

Li, X. (2019) K-theory for generalized Lamplighter groups. Proceedings of the American Mathematical Society, 147(10), pp. 4371-4378.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/210202/

Deposited on: 4 March 2020

 $Enlighten-Research \ publications \ by \ members \ of \ the \ University \ of \ Glasgow \ \underline{http://eprints.gla.ac.uk}$

K-THEORY FOR GENERALIZED LAMPLIGHTER GROUPS

XIN LI

ABSTRACT. We compute K-theory for the reduced group C*-algebras of generalized Lamplighter groups.

1. INTRODUCTION

The classical Lamplighter group is given by the semidirect product $(\bigoplus_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})) \rtimes \mathbb{Z}$, where the \mathbb{Z} -action on $\bigoplus_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ is induced by the canonical translation action of \mathbb{Z} on itself. This construction can be generalized by replacing $\mathbb{Z}/2\mathbb{Z}$ and \mathbb{Z} by other groups. The classical Lamplighter group and its generalizations are important examples in group theory which led to solutions of several open problems (see for instance [7, 6, 10]).

The goal of these notes is to derive a *K*-theory formula for group C*-algebras of generalized Lamplighter groups of the form $(\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma$, where Σ is an arbitrary finite group and Γ is an arbitrary countable group. As in the classical setting, the Γ -action on $\bigoplus_{\Gamma} \Sigma$ is induced by the canonical left translation action of Γ on itself. Our computations are inspired by [9, 13], which treat the special case of free groups Γ ([9] deals with the case $\Gamma = \mathbb{Z}$). Our method, however, is completely different from the ones adopted in [9, 13].

Our main result reads as follows. Let Σ be a finite group and Γ a countable group. Let $\operatorname{con} \Sigma$ be the set of conjugacy classes in Σ , and $\operatorname{con}^{\times} \Sigma := \operatorname{con} \Sigma \setminus \{\{1\}\}$ the set of non-trivial conjugacy classes. Let \mathscr{C} be the set of conjugacy classes of finite subgroups of Γ . For a finite subgroup C of Γ , let F(C) be the set of non-empty finite subsets of the right coset space $C \setminus \Gamma$ which are not of the form $\pi^{-1}(Y)$ for a finite subgroup $D \subseteq \Gamma$ with $C \subsetneq D$ and $Y \subseteq D \setminus \Gamma$, where $\pi : C \setminus \Gamma \twoheadrightarrow D \setminus \Gamma$ is the canonical projection. The normalizer $N_C := \{\gamma \in \Gamma : \gamma C \gamma^{-1} = C\}$ acts on F(C) by left multiplication, and we denote the set of orbits by $N_C \setminus F(C)$.

Theorem 1.1. If Γ satisfies the Baum-Connes conjecture with coefficients, then the K-theory of $C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)$ is given by

$$K_*(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)) \cong K_*(C^*_{\lambda}(\Gamma)) \oplus \left(\bigoplus_{[C] \in \mathscr{C}} \bigoplus_{[X] \in N_C \setminus F(C)} \bigoplus_{(\operatorname{con}^{\times} \Sigma)^{C \cdot X}} K_*(C^*_{\lambda}(C)) \right).$$

Here we are taking one representative C out of each class in \mathscr{C} *and form* $N_C \setminus F(C)$ *as well as* $C \cdot X := \bigsqcup_{x \in X} C \cdot x$.

We refer the reader to [1, 14, 5] and the references therein for more information about the Baum-Connes conjecture. For instance, Theorem 1.1 applies to all groups with the Haagerup property [11] and all hyperbolic groups [12].

Note that Σ enters our formula only in the form of $\operatorname{con}^{\times} \Sigma$. What is more, if Γ is infinite, then for each $[C] \in \mathscr{C}$, we simply get direct sums of countably infinitely many copies of $K_*(C^*_{\lambda}(C))$, so that $K_*(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma))$ does not depend on Σ at all. This becomes particularly evident in K_1 , where Theorem 1.1 yields the following

Corollary 1.2. Let Σ be a finite group and Γ a countable group. If Γ satisfies the Baum-Connes conjecture with coefficients, then the canonical inclusion $\Gamma \hookrightarrow \Sigma \rtimes \Gamma$ induces an isomorphism

$$K_1(C^*_{\lambda}(\Gamma)) \cong K_1(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)).$$

Moreover, for torsion-free Γ , our formula becomes particularly simple.

