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Abstract We construct Cartan subalgebras in all classifiable stably finite C*-
algebras. Together with known constructions of Cartan subalgebras in all UCT
Kirchberg algebras, this shows that every classifiable simple C*-algebra has a
Cartan subalgebra.
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1 Introduction

Classification of C*-algebras has seen tremendous advances recently. In the
unital case, the classification of unital separable simple nuclear Z-stable C*-
algebras satisfying the UCT is by now complete. This is the culmination of
work by many mathematicians. The reader may consult [12,20,24,34,44] and
the references therein. In the stably projectionless case, classification results
are being developed (see [13–15,18,19]). It is expected that—once the stably
projectionless case is settled—the final result will classify all separable simple
nuclear Z-stable C*-algebras satisfying the UCT by their Elliott invariants.
This class of C*-algebras is what we refer to as “classifiable C*-algebras”.
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To complete these classification results, it is important to construct concrete
models realizing all possible Elliott invariants by classifiable C*-algebras.
Such models have been constructed—in the greatest possible generality—in
[11] (see also [43] which covers special cases). In the stably finite unital case,
the reader may also find such range results in [20], where the construction
follows the ideas in [11] (with slight modifications, so that the models belong
to the special class considered in [20]). In the stably projectionless case,models
have been constructed in a slightly different way in [19] (again to belong to
the special class of algebras considered) under the additional assumption of a
trivial pairing between K-theory and traces.

Recently, the notion of Cartan subalgebras in C*-algebras [25,36] has
attracted attention, due to connections to topological dynamics [26–28] and
the UCT question [3,4]. In particular the reformulation of the UCT question
in [3,4] raises the following natural question (see [29, Question 5.9], [42,
Question 16] and [5, Problems 1 and 2]):

Question 1.1 Which classifiable C*-algebras have Cartan subalgebras?

By [25,36], we can equally well ask for groupoid models for classifiable
C*-algebras. In the purely infinite case, groupoid models and hence Cartan
subalgebras have been constructed in [41] (see also [29, § 5]). For special
classes of stably finite unital C*-algebras, groupoid models have been con-
structed in [8,35] using topological dynamical systems. Using a new approach,
the goal of this paper is to answer Question 1.1 by constructing Cartan sub-
algebras in all the C*-algebra models constructed in [11,19,20], covering all
classifiable stably finite C*-algebras, in particular in all classifiable unital C*-
algebras. Generally speaking, Cartan subalgebras allow us to introduce ideas
from geometry and dynamical systems to the study of C*-algebras. More con-
cretely, in view of [3,4], we expect that our answer to Question 1.1 will lead
to progress on the UCT question.

The following two theorems are the main results of this paper. The reader
may consult [25,36] for the definition of twisted groupoids and their relation
to Cartan subalgebras, and [38, § 2.2], [32, § 8.4], [18–20] for the precise
definition of the Elliott invariant.

Theorem 1.2 (unital case) Given

• a weakly unperforated, simple scaled ordered countable abelian group
(G0,G

+
0 , u),

• a non-empty metrizable Choquet simplex T ,
• a surjective continuous affine map r : T → S(G0),
• a countable abelian group G1,

there exists a twisted groupoid (G, �) such that
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• G is a principal étale second countable locally compact Hausdorff
groupoid,

• C∗
r (G, �) is a simple unital C*-algebra which can be described as the

inductive limit of subhomogeneousC*-algebraswhose spectra have dimen-
sion at most 3,

• the Elliott invariant of C∗
r (G, �) is given by

(K0(C
∗
r (G, �)), K0(C

∗
r (G, �))+, [1C∗

r (G,�)], T (C∗
r (G, �)), rC∗

r (G,�),

K1(C
∗
r (G, �))) ∼= (G0,G

+
0 , u, T, r,G1).

Theorem 1.3 (stably projectionless case) Given

• countable abelian groups G0 and G1,
• a non-empty metrizable Choquet simplex T ,
• a homomorphism ρ : G0 → Aff(T ) which is weakly unperforated in the
sense that for all g ∈ G0, there is τ ∈ T with ρ(g)(τ ) = 0

there exists a twisted groupoid (G, �) such that

• G is a principal étale second countable locally compact Hausdorff
groupoid,

• C∗
r (G, �) is a simple stably projectionless C*-algebra with continuous

scale in the sense of [18,19,30,31]which can be described as the inductive
limit of subhomogeneous C*-algebras whose spectra have dimension at
most 3,

• the Elliott invariant of C∗
r (G, �) is given by

(K0(C
∗
r (G, �)), K0(C

∗
r (G, �))+, T (C∗

r (G, �)), ρC∗
r (G,�),

K1(C
∗
r (G, �))) ∼= (G0, {0} , T, ρ,G1).

The condition on ρ means that the pairing between K-theory and traces is
weakly unperforated, in the sense of [11]. It has been shown in [14, § A.1]
that this condition of weak unperforation is necessary in the classifiable setting
(i.e., it follows from finite nuclear dimension, or Z-stability).

It is worth pointing out that in the main theorems, the twisted groupoids
are constructed explicitly in such a way that the inductive limit structure with
subhomogeneous building blocks will become visible at the groupoid level.

