity.

Theorem 1.3. Let G be a torsion-free group, and let H be a finitely generated nilpotent group
which is not virtually infinite cyclic. Assume that G y X is a topologically free system on a
compact space X such that G y X is almost ZG-projective. Furthermore, let H y Y be a
topologically free system. If G y X and H y Y are continuously orbit equivalent, then they
must be conjugate.

Theorem 1.4. Let G be a duality group in the sense of [2, Chapter VIII, § 10] which is
not infinite cyclic, and let H be a finitely generated solvable group. Assume that G y X is
a topologically free system on a compact space X such that G y X is almost ZG-projective.
Furthermore, let H y Y be a topologically free system. If Gy X and H y Y are continuously
orbit equivalent, then they must be conjugate.

Here, we say that G y X is almost ZG-projective if C(X,Z) ∼= Z⊕ P as ZG-modules, where
the copy of Z is given by the constant functions on X and P is a projective ZG-module.
For instance, as we will see, the Bernoulli action G y XG

0 is almost ZG-projective for every
compact space X0 and every torsion-free group G. Also, for a torsion-free group, a subshift
of the full shift over a finite alphabet whose forbidden words avoid a fixed letter is almost
ZG-projective. These systems are actually even almost ZG-free, in the sense that P can be
chosen to be ZG-free. This leads to the following immediate consequence:

Corollary 1.5. Let G y X be a topological Bernoulli action with compact base or a subshift
of the full shift over a finite alphabet whose forbidden words avoid a fixed letter. Moreover, let
H y Y be a topologically free system. Assume that G is a torsion-free group and that H is
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a finitely generated nilpotent group which is not virtually infinite cyclic, or that G is a duality
group which is not infinite cyclic and that H is a finitely generated solvable group. If G y X
and H y Y are continuously orbit equivalent, then they must be conjugate.

In view of these results, an interesting and natural task is to find more examples of topological
dynamical systems which are almost ZG-projective. Apart from Bernoulli actions and subshifts,
it turns out that Denjoy homeomorphisms, restricted to their unique minimal closed invariant
subspaces, give rise to Cantor minimal systems which are almost ZG-free (where G = Z).

Theorem 1.3 and Theorem 1.4 are our main results. Their proofs consist of three main ingre-
dients. Each of them is interesting in its own right.

The first ingredient establishes a link between continuous cocycle rigidity and continuous orbit
equivalence rigidity. Let G y X be a topological dynamical system, and let H be a group.
A continuous function a : G × X → H is called a continuous H-cocycle for G y X if
a(g1g2, x) = a(g1, g2.x)a(g2, x) for all g1, g2 ∈ G and x ∈ X . In particular, we can view
any group homomorphism ρ : G → H as a cocycle given by (g, x) 7→ ρ(g). Continuous
cocycles a and a′ are called cohomologous if there exists a continuous map u : X → H such
that a(g, x) = u(g.x)a′(g, x)u(x)−1. We say that Gy X is continuous H-cocycle rigid if every
continuous H-cocycle for Gy X is cohomologous to some group homomorphism ρ : G→ H .
In general, it is not clear how continuous cocycle rigidity is related to continuous orbit equiva-
lence rigidity. However, we have

Theorem 1.6. Let G be a torsion-free amenable group. Assume that Gy X and H y Y are
topologically free systems on compact spaces X and Y , and suppose that G y X and H y Y
are continuously orbit equivalent. If G y X is continuous H-cocycle rigid, then G y X and
H y Y must be conjugate.

The second ingredient establishes continuous cocycle rigidity for certain actions and certain
groups.

Theorem 1.7. Let G be a duality group in the sense of [2, Chapter VIII, § 10] with cd(G) 6= 1,
let X be a compact space, and suppose that Gy X is a topological dynamical system which is
almost ZG-projective. Then Gy X is continuous H-cocycle rigid for every solvable group H.

The third and final ingredient builds a bridge between continuous orbit equivalence and the
notion of quasi-isometry or rather topological couplings. Inspiration comes from [7, 23, 20].
Given groups G and H , a topological coupling Gy Ω x H for G and H is a locally compact
Hausdorff space Ω with a left G-action commuting with a right H-action such that both actions
admit compact open fundamental domains. A topological coupling G y Ω x H is called
topologically free if the corresponding G×H-action is topologically free.
A continuous orbit couple for G and H consists of topological dynamical systems G y X ,
H y Y on compact spaces X , Y , continuous maps p : X → Y , q : Y → X , a : G×X → H ,
b : H×Y → G, g : X → G and h : Y → H such that p(g.x) = a(g, x).p(x), q(h.y) = b(h, y).q(y),
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qp(x) = g(x).x and pq(y) = h(y).y. We call a continuous orbit couple for G and H topologically
free if Gy X and H y Y are topologically free. If Gy X and H y Y are continuously orbit
equivalent via ϕ : X ∼= Y , then we obtain a continuous orbit couple for G and H by setting
p = ϕ and q = ϕ−1.

Theorem 1.8. Let G and H be groups. Then there exists a one-to-one correspondence be-
tween (isomorphism classes of) topologically free continuous orbit couples for G and H and
(isomorphism classes of) topologically free topological couplings for G and H.

In particular, if topological dynamical systems G y X , H y Y on compact spaces X , Y are
continuously orbit equivalent, and if one of the groups (G or H) is finitely generated, then G
and H must be quasi-isometric.

In § 2, we introduce the notion of continuous orbit equivalence, make some general observations
and prove Theorem 1.2. Moreover, we discuss known examples for continuous orbit equivalence
rigidity and construct counterexamples for which continuous orbit equivalence does not imply
conjugacy in § 3. In § 4, we introduce the notion of continuous cocycle rigidity, study the
connection to continuous orbit equivalence rigidity, and prove Theorem 1.6. In the following
section (§ 5), we show that Bernoulli actions, certain subshifts as well as Cantor minimal
systems arising from Denjoy homeomorphisms are almost ZG-free, study continuous cocycle
rigidity using non-abelian group cohomology and prove Theorem 1.7. Thereafter, we introduce
the notions of topological couplings and continuous orbit couples, establish the connection
between them, and prove Theorem 1.8. Finally, in § 7, we prove Theorem 1.3 and Theorem 1.4.

I would like to thank David Kerr for inspiring discussions about continuous orbit equivalence.

2. Continuous orbit equivalence, transformation groupoids and Cartan pairs

All our groups are discrete and countable, and all our topological spaces are locally compact and
Hausdorff. By a topological dynamical system, we mean an action of a group on a topological
space by homeomorphisms. In this section, all our topological spaces are second countable.

Let G y X be a topological dynamical system. The G-action is denoted by G × X →
X, (g, x) 7→ g.x. For x ∈ X , let Gx = {g ∈ G: g.x = x} be its stabilizer group. The trans-
formation groupoid G⋉X attached to G y X is given by the set G×X with multiplication
(g′, x′)(g, x) = (g′g, x) if x′ = g.x, inversion (g, x)−1 = (g−1, g.x), range map r(g, x) = g.x
and source map s(g, x) = x. Obviously, G ⋉ X is étale. The reduced groupoid C*-algebra
C∗

r (G⋉X) is canonically isomorphic to C0(X)⋊rG. Moreover, we have a canonical embedding
C0(X) →֒ C0(X)⋊r G.

Definition 2.1. G y X is called topologically free if for every e 6= g ∈ G, {x ∈ X: g.x 6= x}
is dense in X.
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From now on, for the sake of brevity, we write “topologically free system” for “topologically
free topological dynamical system”.

Lemma 2.2. Gy X is topologically free if and only if {x ∈ X: Gx = {e}} is dense in X.

Proof. “⇐” is clear. For “⇒”, note that by topological freeness, {x ∈ X : g.x 6= x} is dense
(and open) in X for all e 6= g ∈ G. Thus, by the Baire category theorem,

{x ∈ X : Gx = {e}} =
⋂

e 6=g∈G

{x ∈ X : g.x 6= x}

must be dense in X . �

Corollary 2.3. G y X is topologically free if and only if the transformation groupoid G⋉X
is topologically principal.

Proof. By definition (see [19]), G⋉X is topologically principal if and only if the set of points
in X with trivial isotropy is dense in X . But this set coincides with {x ∈ X : Gx = {e}}. Thus
Lemma 2.2 implies our corollary. �

Remark 2.4. Corollary 2.3 shows that if Gy X is topologically free, then the pair (C0(X)⋊r

G,C0(X)) is a Cartan pair in the sense of [19, Definition 5.1].

Recall the following definition from the introduction:

Definition 2.5. Topological dynamical systems G y X and H y Y are continuously orbit

equivalent (we write G y X ∼coe H y Y ) if there exists a homeomorphism ϕ : X
∼=
−→ Y

with inverse ψ = ϕ−1 : Y
∼=
−→ X and continuous maps a : G×X → H, b : H × Y → G such

that

ϕ(g.x) = a(g, x).ϕ(x)(1)

ψ(h.y) = b(h, y).ψ(y)(2)

for all g ∈ G, x ∈ X, h ∈ H and y ∈ Y .