²⁰¹⁰ Mathematics Subject Classification. 46L80.

Corollary 1.3. Let Σ and Γ be as in Theorem 1.1. Assume that Γ is torsion-free. Write FIN[×] for the set of non-empty finite subsets of Γ . Then, under the same assumptions as in Theorem 1.1, we have

$$K_*(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)) \cong K_*(C^*_{\lambda}(\Gamma)) \oplus \left(\bigoplus_{[X] \in \Gamma \setminus \mathrm{FIN}^{\times}} \bigoplus_{(\mathrm{con}^{\times} \Sigma)^X} K_*(\mathbb{C})\right).$$

The proof of our main theorem proceeds in two steps. First, using the Going-Down principle from [2, 8] (see also [5, § 3]), we show that $C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)$ has the same K-theory as the crossed product $C((\operatorname{con} \Sigma)^{\Gamma}) \rtimes_r \Gamma$ for the topological full shift $\Gamma \curvearrowright (\operatorname{con} \Sigma)^{\Gamma}$. Here we view $\operatorname{con} \Sigma$ as a finite alphabet. Secondly, we compute K-theory for $C((\operatorname{con} \Sigma)^{\Gamma}) \rtimes_r \Gamma$ using [3, 4]. As a by-product, we obtain a general K-theory formula for crossed products of topological full shifts (see Proposition 2.4). Both steps require our assumption that Γ satisfies the Baum-Connes conjecture with coefficients.

We point out that it is not possible to apply the results in [3, 4] directly because [3, 4] only deal with crossed products attached to actions on commutative C*-algebras.

I am indebted to Alain Valette for inviting me to Neuchatel, and to Sanaz Pooya and Alain Valette for interesting discussions which led to these notes.

2. K-THEORY FOR CERTAIN CROSSED PRODUCTS AND GENERALIZED LAMPLIGHTER GROUPS

We first discuss the following abstract situation: Let $A = \bigoplus_{i=0}^{n} M_{k_i}$ be a finite dimensional C*-algebra, where M_k is the algebra of $k \times k$ -matrices. We assume that $k_0 = 1$, i.e., $A = \mathbb{C} \oplus M_{k_1} \oplus \ldots \oplus M_{k_n}$. Let Γ be a countable group. We form the tensor product $\bigotimes_{\Gamma} A$ as follows: For every finite subset $F \subseteq \Gamma$, we form the ordinary tensor product $\bigotimes_{F} A$, and for $F_1 \subseteq F_2$, we have the canonical embedding $\bigotimes_{F_1} A \hookrightarrow \bigotimes_{F_2} A, x \mapsto x \otimes 1$. Then set $\bigotimes_{\Gamma} A := \varinjlim_{F} \bigotimes_{F} A$. The left Γ -action on itself by translations induces an action $\Gamma \curvearrowright \bigotimes_{\Gamma} A$. Our goal is to compute the *K*-theory of $(\bigotimes_{\Gamma} A) \rtimes_{r} \Gamma$. The special case $A = C_{\lambda}^*(\Sigma)$ will lead to Theorem 1.1.

Let e_i be a minimal projection in $M_{k_i} \subseteq A$. In particular, $e_0 = 1 \in \mathbb{C} \subseteq A$. For $F \subseteq \Gamma$ finite, let $\varphi \in \{1, ..., n\}^F$, i.e., φ is a function $\varphi : F \to \{1, ..., n\}$. Define $e_{\varphi} := \bigotimes_{f \in F} e_{\varphi(f)} \in \bigotimes_F A \subseteq \bigotimes_\Gamma A$. If $F = \emptyset$, then for $\varphi : \emptyset \to \{1, ..., n\}$, we set $e_{\varphi} := 1$. The set