Remark 1.4 The original building blocks in [11] have spectra with dimension
at most two. The reason three-dimensional spectra are needed in this paper is
because it is not clear how to realize all possible connecting maps at the level
of K1 by Cartan-preserving homomomorphisms using the building blocks in
[11]. Therefore, the building blocks have to be modified (see Sect. 3). Roughly
speaking, the idea is to realize all possible connectingmaps in K1 at the level of
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topological spaces. This however requires three-dimensional spectra because
“nice” topological spaces (say CW-complexes) of dimension two or lower
have torsion-free K 1 (because cohomology is torsion-free in all odd degrees
for these spaces). The dimension can be reduced to two if K1 is torsion-free
(see Corollary 1.8 and Remark 3.9).

In particular, together with the classification results in [12,20,24,34,44],
the groupoid models in [41], and [3, Theorem 3.1], we obtain the following

Corollary 1.5 A unital separable simple C*-algebra with finite nuclear
dimension has a Cartan subalgebra if and only if it satisfies the UCT.

The only reason we restrict to the unital case here is that classification in
the stably projectionless case has not been completed yet.

The constructions of the twisted groupoids in Theorems 1.2 and 1.3 yield
the following direct consequences:

Corollary 1.6 In the situation of Theorem 1.2, suppose that in addition to
(G0,G

+
0 , u), T , r and G1, we are given a topological cone T̃ with base T

and a lower semicontinuous affine map γ̃ : T̃ → [0, ∞]. Then there exists a
twisted groupoid (G̃, �̃) such that

• G̃ is a principal étale second countable locally compact Hausdorff
groupoid,

• C∗
r (G̃, �̃) is a non-unital hereditary sub-C*-algebra of C∗

r (G, �) ⊗ K,
• the Elliott invariant of C∗

r (G̃, �̃) is given by

(K0(C
∗
r (G̃, �̃)), K0(C

∗
r (G̃, �̃))+, T̃ (C∗

r (G, �)), �C∗
r (G̃,�̃)

, rC∗
r (G̃,�̃)

,

K1(C
∗
r (G̃, �̃))) ∼= (G0,G

+
0 , T̃ , γ̃ , r,G1).

Corollary 1.7 In the situation of Theorem 1.3, suppose that in addition to G0,
G1, T and ρ, we are given a topological cone T̃ with base T and a lower
semicontinuous affine map γ̃ : T̃ → [0, ∞]. Then there exists a twisted
groupoid (G̃, �̃) such that

• G̃ is a principal étale second countable locally compact Hausdorff
groupoid,

• C∗
r (G̃, �̃) is a hereditary sub-C*-algebra of C∗

r (G, �) ⊗ K,
• the Elliott invariant of C∗

r (G̃, �̃) is given by

(K0(C
∗
r (G̃, �̃)), K0(C

∗
r (G̃, �̃))+, T̃ (C∗

r (G̃, �̃)), �C∗
r (G̃,�̃)

, ρC∗
r (G̃,�̃)

,

K1(C
∗
r (G̃, �̃)) ∼= (G0, {0} , T̃ , γ̃ , ρ,G1).

Note that all the groupoids inTheorems1.2, 1.3 andCorollaries 1.6, 1.7 are nec-
essarily minimal and amenable. Theorem 1.2 and Corollary 1.6, together with
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Simple C*-algebra has a Cartan subalgebra 657

[41], imply that every classifiable C*-algebra which is not stably projection-
less has a Cartan subalgebra. Once the classification of stably projectionless
C*-algebras is completed, Theorem 1.3 and Corollary 1.7 will imply that
every classifiable stably projectionless C*-algebra has a Cartan subalgebra.
Actually, usingZ-stability, we see that all of the above-mentioned classifiable
C*-algebras have infinitely many non-isomorphic Cartan subalgebras (com-
pare [29, Proposition 5.1]). Moreover, the constructions in this paper show that
in every classifiable stably finite C*-algebra, we can even find C*-diagonals
(and even infinitely many non-isomorphic ones).

Moreover, more can be said about the twist, and also about the dimension
of the spectra of our Cartan subalgebras.

Corollary 1.8 The twisted groupoids (G, �) constructed in the proofs of The-
orems 1.2 and 1.3 have the following additional properties:

(i) If G0 is torsion-free, then the twist � is trivial, i.e., � = T × G.
(ii) If G1 has torsion, then C∗

r (G, �) is an inductive limit of subhomogeneous
C*-algebras whose spectra are three-dimensional, and dim (G(0)) = 3.

(iii) If G1 is torsion-free and G0 has torsion, C∗
r (G, �) is an inductive limit of

subhomogeneous C*-algebras whose spectra are two-dimensional, and
dim (G(0)) = 2.

(iv) If both G0 and G1 are torsion-free with G1 � {0}, then C∗
r (G, �) is an

inductive limit of subhomogeneous C*-algebras whose spectra are one-
dimensional, and dim (G(0)) = 1.

(v) If G0 is torsion-free and G1 ∼= {0}, then C∗
r (G, �) is an inductive

limit of one-dimensional non-commutative finite CW-complexes, with
dim (G(0)) ≤ 1 in Theorem 1.2 and dim (G(0)) = 1 in Theorem 1.3.

In particular, Corollary 1.8 implies the following:

Corollary 1.9 The Jiang–Su algebra Z , the Razak–Jacelon algebra W and
the stably projectionless version Z0 of the Jiang–Su algebra of [19, Defini-
tion 7.1] have C*-diagonals with one-dimensional spectra. The corresponding
twisted groupoids (G, �) can be chosen so that � is trivial, i.e., � = T × G.

Concrete groupoid models for Z , W and Z0 are described in Sect. 8. It is
worth pointing out that a groupoid model has been constructed for Z in [8]
using a different construction (but the precise dimension of the unit space has
not been determined in [8]). Moreover, G. Szabó and S. Vaes independently
found groupoid models forW , again using constructions different from ours.
Furthermore, independently from [4] and the present paper, similar tools to
the ones in [4, § 3] were developed in [2], which give rise to groupoid models
for Z and W as well as other examples.