Remark 2.6. (1) implies ϕ(G.x) ⊆ H.ϕ(x) for all x ∈ X , and (2) implies ψ(H.y) ⊆ G.ψ(y)
for all y ∈ Y . Thus, ϕ(G.x) = H.ϕ(x) and ψ(H.y) = G.ψ(y).

Remark 2.7. If H y Y is topologically free, then a is uniquely determined by (1), and by
symmetry, if Gy X is topologically free, then b is uniquely determined by (2). The reason is as
follows: Suppose that a′ : G×X → H is another continuous map with ϕ(g.x) = a′(g, x).ϕ(x).
For arbitrary g ∈ G and x ∈ X , there exists an open neighbourhood U of x such that a
and a′ are constant on {g} × U , with values h and h′ in H , say. Then for every x̄ ∈ U ,
ϕ(g.x̄) = h.ϕ(x̄) = h′.ϕ(x̄). Topological freeness implies h = h′, in particular a(g, x) = a′(g, x).

Lemma 2.8. In Definition 2.5, if H y Y is topologically free, then

a(g1g2, x) = a(g1, g2.x)a(g2, x)

for all g1, g2 ∈ G and x ∈ X.
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Proof. Let g1, g2 ∈ G and x ∈ X be arbitrary. Choose an open neighbourhood U of x ∈ X
such that a(g1g2, x̄) = a(g1g2, x), a(g1, g2.x̄) = a(g1, g2.x) and a(g2, x̄) = a(g2, x) for all x̄ ∈ U .
Then for all x̄ ∈ U , ϕ(g1g2.x̄) = ϕ(g1.(g2.x̄)) = a(g1, g2.x̄).ϕ(g2.x̄) = a(g1, g2.x̄)a(g2, x̄).ϕ(x̄) =
a(g1, g2.x)a(g2, x).ϕ(x̄), but also ϕ(g1g2.x̄) = a(g1g2, x̄).ϕ(x̄) = a(g1g2, x).ϕ(x̄). By topological
freeness, a(g1g2, x) = a(g1, g2.x)a(g2, x). �

Lemma 2.9. In the situation of Definition 2.5, let Yf = {y ∈ Y : Hy = {e}}. For every x ∈
ψ(Yf), ax : G→ H, g 7→ a(g, x) is bijective.

Proof. Since ϕ(x) ∈ Yf , ax is injective. To prove surjectivity, take h ∈ H . Since by Remark 2.6,
ϕ(G.x) = H.ϕ(x), there exists g ∈ G with h.ϕ(x) = ϕ(g.x) = a(g, x).ϕ(x). As ϕ(x) ∈ Yf , we
conclude that h = a(g, x) = ax(g). �

Lemma 2.10. In the situation of Definition 2.5, assume that G y X and H y Y are topo-
logically free. Then

(3) b(a(g, x), ϕ(x)) = g for all g ∈ G, x ∈ X,

and b is uniquely determined by (3).

Proof. Let h := a(g, x). Then ϕ(g.x) = h.ϕ(x), so g.x = ψ(h.ϕ(x)) = b(h, ϕ(x)).x. Since this
equation holds in an open neighbourhood of x, topological freeness implies b(a(g, x), ϕ(x)) = g.
Moreover, note that for all x ∈ ψ(Yf), ax(G) = H by Lemma 2.9. Hence (3) determines b on
H × Yf . But since Yf is dense in Y by topological freeness, and because b is continuous, (3)
determines b on H × Y . �

Corollary 2.11. In the situation of Definition 2.5, assume that G y X and H y Y are
topologically free. Let Xf = {x ∈ X: Gx = {e}} and Yf = {y ∈ Y : Hy = {e}}. Then ϕ(Xf) =
Yf . In particular, for every x ∈ X with Gx = {e}, ax : G→ H, g 7→ a(g, x) is bijective.

Proof. By symmetry, we just have to show ϕ(Xf) ⊆ Yf . Take x ∈ Xf , and let y = ϕ(x).
Suppose that h ∈ H satisfies h.y = y. Then x = ψ(y) = ψ(h.y) = b(h, y).ψ(y) = b(h, y).x, and
therefore b(h, y) = e since x ∈ Xf . But by the analogue of (3) with reversed roles for a and b,
we get e = a(e, x) = a(b(h, y), x) = h. Hence y ∈ Yf . �

We are now ready for the proof of Theorem 1.2.

Theorem (Theorem 1.2). Let Gy X and H y Y be topologically free systems. The following
are equivalent:

(i) Gy X ∼coe H y Y ;
(ii) G⋉X ∼= H ⋉ Y (as topological groupoids);

(iii) there is a C*-isomorphism Φ : C0(X)⋊r G
∼=
−→ C0(Y )⋊r H with Φ(C0(X)) = C0(Y ).

Proof. (i) ⇒ (ii): Assume that G y X ∼coe H y Y , and let ϕ, ψ, a and b be as in
Definition 2.5. Then G⋉X → H ⋉ Y, (g, x) 7→ (a(g, x), ϕ(x)) and H ⋉ Y → G⋉X, (h, y) 7→
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(b(h, y), ψ(y)) are certainly continuous groupoid morphisms, and they are inverse to each other
due to (3) and the analogue of (3) with reversed roles for a and b.

(ii) ⇒ (i): Let χ : G ⋉ X
∼=
−→ H ⋉ Y be an isomorphism of topological groupoids. Set

ϕ = χ|X : X
∼=
−→ Y and let a be the composition G ⋉ X

χ
−→ H ⋉ Y → H , where the

second map is H ⋉ Y → H, (h, y) 7→ h. Then a is obviously continuous, and ϕ(g.x) =
χ(r(g, x)) = r(χ(g, x)) = r(a(g, x), ϕ(x)) = a(g, x).ϕ(x). Similarly, for ψ = ϕ−1, if we let b be

the composition H ⋉ Y
χ−1

−→ G ⋉ X → G, where the second map is G ⋉ X → G, (g, x) 7→ g,
then ψ(h.y) = b(h, y).ψ(y).

(ii) ⇔ (iii) is [19, Proposition 4.13], where we have to use Corollary 2.3. �

3. Continuous orbit equivalence rigidity: Examples and counterexamples

Let us compare continuous orbit equivalence with conjugacy.

Definition 3.1. Topological dynamical systems G y X and H y Y are conjugate (we write

G y X ∼conj H y Y ) if there is a homeomorphism ϕ : X
∼=
−→ Y and a group isomorphism

ρ : G
∼=
−→ H such that for every g ∈ G and x ∈ X, ϕ(g.x) = ρ(g).ϕ(x).

Obviously, Gy X ∼conj H y Y implies Gy X ∼coe H y Y . Are there classes of dynamical
systems where we can reverse this implication, i.e., where continuous orbit equivalence implies
conjugacy?

Here is a first class of examples, for which continuous orbit equivalence rigidity holds because of
a trivial reason: Suppose that Gy X is a topologically free system on a connected space X . If
Gy X ∼coe H y Y for some topologically free system H y Y , then Gy X ∼conj H y Y .
The reason is that the function a in Definition 2.5 is continuous, hence for every g ∈ G, a|{g}×X

is constant because X is connected and H is discrete. Hence a(g, x) = ρ(g) for some map
ρ : G→ H , and ρ has to be a homomorphism (by Lemma 2.8) and bijective (by Lemmma 2.9).

This observation means that if we focus on discrete groups, it is natural to restrict our discussion
to topological dynamical systems on totally disconnected spaces.

Here is a first result in continuous orbit equivalence rigidity:

Theorem 3.2 ([1, Theorem 3.2]). Let Z y X and Z y Y be topologically free systems on
compact spaces X and Y . Assume that Z y X is topologically transitive.

If Z y X ∼coe Z y Y , then Z y X ∼conj Z y Y .

In this theorem, while the groups are fixed, the assumptions on the actions are very mild.
Therefore, an immediate question is whether there are counterexamples to continuous orbit
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equivalence rigidity at all, i.e., examples of topological dynamical systems which are continu-
ously orbit equivalent but not conjugate.

3.1. Products of odometer transformations. Let M =
∏

p p
vp be a supernatural number.

Here, the product is taken over all primes, vp ∈ {0, 1, 2, . . .} ∪ {∞}, and
∑

p vp = ∞. The

odometer action Z y Z/M corresponding to M is constructed as follows:

Choose a sequence (mk)k of natural numbers such that, for all primes p, vp(mk) ր vp for
k → ∞. Then set Z/M = lim←−k

Z/mk. The canonical projections Z ։ Z/mk induce a group

embedding Z →֒ Z/M , and this in turn yields an action Z y Z/M which we call the odometer
transformation for M .