(1)
$$\left\{ e_{\varphi} \colon \varphi \in \{1, \dots, n\}^F, F \subseteq \Gamma \text{ finite} \right\}$$

is a Γ -invariant family of commuting non-zero projections, which is closed under multiplication up to zero (i.e., the product of two projections in the family is either zero or again a projection in the family). We do not need it now, but the family is also linearly independent (see Lemma 2.3 and the proof of (2)). Let *D* be the C*-subalgebra of $\bigotimes_{\Gamma} A$ generated by the projections in (1). Let $t : D \hookrightarrow \bigotimes_{\Gamma} A$ be the canonical embedding. Note that t is Γ -equivariant.

Proposition 2.1. If Γ satisfies the Baum-Connes conjecture with coefficients, then $\iota \rtimes_r \Gamma$ induces an isomorphism $K_*(D \rtimes_r \Gamma) \cong K_*((\bigotimes_{\Gamma} A) \rtimes_r \Gamma).$

Proof. By the Going-Down principle (see [5, § 3]), it suffices to show that for every finite subgroup $H \subseteq \Gamma$, $\iota \rtimes_r H$ induces an isomorphism $K_*(D \rtimes_r H) \cong K_*((\bigotimes_{\Gamma} A) \rtimes_r H)$.

Let us first treat the case of the trivial subgroup, $H = \{1\}$. For a fixed finite subset $F \subseteq \Gamma$, let

$$D_F = C^*(\left\{e_{\varphi}: \varphi \in \{1, \ldots, n\}^F\right\}).$$

Then $D = \varinjlim_F D_F$. We also have $\bigotimes_{\Gamma} A = \varinjlim_F \bigotimes_F A$. As *K*-theory is continuous, i.e., preserves direct limits, it suffices to show that $\iota_F := \iota|_{D_F} : D_F \to \bigotimes_F A$ induces an isomorphism in K_* . Let $[\iota_F] \in KK(D_F, \bigotimes_F A)$ be the *KK*-element determined by ι_F . Consider the projection $e = \sum_{i=0}^n e_i$ in *A*. *e* is a full projection in *A*, and we have $eAe = \bigoplus_{i=0}^n \mathbb{C}e_i$. The $\bigotimes_F A - \bigotimes_F eAe$ -imprimitivity bimodule $\bigotimes_F Ae$ gives rise to a *KK*-element $\mathbf{j}_F \in KK(\bigotimes_F A, \bigotimes_F eAe)$.

 \mathbf{j}_F is invertible, and its inverse is the *KK*-element induced by the inclusion $\bigotimes_F eAe \hookrightarrow \bigotimes_F A$. Hence it suffices to show that the Kasparov product $[\iota_F] \cdot \mathbf{j}_F \in KK(D_F, \bigotimes_F eAe)$ induces an isomorphism $K_*(D_F) \to K_*(\bigotimes_F eAe)$.

First, consider the special case of a single element subset, $F = \{f\}$ for some $f \in \Gamma$. Let us write $D_f := D_{\{f\}}$, $\iota_f := \iota_{\{f\}}$ and $\mathbf{j}_f := \mathbf{j}_{\{f\}}$. Since $D_f = \mathbb{C} \cdot 1 \oplus \mathbb{C}e_1 \oplus \ldots \oplus \mathbb{C}e_n$ and $eAe = \mathbb{C}e_0 \oplus \mathbb{C}e_1 \oplus \ldots \oplus \mathbb{C}e_n$, we can describe the map $K_*(D_F) \to K_*(\bigotimes_F eAe)$ induced by $[\iota_f] \cdot \mathbf{j}_f$ by the commutative diagram

$$K_*(D_f) \longrightarrow K_*(eAe)$$

$$\| \qquad \|$$

$$\mathbb{Z}[1] \oplus \bigoplus_{i=1}^n \mathbb{Z}[e_i] \longrightarrow \bigoplus_{i=0}^n \mathbb{Z}[e_i]$$

where the upper horizontal map is the map we want to describe, and M_f is the $(n+1) \times (n+1)$ -matrix

$$M_f = \begin{pmatrix} 1 & 0 & \dots & 0 \\ k_1 & 1 & & 0 \\ \vdots & & \ddots & \\ k_n & 0 & & 1 \end{pmatrix}.$$

Obviously, M_f is invertible. Note that everything is independent of f.