The key tool for all the results in this paper is an improved version of [4,
Theorem 3.6], which allows us to construct Cartan subalgebras in inductive
limit C*-algebras. The C*-algebraic formulation reads as follows.
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Theorem 1.10 Let (An, Bn) be Cartan pairs with normalizers Nn :=
NAn (Bn) and faithful conditional expectations Pn : An � Bn. Let ϕn : An →
An+1 be injective *-homomorphisms with ϕn(Bn) ⊆ Bn+1, ϕn(Nn) ⊆ Nn+1
and Pn+1 ◦ ϕn = ϕn ◦ Pn for all n. Then lim−→{Bn; ϕn} is a Cartan subalgebra
of lim−→{An; ϕn}.

If all Bn are C*-diagonals, then lim−→{Bn; ϕn} is a C*-diagonal of
lim−→{An; ϕn}.

A special case of this theorem is proved in [6].
Actually, in addition to Theorem 1.10, much more is accomplished:

Groupoid models are developed for *-homomorphisms such as ϕn , and the

twisted groupoid corresponding to
(
lim−→{An; ϕn} , lim−→ {Bn; ϕn}

)
as in The-

orem 1.10 is described explicitly. These results (in Sect. 5) might be of
independent interest.

Applications of these explicit descriptions of groupoid models (for homo-
morphisms and Cartan pairs) and Theorem 1.10 include a unified approach to
Theorems 1.2, 1.3, and explicit constructions of the desired twisted groupoids.
The strategy is as follows: C*-algebras with prescribed Elliott invariant have
been constructed in [11] (see also [20, § 13] for the unital case). These C*-
algebras have all the desired properties as in Theorems 1.2 and 1.3 and are
constructed as inductive limits of subhomogeneous C*-algebras. However, the
connecting maps in [11] and [20, § 13] do not preserve the canonical Cartan
subalgebras in these building blocks in general. Therefore, a careful choice or
modification of the building blocks and connecting maps in the constructions
in [11,20] is necessary in order to allow for an application of Theorem 1.10.
The modification explained in Remark 4.1 is particularly important. Actually,
a more general result is established in Sect. 4.2, where a class of inductive
limits of subhomogeneous C*-algebras is identified, which encompasses all
the C*-algebras in Theorems 1.2, 1.3 and Corollaries 1.6, 1.7, where we can
apply Theorem 1.10.

I am grateful to the organizers Selçuk Barlak, Wojciech Szymański and
Wilhelm Winter of the Oberwolfach Mini-Workshop “MASAs and Auto-
morphisms of C*-Algebras” for inviting me, and for the discussions in
Oberwolfach with Selçuk Barlak which eventually led to this paper. I also
thank Selçuk Barlak and Gábor Szabó for helpful comments on earlier drafts.
Moreover, I would like to thank the referee for very helpful comments which
led to an improved version of Theorem 1.3 (previous versions of this theorem
only covered classifiable stably projectionless C*-algebras with trivial pairing
between K-theory and traces).
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Simple C*-algebra has a Cartan subalgebra 659

2 The constructions of Elliott and Gong–Lin–Niu

Let us briefly recall the constructions in [11] (see also [16] for simplifications
and further explanations) and [20, § 13].

2.1 The unital case

Let us describe the construction in [20, § 13], which is based on [11] (with
slight modifications). Given (G0,G

+
0 , u, T, r,G1) as in Theorem 1.2, write

G = G0, K = G1, and let ρ : G → Aff(T ) be the dual map of r . Choose a
dense subgroup G ′ ⊆ Aff(T ). Set H := G ⊕ G ′,

H+ := {(0, 0)} ∪ {(g, f ) ∈ G ⊕ G ′: ρ(g)(τ ) + f (τ ) > 0 ∀ τ ∈ T
}
,

and view u in G as an element of H . Then (H, H+, u) becomes a simple
ordered group, inducing the structure of a dimension group on H/Tor(H).
Now construct a commutative diagram

G1 . . . Gn Gn+1 . . . G

H1
γ1

. . .
γn−1

Hn
γn

Hn+1
γn+1

. . . H

H1/G1 . . . Hn/Gn Hn+1/Gn+1 . . . H/G

where:

• Hn is a finitely generated abelian group with Hn = ⊕i H
i
n , where for

one distinguished index i , H i
n = Z ⊕ Tor(Hn), and for all other indices,

Hi
n = Z;

• with (H i
n)

+ := {(0, 0)} ∪ (Z>0 ⊕ Tor(Hn)), (Hi
n)

+ := Z≥0 for all
i �= i , H+

n := ⊕i (H
i
n)

+ ⊆ H i
n ⊕ ⊕i �=i H

i
n = Hn and un =

(([n, i], τn), ([n, i])i �=i ) ∈ H+
n , we have

lim−→
{
(Hn, H

+
n , un); γn

} ∼= (H, H+, u); (1)

• with Gn := (γ ∞
n )−1(G), where γ ∞

n : Hn → H is the map provided
by (1), and G+

n := Gn ∩ H+
n , we have un ∈ Gn ⊆ Hn , and (1) induces

lim−→
{
(Gn,G+

n , un); γn
} ∼= (G,G+, u);

• the vertical maps are the canonical ones.