Theorem 3.3. For supernatural numbers M1, . . . ,Mr and N1, . . . , Ns, the following are equiv-
alent:

(i) Zr y
∏r

i=1 Z/Mi ∼coe Zs y
∏s

j=1Z/Nj;

(ii) C0(
∏r

i=1 Z/Mi)⋊ Zr ∼= C0(
∏s

j=1 Z/Nj)⋊ Zs;

(iii) (K∗(C0(
∏r

i=1 Z/Mi)⋊ Zr), [1]0) ∼= (K∗(C0(
∏s

j=1Z/Nj)⋊ Zs), [1]0);

(iv) r = s, there exists σ ∈ Sr, natural numbers m1, . . . , mr and n1, . . . , nr such that for all
1 ≤ i ≤ r, miMi = nσ(i)Nσ(i), and

∏r

i=1Mi =
∏r

j=1Nj.

Proof. (i) ⇒ (ii) follows from Theorem 1.2 as our systems are free.

(ii) ⇒ (iii) is clear.

(iii) ⇒ (iv): K∗ stands for K0 ⊕ K1. Clearly, (K0(C(Z/M) ⋊ Z), [1]0) ∼= (Z[M−1], 1) and
K1(C(Z/M) ⋊ Z) ∼= Z. Here Z[M−1] =

{
x
m
∈ Q: m |M

}
. So K∗(C(

∏r

i=1 Z/Mi) ⋊ Zr) ∼=⊕
I⊆{1,...,r} Z[(

∏
i∈I Mi)

−1] and [1]0 corresponds to 1 ∈ Z[(
∏r

i=1Mi)
−1] (I = {1, . . . , r}).

Therefore, Q2r ∼= K∗(C(
∏r

i=1 Z/Mi)⋊Zr)⊗Q ∼= K∗(C(
∏s

j=1Z/Nj)⋊Zs)⊗Q ∼= Q2s , and this

implies r = s. Moreover, as a K∗-isomorphism preserves [1]0, it restricts to an isomorphism
Z[(
∏r

i=1Mi)
−1] ∼= Z[(

∏r
j=1Nj)

−1] sending 1 to 1. This implies
∏r

i=1Mi =
∏r

j=1Nj .

Given supernatural numbers M and N , we define M . N if there exists n ∈ N with M |
nN (vp(M) ≤ vp(nN)). We define M ∼ N if M . N and N . M . It is immedi-
ate that there exists a non-zero homomorphism Z[M−1] → Z[N−1] if and only if M . N .
Set M = {Mi: 1 ≤ i ≤ r},

∧
M =

{∏
i∈I Mi: I ⊆ {1, . . . , r}

}
and N = {Nj: 1 ≤ j ≤ r},

∧
N =

{∏
j∈J Nj: J ⊆ {1, . . . , r}

}
. Using the assumption that

⊕
I⊆{1,...,r}Z[(

∏
i∈I Mi)

−1] ∼=
⊕

J⊆{1,...,r} Z[(
∏

j∈J Nj)
−1], a straightforward inductive argument shows that for every equiva-

lence class S of supernatural numbers with respect to ∼, |S ∩
∧
M| = |S ∩

∧
N|, and then

also |S ∩M| = |S ∩ N |.
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(iv) ⇒ (i): We need the following observation: Let l be a natural number and λl : Z/l y Z/l
the canonical action. Let L be a supernatural number, X = Z/lL, X̃ = l · (Z/lL), αlL : Z y X

the odometer transformation for lL, and α̃ = α|LZ : lZ y X̃ . We claim that

(4) αlL ∼coe λl ⊠ α̃lL ∼conj λl ⊠ αL.

⊠ stand for the product action. Let us prove (4). Define ϕ : X =
⊔l−1

k=0 k+X̃ → Z/l×X̃, k+x 7→
([k], x). It is easy to see that the inverse of ϕ is given by ψ : Z/l× X̃ → X, ([k], x) 7→ k+x for

0 ≤ k ≤ l−1. Moreover, define a : Z×X =
⊔l−1

j=0(j+ lZ)×
⊔l−1

k=0(k+ X̃)→ Z/l× lZ by setting

a(j + h, k + x) = ([j], h) if j + k ≤ l − 1 and a(j + h, k + x) = ([j], k + l) if l < j + k. Also,

define b : (Z/l× lZ)× (Z/l× X̃)→ Z by setting b(([j], h), ([k], x)) = j + h if j + k ≤ l− 1 and
b(([j], h), ([k], x)) = j+h− l if l ≤ j+k, where 0 ≤ j, k ≤ l−1. Then it is easy to check that ϕ,
a, ψ and b satisfy (1) and (2), so that αlL ∼coe λl ⊠ α̃lL. Furthermore, λl ⊠ α̃lL ∼conj λl ⊠αL

is easy to see. This proves (4).

Now we can complete the proof for (iv) ⇒ (i). Without loss of generality we may assume that
σ = id, i.e., miMi = niNi for all 1 ≤ i ≤ r. Without loss of generality, we may further assume
gcd(mi, ni) = 1. Then we can write Mi = niLi and Ni = miLi for some supernatural number
Li. Set L =

∏r

i=1 Li, and choose natural numbers m and n with gcd(m,L) = 1 = gcd(n, L)
such that

∏r

i=1Mi = (
∏r

i=1 ni)(
∏r

i=1 Li) = nL and
∏r

j=1Nj = (
∏r

j=1mj)(
∏r

j=1 Lj) = mL.∏r
i=1Mi =

∏r
j=1Nj implies that m = n. Therefore, we get

⊠r
i=1αMi

= ⊠r
i=1αniLi

(4)
∼coe ⊠r

i=1(λni
⊠ αLi

)
(4)
∼coe αnL1

⊠ αL2
⊠ . . .⊠ αLr

= αmL1
⊠ αL2

⊠ . . .⊠ αLr

(4)
∼coe ⊠

r
j=1αNj

.

�

In contrast, for conjugacy, we get

Theorem 3.4. Let I and J be finite sets. For supernatural numbers {Mi}i∈I and {Nj}j∈J ,

ZI y
∏

i∈I Z/Mi ∼conj ZJ y
∏

j∈J Z/Nj if and only if there exists a finite set K, supernatural

numbers {Lk}k∈K such that

• I =
⊔

k∈K Ik, J =
⊔

k∈K Jk,
• |Ik| = |Jk| for all k ∈ K,
• for every k ∈ K, every i ∈ Ik and j ∈ Jk, we can write Mi = miLk and Nj = njLk

for some (uniquely determined) mi, nj ∈ N with gcd(mi, Lk) = 1 = gcd(nj , Lk), and we
have

∏
i∈Ik

Z/mi
∼=
∏

j∈Jk
Z/nj.

Proof. “⇒”: Assume that ρ : ZI ∼= ZJ is a group isomorphism and ϕ :
∏

i∈I Z/Mi
∼=
∏

j∈J Z/Nj

such that ϕ(g.x) = ρ(g).ϕ(x). ZI ∼= ZJ implies that |I| = |J |. Set r = |I| = |J |. Moreover, we
may assume ϕ(0) = 0 (otherwise go over to ϕ−ϕ(0)). Let ρ be multiplication with S ∈ GLr(Z).
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It is straightforward to check that if Sj,i 6= 0, then Nj . Mi. So there exist a finite set K and
decompositions I =

⊔
k∈K Ik, J =

⊔
k∈K Jk with |Ik| = |Jk| for all k ∈ K such that for every

(i, j) ∈ Ik × Jk, Mi ∼ Nj.

Fix k ∈ K. Find a supernatural number Lk such that for every i ∈ Ik, j ∈ Jk, there are mi ∈ N,
nj ∈ N with gcd(mi, Lk) = 1 = gcd(nj , Lk) such that Mi = miLk and Nj = njLk. Then ϕ
restricts to an isomorphism of topological abelian groups

ϕk : (
∏

i∈Ik

Z/mi)× (
∏

i∈Ik

Z/Lk) ∼=
∏

i∈Ik

Z/Mi

∼=
−→

∏

j∈Jk

Z/Nj
∼= (

∏

j∈Jk

Z/nj)× (
∏

j∈Jk

Z/Lk).

Let l ∈ N satisfy
∏

j∈Jk
nj | l and gcd(l, L) = 1. Certainly, ϕk(w, 0) is of the form (z, 0)

as for all i ∈ Ik, there exists no non-zero homomorphism Z/mi → Z/Lk. Also, ϕk(0, y) is
of the form ϕk(0, l · ỹ) = l · ϕk(0, ỹ), hence of the form (0, x) as for all j ∈ Jk, l ≡ 0 in

Z/nj . Hence ϕk = φt × φL for some group isomorphisms φt :
∏

i∈Ik
Z/mi

∼=
−→

∏
j∈Jk

Z/nj and

φL :
∏

i∈Ik
Z/Lk

∼=
−→

∏
j∈Jk

Z/Lk.