Now consider the case of a general finite subset $F \subseteq \Gamma$. Since $D_F = \bigotimes_{f \in F} D_f$, we have $K_*(D_F) \cong \bigotimes_{f \in F} K_*(D_f)$, and we also have $K_*(\bigotimes_F eAe) \cong \bigotimes_{f \in F} K_*(eAe)$. The homomorphism $K_*(D_F) \to K_*(\bigotimes_F eAe)$ induced by $[\iota_F] \cdot \mathbf{j}_F$ respects this tensor product decomposition, in the sense that we have a commutative diagram

Again, we see that M_F is invertible because all the M_f , $f \in F$, are.

Now let us deal with the case of an arbitrary finite subgroup $H \subseteq \Gamma$. If we choose an increasing sequence of H-invariant finite subsets $F \subseteq \Gamma$ whose union is Γ , we obtain H-equivariant inductive limit decompositions $D = \lim_{K \to F} D_F$ and $\bigotimes_{\Gamma} A = \lim_{K \to F} \bigotimes_{F} A$. Hence, again by continuity of K-theory, it suffices to show that, for every F, $\iota_{F} \rtimes_{r} H : D_{F} \rtimes_{r} H \to (\bigotimes_{F} A) \rtimes_{r} H$ induces an isomorphism in K_* . Let $\mathbf{j}_F \in KK(\bigotimes_{F} A, \bigotimes_{F} eAe)$ be as before. Since the full projection $\bigotimes_{F} e \in \bigotimes_{F} A$ giving rise to \mathbf{j}_F is H-invariant, \mathbf{j}_F is a KK^H -equivalence (see [5, Remark 3.3.16]). Thus, to show that $\iota_F \rtimes_{r} H : D_F \rtimes_{r} H \to (\bigotimes_{F} A) \rtimes_{r} H$ induces an isomorphism in K_* , it suffices to show that $[\iota_F] \cdot \mathbf{j}_F \in KK^H(D_F, \bigotimes_{F} eAe)$ induces an isomorphism $K_*(D_F \rtimes_{r} H) \to K_*((\bigotimes_{F} eAe) \rtimes_{r} H)$, for which in turn it is enough to prove that $[\iota_F] \cdot \mathbf{j}_F$ is a KK^H -equivalence.

Now both D_F and $\bigotimes_F eAe$ are finite dimensional commutative C*-algebras with an *H*-action, so that we are exactly in the setting of [4, Appendix]. It is straightforward to check that $[\iota_F] \cdot \mathbf{j}_F = x_{M_F}^H$, where $x_{M_F}^H$ is the element in $KK^H(D_F, \bigotimes_F eAe)$ corresponding to the matrix M_F , as constructed in [4, Appendix]. By [4, Lemma A.2], $x_{M_F}^H$ is a KK^H -equivalence because M_F is an invertible matrix. The inverse of $x_{M_F}^H$ is given by $x_{M_F}^{H-1}$.

Remark 2.2. Note that our assumption on *A* that \mathbb{C} appears as a direct summand is really necessary. For instance, if $A = M_2$, then $\bigotimes_{\Gamma} A$ would be the UHF algebra $M_{2^{\infty}}$ (as soon as Γ is infinite). But we have $K_0(M_{2^{\infty}}) \cong \mathbb{Z}[\frac{1}{2}]$, while our method would always yield a free abelian group for K_0 . Hence our method fails.

Let us now compare with the topological full shift $\Gamma \curvearrowright \{0, \ldots, n\}^{\Gamma}$. For a finite subset $F \subseteq \Gamma$, let π_F be the canonical projection $\{0, \ldots, n\}^{\Gamma} \twoheadrightarrow \{0, \ldots, n\}^{F}$. Given $\varphi \in \{0, \ldots, n\}^{F}$, we have the cylinder set $\pi_F^{-1}(\varphi)$ and its characteristic function $\mathbf{1}_{\pi_F^{-1}(\varphi)} \in C(\{0, \ldots, n\}^{\Gamma})$. The following is now easy to see.