Let γ̂n : Hn/Tor(Hn) =: Ĥn = ⊕i Ĥ
i
n → ⊕

j Ĥ
j
n+1 = Ĥn+1 :=

Hn+1/Tor(Hn+1) be the homomorphism induced by γn , where Ĥ i
n = Z =

123
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Ĥ j
n+1 for all i and j . For fixed n, the map γ̂ = γ̂n is given by a matrix

(γ̂ j i ), where we can always assume that γ̂ j i ∈ Z>0 (considered as a map

Ĥ i
n = Z → Z = Ĥ j

n+1). Then γn = γ̂ + τ + t for homomorphisms

τ : Tor(Hn) → Tor(Hn+1) and t : Ĥn → Tor(Hn+1). Here we think of
Ĥn as a subgroup (actually a direct summand) of Hn . As explained in [20,
§ 6], given a positive constant �n depending on n, we can always arrange that

(γ̂n) j i ≥ �n for all i and j. (2)

Also, let Kn be finitely generated abelian groups and χn : Kn → Kn+1
homomorphisms such that K ∼= lim−→{Kn; χn}.

Let Fn =⊕i F
i
n be C*-algebras, where F i

n is a homogeneous C*-algebra
of the form F i

n = P i
n M∞(C(Z i

n))P
i
n for a connected compact space Z i

n
with base point θ i

n and a projection P i
n ∈ M∞(C(Z i

n)), while for all other
indices i �= i , Fi

n is a matrix algebra, Fi
n = M[n,i]. We require that

(K0(F i
n ), K0(F i

n )
+, [1F i

n
]) ∼= (H i

n , (H
i
n)

+, ([n, i], τn)) and K1(F i
n )

∼= Kn ,
so that (K0(Fn), K0(Fn)+, [1Fn ], K1(Fn)) ∼= (Hn, H+

n , un, Kn).
Let ψn be a unital homomorphism Fn → Fn+1 which induces γn in K0

and χn in K1. We write Fn = PnC(Zn)Pn where Zn = Z i
n � ∐i �=i {θ in},

and Pn = (P i
n , (1[n,i])i �=i ) ∈ M∞(C(Z i

n)) ⊕⊕i �=i M[n,i](C({θ in})). Thus
evaluation in θ in induces a quotient map πn : Fn → F̂n := ⊕i F̂

i
n , where

F̂ i
n = M[n,i]. We require that ψn induce homomorphisms ψ̂n : F̂n → F̂n+1

so that we obtain a commutative diagram

Fn

πn

ψn
Fn+1

πn+1

F̂n
ψ̂n

F̂n+1

which induces in K0

Hn γn
Hn+1

Hn/Tor(Hn)
γ̂n

Hn+1/Tor(Hn+1)

where the vertical arrows are the canonical projections. As Tor(Hn) ⊆ Gn ,
Hn/Gn is torsion-free, and there is a canonical projection Hn/Tor(Hn) →
Hn/Gn . Now let En := ⊕p E

p
n , E

p
n = M{n,p}, so that K0(En) ∼= Hn/Gn ,

and for fixed n, let β0, β1 : F̂n → En be unital homomorphisms which yield
the commutative diagram
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K0(F̂n)

∼=
(β0)∗−(β1)∗

K0(En)

∼=

Hn/Tor(Hn)
γ̂n

Hn/Gn.

We can assume β0 ⊕ β1 : F̂n → En ⊕ En to be injective, because only the
difference (β0)∗ − (β1)∗ matters.

Define

An := {( f, a) ∈ C([0, 1], En) ⊕ Fn: f (t) = βt (πn(a)) for t = 0, 1},
Ân :=

{
( f, â) ∈ C([0, 1], En) ⊕ F̂n: f (t) = βt (â) for t = 0, 1

}
.

As β0 ⊕ β1 is injective, we view Ân as a subalgebra of C([0, 1], En) via
( f, â) �→ f .

Choose for each n a unital homomorphism ϕ̂n : Ân → Ân+1 such that the
composition with the map C([0, 1], En+1) � C([0, 1], Eq

n+1) induced by the
canonical projection En+1 � Eq

n+1,

Ân
ϕ̂n−→ Ân+1 ↪→ C([0, 1], En+1) � C([0, 1], Eq

n+1),

is of the form

C([0, 1], En) ⊇ Ân � f �→ u∗
(
V ( f )

D( f )

)
u, (3)

where u is a continuous path of unitaries [0, 1] → U (Eq
n+1),

V ( f ) =
⎛
⎜⎝

π1( f )
π2( f )

. . .

⎞
⎟⎠

for some π• of the form π• : Ân → F̂n � F̂ i
n , where the first map is given

by ( f, â) �→ â and the second map is the canonical projection, and

D( f ) =
⎛
⎜⎝

f ◦ λ1
f ◦ λ2

. . .

⎞
⎟⎠
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for some continuous maps λ• : [0, 1] → [0, 1] with λ−1• ({0, 1}) ⊆ {0, 1}. We
require that the diagram

Ân
ϕ̂n

Ân+1

F̂n
ψ̂n

F̂n+1

commute, where the vertical maps are given by ( f, â) �→ â.
Then there exists a unique homomorphism ϕn : An → An+1 which fits

into the commutative diagram

An ϕn
An+1

Ân
ϕ̂n

Ân+1

Fn
ψn

Fn+1

F̂n
ψ̂n

F̂n+1

where all the unlabelled arrows are given by the canonical maps.
By construction, lim−→ {An; ϕn} has the desired Elliott invariant (in par-

ticular, the canonical map lim−→{An; ϕn} → F̂ := lim−→
{
F̂n; ψ̂n

}
induces

T (lim−→{An; ϕn}) ∼= T (F̂)). However, this is not a simple C*-algebra. Thus
a further modification is needed to enforce simplicity. To this end, choose
In ⊆ (0, 1) and Zi

n ⊆ Z i
n

1
n -dense and replace ϕn : An → An+1 by the unital

homomorphism ξn : An → An+1 such that:

• the compositions

An
ξn−→ An+1 → Fn+1 � F j

n+1 and

An
ϕn−→ An+1 → Fn+1 � F j

n+1 coincide except for one index jξ �= j;

• the composition

An
ξn−→ An+1 → Fn+1 � F

jξ
n+1
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is of the form

An � ( f, a) �→ u∗
⎛
⎝
I ( f )

Z(a)

P(a)

⎞
⎠ u,

where u is a permutation matrix in M[n+1, jξ ],

I ( f ) =
⎛
⎜⎝

f p1(t1)
f p2(t2)

. . .

⎞
⎟⎠

for indices p• and t• ∈ In such that all possible pairs p•, t• appear ( f p is
the component of f in C([0, 1], E p

n )),

Z(a) =
⎛
⎜⎝

τ1(a(z1))
τ2(a(z2))

. . .

⎞
⎟⎠ (4)

for z• ∈ Zn and isomorphisms τ• : P i
n (z•)M∞P i

n (z•) ∼= F̂ i
n = M[n,i],

and

P(a) =
⎛
⎜⎝

π
i1
n (a)

π
i2
n (a)

. . .

⎞
⎟⎠ ,

where π i
n is the canonical projection Fn � F̂n � F̂ i

n ;• for every q, the composition

An
ξn−→ An+1 → C([0, 1], En+1) � C([0, 1], Eq

n+1)

is of the form

An � ( f, a) �→ u∗
(

�( f )
�(a)

)
u,

where u is a continuous path of unitaries [0, 1] → U (Eq
n+1), �( f ) is of

the same form
(
V ( f )

D( f )

)
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as in (3),

�(a)(t) =
⎛
⎜⎝

τ1(t)(a(z1(t)))
τ2(t)(a(z2(t)))

. . .

⎞
⎟⎠

for continuous maps z• : [0, 1] → Z i
n , each of which is either a constant

map with value in Zn or connects θ i
n with z• ∈ Zn , and isomorphisms

τ•(t) : P i
n (z•(t))M∞P i

n (z•(t)) ∼= F̂ i
n depending continuously on t ∈ [0, 1]

such that for t ∈ {0, 1}, τ•(t) = id if z•(t) = θ i
n and τ•(t) = τ• if

z•(t) = z•, where τ• is as in (4).

Then lim−→{An; ξn} is a simple unital C*-algebra with prescribed Elliott invari-
ant.

2.2 The stably projectionless case

We follow [11] (see also [16]), with slight modifications as in the unital case.
Let (G0, T, ρ,G1) be as in Theorem 1.3.

Write G = G0 and K = G1. Choose a dense subgroup G ′ ⊆ Aff(T ). Set
H := G ⊕ G ′,

H+ := {(0, 0)} ∪ {(g, f ) ∈ G ⊕ G ′: ρ(g)(τ ) + f (τ ) > 0 ∀ τ ∈ T
}
.

Then (H, H+) becomes a simple ordered group, inducing the structure of a
dimension group on H/Tor(H). Now construct a commutative diagram

G1 . . . Gn Gn+1 . . . G

H1
γ1

. . .
γn−1

Hn
γn

Hn+1
γn+1

. . . H

H1/G1 . . . Hn/Gn Hn+1/Gn+1 . . . H/G

where

• Hn is a finitely generated abelian group with Hn = ⊕i H
i
n , where for

one distinguished index i , H i
n = Z ⊕ Tor(Hn), and for all other indices,

Hi
n = Z;

• with (H i
n)

+ := {(0, 0)} ∪ (Z>0 ⊕ Tor(Hn)), (Hi
n)

+ := Z≥0 for all i �= i ,
and H+

n :=⊕i (H
i
n)

+ ⊆ H i
n ⊕⊕i �=i H

i
n = Hn we have

lim−→
{
(Hn, H

+
n ); γn

} ∼= (H, H+); (5)
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Simple C*-algebra has a Cartan subalgebra 665

• with Gn := (γ ∞
n )−1(G), where γ ∞

n : Hn → H is the map provided by
(5), we have Gn ∩ H+

n = {0}, and (1) induces lim−→ {Gn; γn} ∼= G;
• the vertical maps are the canonical ones.

Let γ̂n : Hn/Tor(Hn) =: Ĥn = ⊕i Ĥ
i
n → ⊕

j Ĥ
j
n+1 = Ĥn+1 :=

Hn+1/Tor(Hn+1) be the homomorphism induced by γn , where Ĥ i
n = Z =

Ĥ j
n+1 for all i and j . For fixed n, the map γ̂ = γ̂n is given by a matrix

(γ̂ j i ), where we can always assume that γ̂ j i ∈ Z>0 (considered as a map

Ĥ i
n = Z → Z = Ĥ j

n+1). Then γn = γ̂ + τ + t for homomorphisms

τ : Tor(Hn) → Tor(Hn+1) and t : Ĥn → Tor(Hn+1). Here we think of
Ĥn as a subgroup of Hn . As in the unital case (see [20, § 6]), given a positive
constant �n depending on n, we can always arrange that

(γ̂n) j i ≥ �n for all i and j. (6)

Also, let Kn be finitely generated abelian groups and χn : Kn → Kn+1
homomorphisms such that K ∼= lim−→{Kn; χn}.