“⇐”: Without loss of generality we may assume |K| = 1. Let K = {k}, I = Ik, J = Jk,
|I| = |J | = r. We may assume that I = J = {1, . . . , r}. Let L = Lk be a supernatural number
such that for every 1 ≤ i, j ≤ r, Mi = miL and Nj = njL for some (unique) mi, nj ∈ N
with gcd(mi, L) = 1 = gcd(nj , L), and such that

∏r
i=1 Z/mi

∼=
∏r

j=1Z/nj . By the theory of

elementary divisors, there are S, T ∈ GLr(Z) such that S

(m1 0

...
0 mr

)
T =

( n1 0

...
0 nr

)
. Thus

S

((m1 0

...
0 mr

)
Zr

)
=

( n1 0

...
0 nr

)
Zr. So the same matrix S induces two group isomorphisms

ρ : Zr → Zr, g 7→ Sg and φt :
∏r

i=1 Z/mi
∼= Zr

/(m1 0

...
0 mr

)
Zr ∼= Zr

/( n1 0

...
0 nr

)
Zr ∼=

∏r

i=j Z/nj as well as an isomorphism of topological groups φL : (Z/L)r ∼= (Z/L)r. Let ϕ be
the isomorphism

r∏

i=1

Z/Mi
∼=

r∏

i=1

(Z/mi × Z/L) ∼= (
r∏

i=1

Z/mi)× (Z/L)r

φt×φL−→ (

r∏

j=1

Z/nj)× (Z/L)r ∼=
r∏

j=1

(Z/nj × Z/L) ∼=
r∏

j=1

Z/Nj.

Then ϕ|Zr = ρ, and so ϕ(g.x) = ρ(g).ϕ(x) for all g ∈ Zr and x ∈
∏r

i=1 Z/Mi. This means that
ZI y

∏
i∈I Z/Mi ∼conj ZJ y

∏
j∈J Z/Nj . �

Comparing Theorem 3.3 and Theorem 3.4, we can easily construct products of odometers which
are continuously orbit equivalent but not conjugate.

Example 3.5. Let r ≥ 2. Let p and q be primes, p 6= q, and let n ∈ N with n > 1 and
gcd(p, n) = 1 = gcd(q, n). If we set M1 = n · p∞, M2 = q∞, M3 = . . . = Ms = p∞ and
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N1 = p∞, N2 = n · q∞, N3 = . . . = Ns = p∞, then Zr y
∏r

i=1 Z/Mi ∼coe Zr y
∏r

j=1Z/Nj

but Zr y
∏r

i=1 Z/Mi ✚✚∼conj Zr y
∏r

j=1Z/Nj .

3.2. Actions of non-abelian free groups. Let us construct actions of the free group Fr

(r ≥ 2) on the Cantor set, which are continuously orbit equivalent but not conjugate. Let
a1, . . . , ar be generators of Fr. Let β : Fr y ∂Fr be the Fr-action on the Gromov boundary of
Fr, and set βi := βai . For a supernatural number M , let αM : Z y Z/M be the corresponding
odometer transformation. For supernatural numbers M1, M2, N1 and N2, define actions γ :
Fr y ∂Fr×(Z/M1)×(Z/M2) and δ : Fr y ∂Fr×(Z/N1)×(Z/N2) by setting γ1 := β1×αM1

×id,
γ2 := β2 × id × αM2

, γi := βi × id × id for all i ≥ 3, γai = γi for all 1 ≤ i ≤ r, and similarly
δ1 := β1×αN1

× id, δ2 := β2× id×αN2
, δi := βi× id× id for all i ≥ 3, δai = δi for all 1 ≤ i ≤ r.

Theorem 3.6. Let p and q be primes, p 6= q, and let n ∈ N with n > 1 and gcd(p, n) = 1 =
gcd(q, n). If we set M1 = n · p∞, M2 = q∞ and N1 = p∞, N2 = n · q∞, then γ ∼coe δ but
γ ✚✚∼conj δ.

For the proof, we need some preparation. LetX be a totally disconnected compact space. In our
application, X will be the Cantor space. Let C∞(X,C) = C(X,Z)⊗C. Obviously, we have an

isomorphism C∞(X,C)
∼=
−→

{
X

f
−→ C continuous: f(X) ⊆ C finite

}
, f ⊗ z 7→ f · z. Here (f ·

z)(x) = f(x)z. In the following, we view elements in C∞(X,C) asC-valued continuous functions
on X via this explicit isomorphism. Let φ : X → X be a homeomorphism, and denote the
induced automorphism of C(X) by φ again. Obviously, φ(C∞(X,C)) ⊆ C∞(X,C). We define
E(φ) := {z ∈ T: φ(f) = zf for some 0 6= f ∈ C∞(X,C)}. Now let g1, . . . , gr be generators of
Fr, and let g = g1. Let Y be a totally disconnected compact space and let α : Y ∼= Y be a
homeomorphism.

Proposition 3.7. For φ = βg × α, we have Eφ = Eα.

Proof. We think of elements in ∂Fr as infinite reduced words in g±1 = g±1
1 , g±1

2 , . . . , g±1
r . Let

W be the set of finite reduced words in g±1
1 , g±1

2 , . . . , g±1
r which do not end on g−1

r nor on
g2r . For w ∈ W , let Cw be the subspace of ∂Fr consisting of those infinite reduced words
which start with w. Note that the empty word ∅ lies in W , and that C∅ = ∂Fr. Clearly,
{1Cw

: w ∈ W} is a Z-basis for C(∂Fr,Z). Take a family C of compact open subsets of Y such
that {1C : C ∈ C} is a Z-basis for C(Y,Z). Then {1Cw

⊗ 1C : w ∈ W,C ∈ C} is a Z-basis for
C(∂Fr × Y,Z) ∼= C(∂Fr,Z)⊗ C(Y,Z).

Let z ∈ Eφ, and let f =
∑

i 1Cwi
⊗1Ci

⊗λi (λi ∈ C\{0}) be a non-zero element in C(∂Fr×Y,C) ∼=
C(∂Fr,Z) ⊗ C(Y,Z) ⊗ C with φ(f) = zf . Then

∑
i 1Cwi

⊗ (1Ci
⊗ zλi) = zf = φ(f) =∑

i 1βg(Cwi
)⊗(1α(Ci)⊗λi) =

∑
j 1Cwj

⊗fj for some 0 6= fj ∈ C(Y,Z)⊗C, where {wj}j are chosen

so that 1βg(Cwi
) ∈ Z-span({wj}j) for all i. It follows that {wi}i = {wj}j ⊇ {gwi: wi 6= g−1}∪{g}

if g−1 ∈ {wi}i and {wi}i = {wj}j ⊇ {gwi: wi 6= g−1} if g−1 /∈ {wi}i. Here we use that

βg(Cwi
) = Cgwi

6= Cwi
if wi 6= g−1 and βg(Cg−1) = ∂Fr \ Cg.
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We claim that it already follows that {wi}i = {∂Fr}: If there is w ∈ {wi}i not starting with g
−1,

then gnw ∈ {wi} for all m ∈ N which is impossible since {wi}i is finite. If there is w ∈ {wi}i
of the form g−mv where v 6= ∅ is a finite reduced word not starting with g±1, then v ∈ {wi}i
contradicting our first observation. If there is g−m ∈ {wi}i for some m ≥ 1, then g−1 ∈ {wi}i,
hence g ∈ {wi}i. This again contradicts our first observation. Therefore, the only possibility is
{wi}i = {∂Fr}.

Hence f = 1⊗ f̃ for some f̃ ∈ C(Y,Z)⊗C. So 1⊗zf̃ = zf = φ(f) = 1⊗α(f̃). Hence it follows
that zf̃ = α(f̃). This shows that z ∈ Eα. Since z ∈ Eφ was arbitrary, we obtain Eφ ⊆ Eα. The
reverse inclusion is obvious. �

We are now ready for the

Proof of Theorem 3.6. By [25, Theorem 5.10 and Proposition 5.2], γ ∼coe δ. So we just have

to show γ ✚✚∼conj δ. Assume that there exists a homeomorphism ϕ : ∂Fr× (Z/M1)× (Z/M2)
∼=
−→

∂Fr × (Z/N1) × (Z/N2) and a group isomorphism ρ : Fr
∼= Fr such that ϕ ◦ γa = δρ(a) ◦ ϕ for

all a ∈ Fr. Let a := a1 and g := ρ(a1). Then in particular, ϕ ◦ γa = δg ◦ ϕ, so that γa and δg
are conjugate, and hence E(γa) = E(δg).

By construction, there are k, l ∈ Z with δg = βg ×αk
N1
×αl

N2
, where N1 = p∞ and N2 = n · q∞.

Proposition 3.7 yields E(δg) = E(αk
N1
× αl

N2
). For a supernatural number M , let T(M) =

Z[M−1]/Z ⊆ Q/Z ⊆ R/Z ∼= T. If l = 0, then E(δg) = E(αk
N1
× id) = E(αk

N1
) = E(αk

p∞)

is equal to {1} or T(p∞). If l 6= 0, then T(q∞) = E(αl
q∞) ⊆ E(αl

n·q∞) ⊆ E(αk
p∞ × α

l
n·q∞) =

E(αk
N1
× αl

N2
) = E(δg). However, E(γa) = E(αM1

× id) = E(αn·p∞) = T(n · p∞) is not equal to
{1} nor T(p∞) and does not contain T(q∞). Hence E(γa) 6= E(δg). This is a contradiction. �

4. From continuous cocycle rigidity to continuous orbit equivalence rigidity

We introduce the notion of continuous cocycle rigidity. Let Gy X be a topological dynamical
system and let H be a group.