Lemma 2.3. The Γ -equivariant isomorphism $D \cong C(\{0, \ldots, n\}^{\Gamma}), e_{\varphi} \mapsto 1_{\pi_{F}^{-1}(\varphi)}$ induces an isomorphism $D \rtimes_{r} \Gamma \cong C(\{0, \ldots, n\}^{\Gamma}) \rtimes_{r} \Gamma$.

We now compute K-theory for $C(\{0,\ldots,n\}^{\Gamma}) \rtimes_{r} \Gamma$.

Proposition 2.4. If Γ satisfies the Baum-Connes conjecture with coefficients, then

$$K_*(C(\{0,\ldots,n\}^{\Gamma})\rtimes_r\Gamma)\cong K_*(C^*_{\lambda}(\Gamma))\oplus \left(\bigoplus_{[C]\in\mathscr{C}}\bigoplus_{[X]\in N_C\setminus F(C)}\bigoplus_{\{1,\ldots,n\}^{C\cdot X}}K_*(C^*_{\lambda}(C))\right).$$

Here we use the same notation as in Theorem 1.1.

Proof. First of all, the same arguments as for [4, Examples 2.13 & 3.1] show that the family

$$\left\{\pi_{F}^{-1}(\boldsymbol{\varphi}): \boldsymbol{\varphi} \in \{1,\ldots,n\}^{F}, F \subseteq \Gamma \text{ finite}\right\}$$

is a Γ -invariant regular basis for the compact open sets in $\{0, \ldots, n\}^{\Gamma}$. Therefore, we may apply [4, Corollary 3.14], and obtain

(2)
$$K_*\left(C\left(\{0,\ldots,n\}^{\Gamma}\right)\rtimes_r\Gamma\right)\cong\bigoplus_{[F]\in\Gamma\backslash\operatorname{FIN}}\bigoplus_{\{1,\ldots,n\}^F}K_*(C^*_{\lambda}(\operatorname{Stab}_{\Gamma}(F))).$$

Here FIN is the set of all finite subsets of Γ , and $\Gamma \setminus FIN$ is the set of orbits of the left translation action $\Gamma \frown FIN$. Moreover, $\operatorname{Stab}_{\Gamma}(F)$ denotes the stabilizer group $\operatorname{Stab}_{\Gamma}(F) = \{\gamma \in \Gamma: \gamma \cdot F = F\}$, and $C^*_{\lambda}(\operatorname{Stab}_{\Gamma}(F))$ is its reduced group C*-algebra.

Now we analyse $\Gamma \setminus \text{FIN}$ and $\text{Stab}_{\Gamma}(F)$ for $[F] \in \Gamma \setminus \text{FIN}$. For $F = \emptyset$, we have $\text{Stab}_{\Gamma}(F) = \Gamma$. This yields $K_*(C^*_{\lambda}(\Gamma))$ as one direct summand on the right-hand side of (2). We set $\text{FIN}^{\times} := \text{FIN} \setminus \{\emptyset\}$. Let us describe $\Gamma \setminus \text{FIN}^{\times}$. Let \mathscr{C} , F(C) and N_C be as in Theorem 1.1. Then we claim that

(3)
$$\bigsqcup_{[C]\in\mathscr{C}} N_C \setminus F(C) \to \Gamma \setminus \mathrm{FIN}^{\times}, [X] \mapsto [C \cdot X]$$

is a bijection, and that for every $[C] \in \mathscr{C}$, $[X] \in N_C \setminus F(C)$, we have