Let Fn = ⊕i F
i
n be C*-algebras, where F i

n is a homogeneous C*-
algebra of the form F i

n = P i
n M∞(C(Z i

n))P
i
n for a connected compact

space Z i
n with base point θ i

n and a projection P i
n ∈ M∞(C(Z i

n)), while
for all other indices i �= i , Fi

n is a matrix algebra, Fi
n = M[n,i]. We

require that (K0(F i
n ), K0(F i

n )
+) ∼= (H i

n , (H
i
n)

+) and K1(F i
n )

∼= Kn , so that
(K0(Fn), K0(Fn)+, K1(Fn)) ∼= (Hn, H+

n , Kn).
Let ψn be a unital homomorphism Fn → Fn+1 which induces γn in K0

and χn in K1. We write Fn = PnC(Zn)Pn where Zn = Z i
n � ∐i �=i {θ in},

and Pn = (P i
n , (1[n,i])i �=i ) ∈ M∞(C(Z i

n)) ⊕⊕i �=i M[n,i](C({θ in})). Thus,
evaluation in θ in induces a quotient map πn : Fn → F̂n := ⊕i F̂

i
n , where

F̂ i
n = M[n,i]. We require that ψn induce homomorphisms ψ̂n : F̂n → F̂n+1

so that we obtain a commutative diagram

Fn

πn

ψn
Fn+1

πn+1

F̂n
ψ̂n

F̂n+1

which induces in K0

Hn γn
Hn+1

Hn/Tor(Hn)
γ̂n

Hn+1/Tor(Hn+1)
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where the vertical arrows are the canonical projections. As Tor(Hn) ⊆ Gn ,
Hn/Gn is torsion-free, and there is a canonical projection Hn/Tor(Hn) →
Hn/Gn . Now let En :=⊕p E

p
n , E

p
n = M{n,p}, such that K0(En) ∼= Hn/Gn ,

and for fixed n, let β0, β1 : F̂n → En be (necessarily non-unital) homomor-
phisms which yield the commutative diagram

K0(F̂n)

∼=
(β0)∗−(β1)∗

K0(En)

∼=

Hn/Tor(Hn)
γ̂n

Hn/Gn.

As in the unital case, we may assume β0⊕β1 : F̂n → En ⊕En to be injective.
Define

An := {( f, a) ∈ C([0, 1], En) ⊕ Fn: f (t) = βt (πn(a)) for t = 0, 1} ,

Ân :=
{
( f, â) ∈ C([0, 1], En) ⊕ F̂n: f (t) = βt (â) for t = 0, 1

}
.

As β0 ⊕ β1 is injective, we view Ân as a subalgebra of C([0, 1], En) via
( f, â) �→ f .

Choose for each n a homomorphism ϕ̂n : Ân → Ân+1 such that the
composition with the map C([0, 1], En+1) � C([0, 1], Eq

n+1) induced by the
canonical projection En+1 � Eq

n+1,

Ân
ϕ̂n−→ Ân+1 ↪→ C([0, 1], En+1) � C([0, 1], Eq

n+1),

is of the form

C([0, 1], En) ⊇ Ân � f �→ u∗
(
V ( f )

D( f )

)
u,

where u is a continuous path of unitaries [0, 1] → U (Eq
n+1),

V ( f ) =
⎛
⎜⎝

π1( f )
π2( f )

. . .

⎞
⎟⎠
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Simple C*-algebra has a Cartan subalgebra 667

for some π• of the form π• : Ân → F̂n � F̂ i
n , where the first map is given

by ( f, â) �→ â and the second map is the canonical projection, and

D( f ) =
⎛
⎜⎝

f ◦ λ1
f ◦ λ2

. . .

⎞
⎟⎠

for some continuous maps λ• : [0, 1] → [0, 1] with λ−1• ({0, 1}) ⊆ {0, 1}. We
require that

Ân
ϕ̂n

Ân+1

F̂n
ψ̂n

F̂n+1

commutes, where the vertical maps are given by ( f, â) �→ â.
Then there exists a unique homomorphism ϕn : An → An+1 which fits

into the commutative diagram

An ϕn
An+1

Ân
ϕ̂n

Ân+1

Fn
ψn

Fn+1

F̂n
ψ̂n

F̂n+1

where all the unlabelled arrows are given by the canonical maps.
By construction, lim−→{An; ϕn} has the desired Elliott invariant (the details

are as in the unital case, see [20, § 13]). The same modification as in the unital
case produces new connecting maps ξn : An → An+1 such that lim−→ {An; ξn}
is a simple (stably projectionless) C*-algebra with prescribed Elliott invariant.
Moreover, choosing ξn with the property that strictly positive elements are sent
to strictly positive elements, lim−→{An; ξn} will have continuous scale by [18,
Theorem 9.3] (compare also [19, § 6]). In addition, we choose ξn such that
full elements are sent to full elements.

Remark 2.1 In an earlier version of this paper, we modified the construction
in [19, § 6] instead, which covers all Elliott invariants for stably projectionless

123



668 X. Li

C*-algebras with trivial pairing between K-theory and traces (ρ = 0). I would
like to thank the referee for pointing out that [11] (see also [16]) describes
a general construction exhausting all possible Elliott invariants with weakly
unperforated pairing between K-theory and traces (in the stably projection-
less case, this is precisely the condition that ρ is weakly unperforated as in
Theorem 1.3).

3 Concrete construction of AH-algebras

We start with the following standard fact.