Definition 4.1. A continuous H-cocycle for G y X is a continuous map a : G × X → H
such that a(g1g2, x) = a(g1, g2.x)a(g2, x) for all g1, g2 ∈ G, x ∈ X.

In other words, a : G × X → H is a groupoid homomorphism, where we view G × X as a
groupoid by identifying it with the transformation groupoid G ⋉ X attached to G y X , and
view H as the groupoid whose unit space is a point.

Definition 4.2. Continuous H-cocycles a and a′ for G y X are continuously cohomologous
(a ∼ a′) if there exists a continuous map u : X → H such that a(g, x) = u(g.x)a′(g, x)u(x)−1

for all g ∈ G and x ∈ X.
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Definition 4.3. Gy X is continuous H-cocycle rigid if for every continuous H-cocycle a for
Gy X, there exists a group homomorphism ρ : G→ H such that a ∼ ρ.

Here we view ρ as the cocycle G×X → H, (g, x) 7→ ρ(g).

The following observation provides a first link between continuous cocycle rigidity and contin-
uous orbit equivalence rigidity.

Proposition 4.4. Let G y X and H y Y be topologically free systems. Assume that G y
X ∼coe H y Y , and let ϕ, ψ, a and b be as in Definition 2.5. If there exists a continuous
map u : X → H and a group isomorphism ρ : G→ H such that a(g, x) = u(g.x)ρ(g)u(x)−1 for
all g ∈ G, x ∈ X, then uϕ : X → Y, x 7→ u(x)−1.ϕ(x) and ρ give rise to a conjugacy between
Gy X and H y Y .

Proof. uϕ is obviously continuous, and an easy computation shows that uϕ(g.x) = ρ(g).uϕ(x)
for all g ∈ G, x ∈ X . It remains to show that uϕ is a homeomorphism.

Let σ = ρ−1, define v : Y → G, y 7→ (σ(u(ψ(y))))−1 and b̃ : H × Y → G, (h, y) 7→
v(h.y)σ(h)v(y)−1. Since

b̃(a(g, x), ϕ(x)) = v(a(g, x).ϕ(x))σ(a(g, x))v(ϕ(x))−1 = v(ϕ(g.x))σ(a(g, x))v(ϕ(x))−1

= σ(u(g.x))−1σ(a(g, x))σ(u(x)) = σ(u(g.x))−1a(g, x)u(x)) = σ(ρ(g)) = g,

Lemma 2.10 implies that b = b̃. Set vψ : Y → X, y 7→ v(y)−1ψ(y). vψ is obviously continuous,
and an easy computation shows that vψ(h.y) = ρ(h).vψ(y) for all h ∈ H , y ∈ Y . Moreover,

vψ(uϕ(x)) = vψ(u(x)
−1.ϕ(x)) = σ(u(x)−1).vψ(ϕ(x))

= σ(u(x))−1v(ϕ(x))−1.x = σ(u(x))−1σ(u(x)).x = x,

and uϕ(vψ(y)) = uϕ(v(y)
−1.ψ(y)) = ρ(v(y)−1)uϕ(ψ(y))

= ρ(v(y))−1u((ψ(y))−1.y = u(ψ(y))u((ψ(y))−1.y = y.

Thus uϕ is a homeomorphism, with inverse vψ, and the proof is complete. �

Continuous cocycle rigidity means that every cocycle, whether or not if comes from a continuous
orbit equivalence, is continuously cohomologous to a group homomorphism. At the same time,
the preceding proposition shows that for continuous orbit equivalence rigidity, cocycles are
required to be continuously cohomologous to group isomorphisms. Therefore, there does not
seem to be any obvious connection between continuous cocycle rigidity and continuous orbit
equivalence rigidity. However, we have the following

Theorem 4.5. Suppose that G is amenable and torsion-free. Let G y X and H y Y be
topologically free systems on compact spaces X and Y . Assume that G y X ∼coe H y Y ,
and let a : G × X → H be as in Definition 2.5. If a ∼ ρ for some group homomorphism
ρ : G→ H, then ρ must be an isomorphism.
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Proof. Let u : X → H be continuous such that a(g, x) = u(g.x)ρ(g)u(x)−1 for all g ∈ G,
x ∈ X . Take x ∈ X with Gx = {e}. Then by Lemma 2.11, ax : G → H, g 7→ a(g, x) is
bijective. Let ux : G → H, g 7→ u(g.x). Then ax(g) = ux(g)ρ(g)ux(e)

−1. u is continuous and
X is compact, hence u(X) ⊆ H is finite. In particular, ux(G) is finite. Therefore, for every
g ∈ ker (ρ), ax(g) ∈ ux(G)ux(e)

−1. It follows that ax(ker (ρ)) is finite. Since ax is injective,
ker (ρ) is finite. But G is torsion-free. This implies ker (ρ) = {e}, so that ρ is injective.

It remains to prove surjectivity. Since ax is surjective, we have H = u(X)ρ(G)u(x)−1 =
u(X)ρ(G). Thus, [H : ρ(G)] < ∞. In particular, H is also amenable. Without loss of
generality, we may assume ux(e) = u(x) = e. Otherwise, replace ρ by u(x)ρu(x)−1 and ux by
ux ·u(x)−1. Suppose that ρ(G) ( H . Let R be a complete system of left coset representatives of
ρ(G) in H . Since H is amenable, there exists a finite subset F of H such that |rF△F | < 1

3
|F |

for all r ∈ R and |sF△F | < 1
3|u(X)|

|F | for all s ∈ u(X).

Assume that |F ∩ ρ(G)| > 2
3
|F |. By assumption (ρ(G) ( H), there exists r ∈ R with rρ(G) ∩

ρ(G) = ∅. So r(F ∩ ρ(G)) ∩ (F ∩ ρ(G)) = ∅, and we obtain |r(F ∩ ρ(G)) ∩ F | < 1
3
|F |.

Moreover, |rF \ r(F ∩ ρ(G))| = |F \ (F ∩ ρ(G))| < 1
3
|F |. Therefore, 2

3
|F | < |rF ∩ F | =

|(rF \ r(F ∩ ρ(G))) ∪ (r(F ∩ ρ(G)) ∩ F )| < 1
3
|F | + 1

3
|F | = 2

3
|F |. But this is a contradiction.

Therefore, we must have |F ∩ ρ(G)| ≤ 2
3
|F |.

We certainly have a−1
x (F ) ⊆ ρ−1(

⋃
s∈u(X) s

−1F ). Hence

|F | =
∣∣a−1

x (F )
∣∣ ≤

∣∣∣∣∣∣
ρ−1(

⋃

s∈u(X)

s−1F )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
ρ−1(F ∪ (

⋃

s∈u(X)

s−1F ) \ F )

∣∣∣∣∣∣

≤
∣∣ρ−1(F )

∣∣+
∑

s∈u(X)

∣∣s−1F \ F
∣∣ < |F ∩ ρ(G)|+ 1

3
|F | ≤ |F | .

This is a contradiction. We conclude that ρ(G) = H . �

Clearly, Proposition 4.4 and Theorem 4.5 imply

Theorem (Theorem 1.6). Let G be a torsion-free amenable group. Assume that G y X and
H y Y are topologically free systems on compact spaces X and Y , and suppose that G y X
and H y Y are continuously orbit equivalent. If G y X is continuous H-cocycle rigid, then
Gy X and H y Y must be conjugate.

5. Continuous cocycle rigidity via group cohomology

The first goal of this section is to rephrase continuous cocycle rigidity in the language of non-
abelian group cohomology. For the sake of completeness, we briefly recall the definition of
non-abelian group cohomology (H1). We refer the reader to [21, Part Three, Appendix “Non-
abelian cohomology”] and [22, Chapter I, § 5] for details.
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Let G be a group acting on a group A by automorphisms, denoted by G×A→ A, (s, a) 7→ s.a.
A 1-cocycle of G in A is a map G → A, s 7→ as such that ast = ass.at. We write Z1(G,A)
for the set of all these 1-cocycles. Given 1-cocycles a and a′ of G in A, we say that a is
cohomologous to a′ (a ∼ a′) if there exists b ∈ A with a′s = b−1ass.b for all s ∈ G. We define
H1(G,A) := Z1(G,A)/ ∼. Clearly, H1(G,A) is (covariantly) functorial in A.

Proposition 5.1. Let G y X be a topological dynamical system on a compact space X. Let
H be a group.

Gy X is continuous H-cocycle rigid if and only if the canonical map H → C(X,H) (the map
dual to X → {pt}) induces a surjective map H1(G,H)→ H1(G,C(X,H)).

Note that we equip H with the trivial G-action, and G acts on C(X,H) via (s.a)(x) = a(s−1.x).