(4)
$$\operatorname{Stab}_{\Gamma}(C \cdot X) = C.$$

First note that the map (3) is well-defined. Moreover, this map is surjective because every $F \in \text{FIN}^{\times}$ with $\text{Stab}_{\Gamma}(F) = C$ is of the form $F = C \cdot X$ for some finite, non-empty subset $X \subseteq C \setminus \Gamma$. Now, X must lie in F(C). Suppose not, i.e., $X = \pi^{-1}(Y)$ for a finite subgroup $D \subseteq \Gamma$ with $C \subsetneq D$ and $Y \subseteq D \setminus \Gamma$, where $\pi : C \setminus \Gamma \twoheadrightarrow D \setminus \Gamma$ is the canonical projection. Then $F = C \cdot X = D \cdot Y$, so that $D \subseteq \text{Stab}_{\Gamma}(F)$, in contradiction to $\text{Stab}_{\Gamma}(F) = C$. Not only does this show surjectivity, but it also proves (4). To see injectivity of (3), assume that $X \in F(C)$ and $X' \in F(C')$ satisfy $[C \cdot X] = [C' \cdot X']$, say $C' \cdot X' = \gamma \cdot C \cdot X$. It follows that $C' = \text{Stab}_{\Gamma}(C' \cdot X') = \gamma \text{Stab}_{\Gamma}(C \cdot X)\gamma^{-1} = \gamma C\gamma^{-1}$. Hence [C] = [C'], and since we are taking one representative out of each class, we must actually have C = C'. But then γ must lie in N_C , and we must have $C \cdot X' = \gamma \cdot C \cdot X = C \cdot \gamma \cdot X$, so that $X' = \gamma \cdot X$, i.e., [X'] = [X] in $N_C \setminus F(C)$. This shows injectivity.

Plugging the bijection (3) and (4) into (2) completes the proof.

Combining Proposition 2.1, Lemma 2.3 and Proposition 2.4, and using the concrete construction in [4, § 3] for our following assertion on K_1 , we obtain

Corollary 2.5. In the situation of Proposition 2.1, if Γ satisfies the Baum-Connes conjecture with coefficients, then we have

$$K_*((\bigotimes_{\Gamma} A) \rtimes_r \Gamma) \cong K_*(C^*_{\lambda}(\Gamma)) \oplus \left(\bigoplus_{[C] \in \mathscr{C}} \bigoplus_{[X] \in N_C \setminus F(C)} \bigoplus_{\{1, \dots, n\}^{CX}} K_*(C^*_{\lambda}(C))\right).$$

In K_1 , the canonical map $C^*_{\lambda}(\Gamma) \hookrightarrow (\bigotimes_{\Gamma} A) \rtimes_r \Gamma$ induces an isomorphism

$$K_1(C^*_{\lambda}(\Gamma)) \cong K_1((\bigotimes_{\Gamma} A) \rtimes_r \Gamma).$$

If Γ is in addition torsion-free, then we obtain

$$K_*((\bigotimes_{\Gamma} A) \rtimes_r \Gamma) \cong K_*(C^*_{\lambda}(\Gamma)) \oplus \left(\bigoplus_{[X] \in \Gamma \setminus \mathrm{FIN}^{\times}} \bigoplus_{\{1,\ldots,n\}^X} K_*(\mathbb{C})\right).$$

Now let us apply our *K*-theory formula to generalized Lamplighter groups. Consider the case $A = C_{\lambda}^*(\Sigma)$ for a finite group Σ . Our assumption on *A* that \mathbb{C} appears as a direct summand is satisfied because the trivial representation gives rise to a direct summand \mathbb{C} in $C_{\lambda}^*(\Sigma)$. The remaining direct summands of *A* are in one-to-one correspondence with con[×] Σ . Hence we obtain

Corollary 2.6. Let Σ be a finite group. If Γ satisfies the Baum-Connes conjecture with coefficients, then we have

$$K_*(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)) \cong K_*(C^*_{\lambda}(\Gamma)) \oplus \left(\bigoplus_{[C] \in \mathscr{C}} \bigoplus_{[X] \in N_C \setminus F(C)} \bigoplus_{(\operatorname{con}^{\times} \Sigma)^{CX}} K_*(C^*_{\lambda}(C))\right).$$

In K_1 , the canonical inclusion $\Gamma \hookrightarrow \Sigma \rtimes \Gamma$ induces an isomorphism

$$K_1(C^*_{\lambda}(\Gamma)) \cong K_1(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)).$$

If Γ is in addition torsion-free, then we obtain

$$K_*(C^*_{\lambda}((\bigoplus_{\Gamma} \Sigma) \rtimes \Gamma)) \cong K_*(C^*_{\lambda}(\Gamma)) \oplus \left(\bigoplus_{[X] \in \Gamma \setminus \mathrm{FIN}^{\times}} \bigoplus_{(\mathrm{con}^{\times} \Sigma)^X} K_*(\mathbb{C})\right).$$

This completes the proof of Theorem 1.1 and Corollary 1.3.