Lemma 3.1 Given an integer N > 1, let μN : S1 → S1, z �→ zN , and set
XN := D2 ∪μN S1, where we identify z ∈ S1 = ∂D2 with μN (z) ∈ S1. Then

H•(XN ) ∼=

⎧
⎪⎨
⎪⎩

Z if • = 0;
Z/N if • = 2;
{0} else.

Moreover, (K0(C(XN )), K0(C(XN ))+, [1C(XN )], K1(C(XN ))) ∼= (Z⊕Z/N ,

{(0, 0)} ∪ (Z>0 ⊕ Z/N ), (1, 0), {0}).
In the following, we view S2 as the one point compactification of D̊2,

S2 = D̊2 ∪ {∞}.
Lemma 3.2 Let XN � S2 be the continuous map sending D̊2 ⊆ D2 iden-
tically to D̊2 ⊆ S2, ∂D2 to ∞ and S1 to ∞. Let pXN be the pullback of
the Bott line bundle on S2 (see for instance [39, § 6.2]) to XN via this map.
We view pXN as a projection in M2(C(XN )). Then there is an isomorphism
K0(C(XN )) ∼= Z ⊕ Z/N identifying the class of 1C(XN ) with the generator of
Z and the class of pXN with (1, 1).

Proof Just analyse the K-theory exact sequence attached to 0 → C0(D̊2) →
C(XN ) → C(S1) → 0. ��
We recall another standard fact.

Lemma 3.3 Given an integer N > 1, let YN := �XN
∼= D3 ∪�μN S2, where

we identify z ∈ S2 = ∂D3 ∼= �S1 with (�μN )(z) ∈ �S1 ∼= S2. (Here �

stands for suspension.) Then

H•(YN ) ∼=

⎧
⎪⎨
⎪⎩

Z if • = 0;
Z/N if • = 3;
{0} else.

Moreover, K0(C(YN )) = Z[1C(YN )] and K1(C(YN )) ∼= Z/N.
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Simple C*-algebra has a Cartan subalgebra 669

In the following, we view S3 as the one point compactification of D̊3,
S3 = D̊3 ∪ {∞}.
Lemma 3.4 Let YN � S3 be the continuous map sending D̊3 ⊆ D3 identi-
cally to D̊3 ⊆ S3, ∂D3 to∞ and S2 to∞. Then the dual mapC(S3) → C(YN )

induces in K1 a surjection K1(C(S3)) ∼= Z � Z/N ∼= K1(C(YN )).

Proof Just analyse the K-theory exact sequence attached to 0 → C0(D̊3) →
C(YN ) → C(S2) → 0.

Analysing K-theory exact sequences, the following is a straightforward
observation.

Lemma 3.5 Let N , N ′ ∈ Z>1 and m ∈ Z>0 with N ′ | m · N, say m · N =
m′ · N ′. Define a continuous map

�∗
m : XN ′ = D2 ∪μN ′ S

1 → D2 ∪μN S1 = XN

by sending x ∈ D2 to xm ∈ D2 and z ∈ S1 to zm
′ ∈ S1. Then the dual map

�m : C(XN ) → C(XN ′) induces in K0 the homomorphism

K0(C(XN )) ∼= Z ⊕ Z/N

(
1 0
0 m

)

−→ Z ⊕ Z/N ′ ∼= K0(C(XN ′)).

Naturality of suspension yields

Lemma 3.6 Let N , N ′ ∈ Z>1 and m ∈ Z>0 with N ′ | m · N, say m · N =
m′ · N ′. Let ��m : C(YN ) → C(YN ′) be the map dual to ��∗

m : YN ′ ∼=
�XN ′ → �XN

∼= YN . Then ��m induces in K1 the homomorphism

K1(C(YN )) ∼= Z/N
m−→ Z/N ′ ∼= K1(C(YN ′)).

In the following, we view XN and YN as pointed spaces, with base point 1 =
(1, 0) ∈ S1 = ∂D2 ⊆ D2 in XN and base point (1, 0, 0) ∈ S2 = ∂D3 ⊆ D3

in YN . Note that �m and ��m preserve base points. Moreover, if θ denotes
the base point of XN , then the projection pXN in Lemma 3.2 satisfies

pXN (θ) = ( 1 0
0 0

)
. (7)

Now let Hn = H i
n ⊕⊕i �=i H

i
n , Hn+1 = H j

n+1 ⊕⊕ j �= j H
j
n+1 be abelian

groups with H i
n = Z ⊕ Tn , H

j
n+1 = Z ⊕ Tn+1 for finitely generated torsion

groups Tn , Tn+1, and Hi
n = Z, H j

n+1 = Z for all i �= i , j �= j . Let (H i
n)

+ :=
{(0, 0)}∪ (Z>0⊕Tn), (Hi

n)
+ := Z≥0 for all i �= i , H+

n :=⊕i (H
i
n)

+ ⊆ H i
n ⊕⊕

i �=i H
i
n = Hn and un = (([n, i], τn), ([n, i])i �=i ) ∈ H+

n . Similarly, define
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(H j
n+1)

+, H+
n+1 := ⊕i (H

j
n+1)