Proof. Just check that c : C(G,C(X,H)) → C(G × X,H) defined by c(a)(g, x) = ag(g, x) is
a bijection, with inverse given by c−1(b)s(x) = b(s, s−1.x). c identifies Z1(G,C(X,H)) with
the set of continuous H-cocycles for G y X in the sense of Definition 4.1. In addition,
a ∼ a′ if and only if c(a) ∼ c(a′) in the sense of Definition 4.2. It is then easy to see that
for a ∈ Z1(G,C(X,H)), the class [a] ∈ H1(G,C(X,H)) lies in the image of the canonical
map H1(G,H) → H1(G,C(X,H)) if and only if c(a) ∼ ρ for some group homomorphism
ρ : G→ H . �

Using the language of non-abelian group cohomology, we now prove a positive result in contin-
uous cocycle rigidity.

Definition 5.2. A topological dynamical system Gy X on a compact space X is called almost
ZG-projective if C(X,Z) ∼= Z⊕P as ZG-modules, where the copy of Z is given by the constant
functions on X and P is a projective ZG-module.

We call Gy X almost ZG-free if P can be chosen to be ZG-free.

Clearly, if a system is almost ZG-free, then it is almost ZG-projective.

Remark 5.3. It is easy to see that G y X is almost ZG-free if we can find a Z-basis B for
C(X,Z) with the following properties:

• B is G-invariant,
• 1X ∈ B,
• G acts freely on B \ {1X}.

Topological Bernoulli actions for torsion-free groups turn out to be almost ZG-free.

Example 5.4. Let G be a torsion-free group and X0 a compact space. Then the Bernoulli
action G y XG

0 is almost ZG-free. Namely, choose a Z-basis B0 for C(X0,Z) with 1X0
∈ B0.
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This is always possible, see for instance [3, Proposition 2.12]. Then set

B =

{(
⊗

f∈F

bf

)
⊗ 1

X
G\F
0

: F ⊆ G finite, bf ∈ B0

}
.

B is a Z-basis as C(XG
0 ,Z) =

⋃
F⊆G finite

(⊗
f∈F C(X0)

)
⊗ 1

X
G\F
0

. Obviously,
{
1XG

0

}
lies in B.

Moreover, G acts freely on B \
{
1XG

0

}
as G is torsion-free.

Building on the previous example, we now show that for torsion-free groups, subshifts of full
shifts over finite alphabets whose forbidden words avoid a fixed letter are almost ZG-free.

Example 5.5. Let G be a torsion-free group, A = {0, . . . , N} a finite alphabet and G y AG

the full shift. Elements in AG are of the form x = (xγ)γ∈G, and g ∈ G acts by (g.x)γ = xg−1γ .
For every G-invariant closed subset X of AG we can find a collection {Fi}i∈I of non-empty finite
subsets of G and xi ∈ A

Fi , i ∈ I, such that

X =
{
x = (xγ)γ ∈ A

G: For every i ∈ I and g ∈ G, πFi
(g.x) 6= xi

}
.

Here πFi
is the canonical projection AG ։ AFi. {xi}i∈I are called the forbidden words for X .

Now assume that X is a G-invariant closed subset whose forbidden words xi satisfy xi ∈
{1, . . . , N}, i.e., all the forbidden words avoid a fixed letter (0 in our case). If that is the case,
then we claim that Gy X is almost ZG-free.

Here is the reason: Obviously, B0 =
{
1A, 1{1}, . . . , 1{N}

}
is a Z-basis for C(A,Z). Given a

finite subset ∅ 6= F ⊆ G and x = (xf)f∈F ∈ {1, . . . , N}
F , let b(F, x) =

⊗
f∈F 1{xf} ⊗ 1AG\F . As

we have seen in Example 5.4, B = {1AG} ∪
{
b(F, x): ∅ 6= F ⊆ G finite, x ∈ {1, . . . , N}F

}
is a

Z-basis for C(AG,Z).
Consider the subspace C0(A

G \X,Z) ⊆ C(AG,Z) of functions vanishing on X . An element∑
zF,xb(F, x) ∈ C(AG,Z) (zF,x ∈ Z) lies in C0(A

G \ X,Z) if and only if for every (F, x) with
zF,x 6= 0, there exists i ∈ I and g ∈ G with Fi ⊆ gF and πFi

(g.x) = xi. Clearly, if (F, x) satisfies
this property, then b(F, x) lies in C0(A

G \X,Z). Conversely, suppose that
∑
zF,xb(F, x) lies in

C0(A
G \X,Z) but there exists (F̃ , x̃) with zF̃ ,x̃ 6= 0 such that for all i ∈ I and g ∈ G, Fi * gF̃

or πFi
(g.x̃) 6= xi. Among all the (F̃ , x̃) with this property, choose a pair such that F̃ is minimal.

Define w ∈ AG by setting wγ = x̃γ if γ ∈ F̃ and wγ = 0 otherwise. Then w ∈ X , and by our

choice of w and (F̃ , x̃), we have b(F̃ , x̃)(w) = 1 and b(F ′, x′)(w) = 0 for all (F ′, x′) 6= (F̃ , x̃)
with zF ′,x′ 6= 0. Hence (

∑
zF,xb(F, x)) (w) = zF̃ ,x̃, which contradicts that

∑
zF,xb(F, x) vanishes

on X . This shows that

Bv := {b(F, x): There is i ∈ I and g ∈ G with Fi ⊆ gF and πFi
(g.x) = xi}

is a Z-basis for C0(A
G \X,Z).

The canonical homomorphisms give rise to the exact sequence 0 → C0(A
G \ X,Z) →

C(AG,Z) → C(X,Z) → 0. One way to see this would be to apply K-theory to the exact
sequence 0 → C0(A

G \X) → C(AG) → C(X) → 0. Therefore, the image BX of B \ Bv under
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the canonical projection C(AG,Z) ։ C(X,Z) is a Z-basis for C(X,Z). As Bv is clearly G-
invariant, so is BX . Moreover, 1X ∈ BX , and G acts freely on BX \ {1X} ∼= B \ (Bv ∪ {1AG}).
Therefore, Gy X is almost ZG-free.

The systems in Example 5.4 and Example 5.5 are not minimal. Here are examples of minimal
topological dynamical systems which are almost ZG-free.

Example 5.6. A Denjoy homeomorphism is a homeomorphism ϕ of the circle which has no
periodic points and is not conjugate to a rigid rotation (see for instance [18]). It turns out
that there is a unique closed ϕ-invariant subspace Σ of the circle which is minimal for ϕ. Σ
is a Cantor set. The restriction of ϕ to Σ gives rise to a Cantor minimal system Z y Σ. In
the proof of [18, Lemma 6.1], K0(C(Σ)) ∼= C(Σ,Z) is identified as a Z[Z]-module with Z⊕ F ,

where F is Z[Z]-free. Hence Z
ϕ
y Σ is almost Z[Z]-free.

It would be interesting to find more examples of almost ZG-projective systems.

Here is why we are interested in the property “almost ZG-projective”:

Proposition 5.7. Let G y X be a topological dynamical system on a compact space X, and
suppose that Gy X is almost ZG-projective. Let H be an abelian G-group. Then the canonical
map H → C(X,H) induces injections H i(G,H) →֒ H i(G,C(X,H)) for every i ≥ 0. Moreover,
assume that for every G-module M , H1(G,ZG ⊗M) ∼= {0}. Then G y X is continuous H-
cocycle rigid.

Proof. By assumption, C(X,Z) ∼= Z⊕ P (as ZG-modules). Then C(X,H) ∼= C(X,Z) ⊗H ∼=
H ⊕ (P ⊗ H). Therefore, for every i ≥ 0, C(G,H) → C(C,C(X,H)) induces injective maps
H i(G,H) →֒ H i(G,C(X,H)) as these maps correspond to the canonical inclusions H i(G,H) →֒
H i(G,H)⊕H i(G,P⊗H) under the identification H i(G,C(X,H)) ∼= H i(G,H)⊕H i(G,P⊗H).
Moreover, it is clear that for i = 1, H1(G,H) → H1(G,C(X,H)) is surjective if and only if
H1(G,P ⊗ H) ∼= {0}. But since P is a projective ZG-module, we can find a ZG-module Q
such that P ⊕ Q is a free ZG-module. By assumption, H1(G, (P ⊕ Q) ⊗ H) vanishes, since
(P ⊕Q)⊗H is of the form ZG⊗M for some G-module M . Hence H1(G,P ⊗H) ∼= {0}. �

Lemma 5.8. Suppose that 1 → H ′ ι
−→ H

π
−→ H ′′ → 1 is an exact sequence of groups, and

assume that H ′ is abelian. Let G y X be a topological dynamical system on a compact space
X, and suppose that Gy X is almost ZG-projective and that H1(G,ZG⊗M) ∼= {0} for every
G-module M .

If Gy X is continuous H ′′-cocycle rigid, then Gy X is continuous H-cocycle rigid.