Remark 2.7. As in [4, Corollary 3.14], we get *KK*-equivalences in Proposition 2.4, Corollary 2.5 and Corollary 2.6 if Γ satisfies the strong Baum-Connes conjecture.

Remark 2.8. Moreover, as in [4, Corollary 3.14], we could allow coefficients in Proposition 2.4, Corollary 2.5 and Corollary 2.6. However, in Corollary 2.6, we would only get a *K*-theory formula for crossed products $B \rtimes_r$ $((\bigoplus_{\Gamma} \Sigma) \rtimes_{\Gamma})$ where the $(\bigoplus_{\Gamma} \Sigma)$ -action on the C*-algebra *B* is trivial.

REFERENCES

- P. BAUM, A. CONNES and N. HIGSON, Classifying space for proper actions and K-theory of group C*-algebras, C*-algebras: 1943– 1993 (San Antonio, TX, 1993), 240–291, Contemp. Math. 167, Amer. Math. Soc., Providence, RI, 1994.
- J. CHABERT, S. ECHTERHOFF and H. OYONO-OYONO, Going-down functors, the Künneth formula, and the Baum-Connes conjecture, Geom. Funct. Anal. 14 (2004), no. 3, 491–528.
- [3] J. CUNTZ, S. ECHTERHOFF and X. LI, On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. 17 (2015), no. 3, 645–687.
- [4] J. CUNTZ, S. ECHTERHOFF and X. LI, On the K-theory of crossed products by automorphic semigroup actions, Quart. J. Math. 64 (2013), no. 3, 747–784.
- [5] J. CUNTZ, S. ECHTERHOFF, X. LI and G. YU, K-Theory for Group C*-Algebras and Semigroup C*-Algebras, Oberwolfach Seminars, Birkhäuser, Basel, 2017.
- [6] T. DYMARZ, Bilipschitz equivalence is not equivalent to quasi-isometric equivalence for finitely generated groups, Duke Math. J. 154 (2010), no. 3, 509–526.
- [7] A. DYUBINA, Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Int. Math. Res. Not. 2000 (2000), no. 21, 1097–1101.
- [8] S. ECHTERHOFF, R. NEST and H. OYONO-OYONO, *Fibrations with noncommutative fibers*, J. Noncommut. Geom. *3* (2009), no. 3, 377–417.
- [9] R. FLORES, S. POOYA and A. VALETTE, *K-homology and K-theory for the lamplighter groups of finite groups*, Proc. London Math. Soc. 115, 1207–1226.
- [10] Ł. GRABOWSKI, On Turing dynamical systems and the Atiyah problem, Invent. Math. 198 (2014), no. 1, 27-69.
- [11] N. HIGSON and G. KASPAROV, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23–74.
- [12] V. LAFFORGUE, La conjecture de Baum-Connes à coefficients pour les groupes hyperboliques, J. Noncommut. Geom. 6 (2012), no. 1, 1–197.
- [13] S. POOYA, K-theory and K-homology of the wreath products of finite with free groups, preprint, arXiv:1707.05984.

[14] A. VALETTE, *Introduction to the Baum-Connes conjecture. From notes taken by Indira Chatterji. With an appendix by Guido Mislin*, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 2002.

XIN LI, SCHOOL OF MATHEMATICAL SCIENCES, QUEEN MARY UNIVERSITY OF LONDON, MILE END ROAD, LONDON E1 4NS, UNITED KINGDOM

E-mail address: xin.li@qmul.ac.uk