Proof. Write C ′ = C(X,H ′), C = C(X,H) and C ′′ = C(X,H ′′). Let i : C ′ → C and
p : C → C ′′ be the homomorphisms induced by ι and π. We get the following commutative
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diagram with exact rows:

1 // H ′

ϕ′

��

ι
// H

ϕ

��

π
// H ′′

ϕ′′

��

// 1

1 // C ′ i
// C

p
// C ′′ // 1

where ϕ′, ϕ and ϕ′′ are the canonical homomorphisms.

Take x ∈ H1(G,C). Since ϕ′′
∗ is surjective, we can find ξ′′ ∈ H1(G,H ′′) with ϕ′′

∗(ξ
′′) = p∗(x).

Let us first prove the following

Claim: There exists ζ ∈ H1(G,H) with π∗(ζ) = ξ′′.

Proof of the claim: Let λ′′ be a 1-cocycle of G in H ′′ representing ξ′′. Lift λ′′ to a map
λ : G → H such that π ◦ λ = λ′′. Then, as in [22, Chapter I, § 5.6], define a 2-cocycle λ′

of G in H ′ by setting λ′s,t := λss.λtλ
−1
st and let ∆(λ′′) := [λ′] ∈ H2(G,H ′). Since p ◦ ϕ ◦ λ =

ϕ′′ ◦ π ◦ λ = ϕ′′ ◦ λ′′, ϕ ◦ λ is a lift of ϕ ◦ λ. Moreover, [ϕ′′ ◦ λ′′] = ϕ′′
∗[λ

′′] = ϕ′′
∗(ξ

′′) = p∗(x) lies
in Im (p∗). Therefore, by [22, Chapter I, § 5.6, Proposition 41], ∆(ϕ′′ ◦ λ′′) = 0 in H2(G,C ′).
Hence 0 = ∆(ϕ′′ ◦λ′′) = [ϕ′ ◦λ′] = ϕ′

∗[λ
′] = ϕ′

∗(∆(λ′′)). As ϕ′
∗ is injective by Proposition 5.7, we

obtain ∆(λ′) = 0. And thus, again by [22, Chapter I, § 5.6, Proposition 41], ξ′′ lies in Im (π∗).
This proves our claim.

So we can find ζ ∈ H1(G,H) with π∗(ζ) = ξ′′. Then p∗(ϕ∗(ζ)) = ϕ′′
∗(π∗(ζ)) = ϕ′′

∗(ξ
′′) = p∗(x).

Let β be a 1-cocycle of G in H representing ζ . Let b = ϕ(β). Then ϕ∗(ζ) = [b]. Twisting by b
gives rise to a commutative diagram

(5) H1(G, βH
′)

(ϕ̃′)
∗

��

(βι)∗
// ker ((βπ)∗)

ϕ̃∗

��

∼=

τβ
// π−1

∗ (π∗(ζ))

ϕ∗

��

H1(G, bC
′)

(bi)∗
// ker ((bp)∗) ∼=

τb
// p−1

∗ (p∗(x))

Twisting and the bijections τb are explained in [22, Chapter I, § 5.3] and at the beginning of
[22, Chapter I, § 5.4]. By [22, Chapter I, § 5.5, Proposition 38], (bi)∗ : H

1(G, bC)→ ker ((bp)∗)

is surjective. Moreover,
(
ϕ̃′
)
∗
: H1(G, βH

′) → H1(G, bC
′) is surjective by Proposition 5.7.

Hence, by commutativity of the left square in (5), ϕ̃∗ : ker ((βπ)∗) → ker ((bp)∗) is surjective.
Commutativity of the right square in (5) implies that ϕ∗ : π

−1
∗ (π∗(ζ))→ p−1

∗ (p∗(x)) is surjective.
In particular, there exists ξ ∈ π−1

∗ (π∗(ζ)) ⊆ H1(G,H) with ϕ∗(ξ) = x. �

Corollary 5.9. Let Gy X be a topological dynamical system on a compact space X. Suppose
that Gy X is almost ZG-projective and that H1(G,ZG⊗M) ∼= {0} for every G-module M .

Then Gy X is continuous H-cocycle rigid for every solvable group H.

Proof. We proceed inductively on the length of a series {1} = H0 ⊆ H1 ⊆ . . . ⊆ Hn = H with
Hi ⊳ H for all 1 ≤ i ≤ n and Hi/Hi−1 abelian for all 1 ≤ i ≤ n. The case n = 1 is taken care
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of by Proposition 5.7. To go from n − 1 to n, consider the series {1} = H1/H1 ⊆ H2/H1 ⊆
. . . ⊆ Hn/H1 = H/H1. By induction hypothesis, G y X is continuous H/H1-cocycle rigid.
Applying Lemma 5.8 to 1 → H1 → H → H/H1 → 1, we obtain that G y X is continuous
H-cocycle rigid. �

Remark 5.10. If G is a duality group in the sense of [2, Chapter VIII, § 10] with cd(G) 6= 1,
then H1(G,ZG⊗M) ∼= {0} for every G-module M .

Clearly, Corollary 5.9 and Remark 5.10 imply

Theorem (Theorem 1.7). Let G be a torsion-free group, let X be a compact space, and suppose
that G y X is a topological dynamical system which is almost ZG-projective. Furthermore,
assume that G is a duality group in the sense of [2, Chapter VIII, § 10] with cd(G) 6= 1. Then
Gy X is continuous H-cocycle rigid for every solvable group H.

6. Continuous orbit couples and topological couplings

Let us build the bridge between continuous orbit equivalence and topological couplings. Let G
and H be groups.

Definition 6.1. A topological coupling for G and H consists of a locally compact space Ω with
commuting free and proper left G- and right H-actions which admit compact open fundamental
domains X̄ (for the H-action) and Ȳ (for the G-action).

A topological coupling is topologically free if the corresponding action G×H y Ω is topologically
free.

We often write G y Ω x H for our topological coupling, or G ȳ
X

Ω x̄
Y
H if we want to keep

track of the fundamental domains. Here, by a fundamental domain X̄ for Ω x H , we mean
a subspace X̄ ⊆ Ω such that the inclusion X̄ →֒ Ω induces a homeomorphism X̄ ∼= Ω/H .
Since we require X̄ to be compact and open, this means that X̄ × H → Ω, (x, h) 7→ xh is a
homoemorphism (where H carries the discrete topology). For the sake of brevity, we refer to
topologically free topological couplings as topologically free couplings.

Moreover, topological couplings G ȳ
X1

Ω1 x̄
Y1

H and G ȳ
X2

Ω2 x̄
Y2

H are isomorphic if there exists

a G×H-equivariant homeomorphism Ω1

∼=
−→ Ω2 sending X̄1 to X̄2 and Ȳ1 to Ȳ2.

We now introduce a notion which is similar to, but weaker than continuous orbit equivalence.

Definition 6.2. Let Gy X and H y Y be topological dynamical systems.

A continuous map p : X → Y is called a continuous orbit map if there exists a continuous map
a : G×X → H such that p(g.x) = a(g, x).p(x).
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A continuous orbit couple for Gy X and H y Y consists of continuous orbit maps p : X → Y
and q : Y → X such that there exist continuous maps g : X → G and h : Y → H such that
qp(x) = g(x).x and pq(y) = h(y).y for all x ∈ X, y ∈ Y .

A continuous orbit couple for G and H consists of topological dynamical systems G y X and
H y Y on compact spaces X and Y and a continuous orbit couple (p, q) for G y X and
H y Y .

We call a continuous orbit couple for G and H topologically free if G y X and H y Y are
topologically free.

Note that if (p, q) is a continuous orbit couple for Gy X and H y Y such that q = p−1 (i.e.,
g ≡ e and h ≡ e), then Gy X and H y Y are continuously orbit equivalent. In that case, we
call (p, q) a continuous orbit equivalence.

Continuous orbit couples (pi, qi) for Gy Xi and H y Yi, i = 1, 2, are isomorphic if there exist

a G-equivariant homeomorphism X1

∼=
−→ X2 and an H-equivariant homeomorphism Y1

∼=
−→ Y2

such that the diagrams

X1

∼=
��

p1
// Y1

∼=
��

X2
p2

// Y2

Y1

∼=
��

q1
// X1

∼=
��

Y2
q2

// X2

commute.

The main goal of this section is to prove the following

Theorem 6.3. Let G and H be groups. There is a one-to-one correspondence between isomor-
phism classes of topologically free couplings for G and H and isomorphism classes of topologi-
cally free continuous orbit couples for G and H, with the following additional properties:

(a) topological couplings with X̄ = Ȳ correspond to continuous orbit equivalences;
(b) for topologically free couplings G ȳ

X1

Ω1 x̄
X1

H and G ȳ
X2

Ω2 x̄
X2

H, there exists a G×H-

equivariant homeomorphism Ω1
∼= Ω2 (which might or might not preserve the fundamen-

tal domains) if and only if the cocycles a1, b1, a2 and b2 of the corresponding continuous
orbit equivalence satisfy a1 ∼ a2 and b1 ∼ b2;

(c) for a topologically free coupling G ȳ
X

Ω x̄
X
H, there exists an isomorphism ρ : G ∼=

H and a G × H-equivariant map Ω → G (where G is equipped with the canonical
left G-action, and the right H-action is given by ρ) if and only if the cocycle a (see
Definition 6.2) of the corresponding continuous orbit equivalence satisfies a ∼ ρ for an
isomorphism ρ : G ∼= H (the same isomorphism as for the coupling).
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For the proof of this theorem, we will now present explicit constructions of continuous orbit
couples out of topological couplings and vice versa. The constructions are really the topological
analogues of those in [7, § 3] (see also [23] and [20]).

6.1. From topological couplings to continuous orbit couples. Suppose that we are given
a topological coupling G ȳ

X
Ω x̄

Y
H for groups G and H . We write G × Ω → Ω, (g, x) 7→ gx

and Ω×H → Ω, (x, h) 7→ xh for the left G-action and right H-action.

Set X := X̄ and Y := Ȳ . Define a map p : X → Y by requiring Gx ∩ Y = {p(x)} for all
x ∈ X . The intersection on the left hand side is taken in Ω. Since Y ⊆ Ω is compact and
open, p is continuous. Moreover, by construction, there is a continuous map γ : X → G with
p(x) = γ(x)x.

We now define a G-action, denoted by G×X → X, (g, x) 7→ g.x, as follows: For every g ∈ G
and x ∈ X , there exists a unique α(g, x) ∈ H such that gx ∈ Xα(g, x). Since X is compact
and open, α : G×X → H is continuous. Set g.x := gxα(g, x)−1. It is easy to check that this
defines a (left) G-action on X .

Similarly, we define a continuous map q : Y → X by requiring X ∩ yH = {q(y)} for all y ∈ Y ,
and let η : Y → H be the continuous map satisfying q(y) = yη(y). To define an H-action on
Y , let β(y, h) ∈ G be such that yh ∈ β(y, h)Y . Again, β : Y × H → G is continuous. Set
h.y := β(y, h−1)−1yh−1.

Let us check that (p, q) is a continuous orbit couple for G and H . To determine p(g.x) =
p(gxα(g, x)−1), we need to identify Ggxα(g, x)−1 ∩ Y . We have

Ggxα(g, x)−1 ∋ β(γ(x)x, α(g, x)−1)−1γ(x)xα(g, x)−1 ∈ Y,

so p(g.x) = β(γ(x)x, α(g, x)−1)−1γ(x)xα(g, x)−1 = α(g, x).(γ(x)x) = α(g, x).p(x). Similarly, in
order to identify q(h.y) = q(β(y, h−1)−1yh−1), we need to determine X ∩β(y, h−1)−1yh−1H . As

X ∋ β(y, h−1)−1yη(y)α(β(y, h−1)−1, yη(y))−1 ∈ β(y, h−1)−1yh−1H,

we conclude that q(y.h) = β(y, h−1)−1yη(y)α(β(y, h−1)−1, yη(y))−1 = β(y, h−1)−1.yη(y) =
β(y, h−1)−1.q(y). Finally, qp(x) = q(γ(x)x) = γ(x)xα(γ(x), x)−1 = γ(x).x and pq(y) =
p(yη(y)) = β(y, η(y))−1yη(y) = η(y)−1.y. All in all, we see that (p, q) is a continuous or-
bit couple for G y X and H y Y in the sense of Definition 6.2, with a(g, x) = α(g, x),
b(h, y) = β(y, h−1)−1, g(x) = γ(x) and h(y) = η(y)−1.

Note that our coupling does not need to be topologically free for this construction. However,
it is clear that G y Ω x H is topologically free (i.e., G×H y Ω is topologically free) if and
only if Gy X and H y Y are topologically free.

6.2. From continuous orbit couples to topological couplings. Let Gy X and H y Y
be topologically free systems on compact spaces X and Y . Assume that (p, q) is a continuous
orbit couple for G y X and H y Y , and let a, b, g and h be as in Definition 6.2. Define
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commuting left G- and rightH-actions onX×H by g(x, h) = (g.x, a(g, x)h), (x, h)h′ = (x, hh′).
Furthermore, define commuting left G- and right H-actions on G×Y by g′(g, y) = (g′g, y) and
(g, y)h = (gb(h−1, y)−1, h−1.y).

A straightforward computation, using the cocycle identities (see Lemma 2.8) for a and b,
shows that Θ : X × H → G × Y, (x, h) 7→ (g(x)−1b(h−1, p(x))−1, h−1.p(x)) is a G- and H-
equivariant homeomorphism whose inverse is given by Θ−1 : G × Y → X × H, (g, y) 7→
(g.q(y), a(g, q(y))h(y)). Therefore, if we set Ω = X×H as a G×H-space and set X̄ = X×{e},
Ȳ = Θ−1({e} × Y ), then this yields the desired topologically free coupling G ȳ

X
Ω x̄

Y
H .

Note that topological freeness of G y X and H y Y ensures that a and b satisfy the cocycle
identities (as in Lemma 2.8), which are needed in the preceding computations.

6.3. One-to-one correspondence and consequences. We can now finish the

Proof of Theorem 6.3. It is straightforward to check that the constructions described in § 6.1
and § 6.2 are inverse to each other up to isomorphism. For instance, if we start with a topologi-
cally free coupling G ȳ

X
Ω x̄

Y
H , construct a continuous orbit couple and then again a topolog-

ical coupling, we end up with a coupling of the form Gy
X̃

Ω̃ x
Ỹ

H where Ω̃ = X ×H ∼= G×Y ,

X̃ = X × {e} and Ỹ ∼= {e} × Y . It is then obvious that Ω̃ = X ×H → Ω, (x, h) 7→ xh is an

isomorphism of the couplings G y
X̃

Ω̃ x
Ỹ

H and G ȳ
X

Ω x̄
Y
H . Conversely, if we start with a

continuous orbit couple (p, q) for topologically free systems G y X and H y Y , construct a
topological coupling and then again a continuous orbit couple, we end up with a continuous
orbit couple (p̃, q̃) for Gy X̃ and H y Ỹ where X̃ = X×{e} and Ỹ ∼= {e}×Y . The canonical
isomorphisms X ∼= X × {e} and Y ∼= {e} × Y give rise to an isomorphism between (p, q) and
(p̃, q̃).

The additional properties (a), (b) and (c) are also easy to check. �

In particular, this proves Theorem 1.8.

Corollary 6.4. Assume that there exists a topologically free continuous orbit couple for groups
G and H. If G is finitely generated, then so is H, and G and H are quasi-isometric.

In particular, if topologically free systems Gy X and H y Y on compact spaces X and Y are
continuously orbit equivalent, and if G is finitely generated, then so is H, and G and H are
quasi-isometric.

Proof. By Theorem 6.3, if there exists a topologically free continuous orbit couple for G and
H , then there exists a (topologically free) topological coupling for G and H . Our claim follows
from [4, Chapter IX, Exercise 34]. �
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7. Conclusions

Now we are ready for the proofs of Theorem 1.3 and Theorem 1.4.

Theorem (Theorem 1.3). Let G be a torsion-free group, and let H be a finitely generated
nilpotent group which is not virtually infinite cyclic. Assume that G y X is a topologically
free system on a compact space X such that Gy X is almost ZG-projective. Furthermore, let
H y Y be a topologically free system. If Gy X and H y Y are continuously orbit equivalent,
then they must be conjugate.

Proof of Theorem 1.3. Corollary 6.4 implies that G is finitely generated, and that G and H are
quasi-isometric. So G is virtually nilpotent but not virtually infinite cyclic because H has these
properties (see [12]). This means that G contains a finitely generated, torsion-free, nilpotent
group as a subgroup of finite index. Therefore, by [2, Chapter VIII, Proposition (10.2)], G has
to be a duality group. Since G is not virtually infinite cyclic, we know that cd(G) 6= 1. Thus
Gy X is continuous H-cocycle rigid by Theorem 1.7. Now assume that Gy X ∼coe H y Y .
As G is torsion-free and virtually nilpotent, hence amenable, and because Gy X is continuous
H-cocycle rigid, Theorem 1.6 implies that Gy X ∼conj H y Y . �

Here is our second main result, followed by its proof.

Theorem (Theorem 1.4). Let G be a duality group in the sense of [2, Chapter VIII, § 10] which
is not infinite cyclic, and let H be a finitely generated solvable group. Assume that G y X is
a topologically free system on a compact space X such that G y X is almost ZG-projective.
Furthermore, let H y Y be a topologically free system. If Gy X and H y Y are continuously
orbit equivalent, then they must be conjugate.

Proof of Theorem 1.4. By Corollary 6.4, G is finitely generated and quasi-isometric to H .
Therefore, G is amenable (see [4, Chapter IV, 50. Geometric properties]). Moreover, as G
is a duality group, it is torsion-free. As G is not infinite cyclic, we must have cd(G) 6= 1.
Hence Theorem 1.7 implies that G y X is continuous H-cocycle rigid. Now assume that
G y X ∼coe H y Y . Since G is torsion-free and amenable, and because G y X is
continuous H-cocycle rigid, Theorem 1.6 implies that Gy X ∼conj H y Y . �
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