+, and let un+1 = (([n + 1, j ], τn+1), ([n +
1, j]) j �= j ) ∈ H+

n+1. Let Tn = ⊕k T
k
n , where T k

n = Z/Nk
n , and Tn+1 =⊕

k T
l
n+1, where T

l
n+1 = Z/Nl

n+1. Let γn : Hn → Hn+1 be a homomorphism
with γn(un) = un+1. (In the stably projectionless case, these order units are not
part of the given data, but we can always choose such order units.) Let us fix n,
and suppose that γ = γn induces a homomorphism γ̂ : Hn/Tor(Hn) = Ĥn =⊕

i Ĥ
i
n →⊕ j Ĥ

j
n+1 = Ĥn+1 = Hn+1/Tor(Hn+1), where Ĥ i

n = Z = Ĥ j
n+1

for all i and j . Viewing Ĥn as a subgroup (actually a direct summand) of Hn ,
we obtain that γn = γ̂ +τ + t for homomorphisms τ : Tor(Hn) → Tor(Hn+1)

and t : Ĥn → Tor(Hn+1). γ̂ is given by an integer matrix (γ̂ j i ). Similarly,
τ is given by an integer matrix (τlk), where we view τlk as a homomorphism
T k
n → T l

n+1. Also, t is given by an integer matrix (tli ), where we view tli as a
homomorphism Hi

n → T l
n+1. Clearly, we can always arrange τlk, tli > 0 for

all l, k, i , and because of (2) and (6), we can also arrange

γ̂ j i > 0 and γ̂ j i ≥ #0(k) + 1. (8)

Here #0(k) is the number of direct summands in Tn (i.e., the number of indices
k).

We have the following direct consequence of Lemma 3.1.

Lemma 3.7 Let X i
n := ∨k XNk

n
, where we take the wedge sum with respect

to the base points of the individual XNk
n
. Denote the base point of X i

n by θ i
n.

Set Xn := X i
n �∐i �=i {θ in}. Then

(K0(C(Xn)), K0(C(Xn))
+, K1(C(Xn))) ∼= (Hn, H

+
n , {0}).

Define Xn+1 in an analogous way, i.e., X j
n+1 := ∨l XNl

n+1
, and Xn+1 :=

X j
n+1 �∐ j �= j {θ j

n+1}. Now, for fixed n, our goal is to construct a homomor-
phism ψ realizing the homomorphism γ in K0.

Themap
∨

l �
∗
τlk

: ∨l XNl
n+1

→ XNk
n
induces the dual homomorphismψk

τ :
C(XNk

n
) → C(X j

n+1). Here �τlk are the maps from Lemma 3.5. The direct

sum
⊕

k ψk
τ : ⊕k C(XNk

n
) → M#0(k)(C(X j

n+1)) restricts to a homomorphism

ψτ : C(X i
n) = C(

∨
k XNk

n
) → M#0(k)(C(X j

n+1)).

Let p(i) ∈ M2(C(X j
n+1)) = M2(C(

∨
l XNl

n+1
))begivenby p(i)|C(X

Nl
n+1

) =
M2(�tl i )(pXNl

n+1
). Define ψt as the composite

C(X i
n)

ev
θ in−→ C → M2(C(X j

n+1)), where the second map is given by 1 �→ p(i).
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Simple C*-algebra has a Cartan subalgebra 671

Moreover, define ψ j i : C(X i
n) → Mγ̂ j i+1(C(X j

n+1)) by setting

ψ j i ( f ) =

⎛
⎜⎜⎜⎜⎜⎝

f (θ i
n)

. . .

f (θ i
n)

ψτ ( f )
ψt ( f )

⎞
⎟⎟⎟⎟⎟⎠

where we put γ̂ j i − #0(k) − 1 copies of f (θ i
n) on the diagonal.

For i �= i , let p(i) ∈ M2(C(X j
n+1)) = M2(C(

∨
l XNl

n+1
)) be given by

p(i)|C(X
Nl
n+1

) = M2(�tli )(pXNl
n+1

). Define

ψ j i : C({θ in}) = C → Mγ̂ j i+1(C(X j
n+1)) by sending 1 ∈ C to

⎛
⎜⎜⎜⎝

1
. . .

1
p(i)

⎞
⎟⎟⎟⎠ ,

where we put γ̂ j i − 1 copies of 1 on the diagonal.
For j �= j , define

ψ j i : C(X i
n) → Mγ̂ j i (C({θ j

n+1})), f �→
⎛
⎜⎝

f (θ i
n)

. . .

f (θ i
n)

⎞
⎟⎠ ,

where we put γ̂ j i copies of f (θ i
n) on the diagonal.

For i �= i and j �= j , define

ψ j i : C({θ in}) → Mγ̂ j i (C({θ j
n+1})), 1 �→

⎛
⎜⎝
1

. . .

1

⎞
⎟⎠ ,

where we put γ̂ j i copies of 1 on the diagonal.

To unify notation, let us set Xi
n = {θ in}, X j

n+1 = {θ j
n+1}.

For un = (([n, i], τn), ([n, i])i �=i ) ∈ H+
n , let s(n, i) be a positive integer

and P i
n ∈ Ms(n,i)(C(X i

n)) a projection such that:

• P i
n is a sum of line bundles;

• [P i
n ] corresponds to ([n, i], τn) under the identification in Lemma 3.7;

123



672 X. Li

• P i
n (θ

i
n) = 1[n,i] is of the form

u∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
u, where u is a permutation matrix.

P i
n exists because of Lemma 3.2. Moreover, we can extend P i

n by 1[n,i] to a
projection in

⊕
i Ms(n,i)(C(Xi

n)) such that [Pn] corresponds to un under the
isomorphism in Lemma 3.7. Here s(n, i) = [n, i] whenever i �= i . Then

(
Ms(n,i)(ψ j i )

)
j i :
⊕
i

Ms(n,i)(C(Xi
n)) →

⊕
j

Ms(n+1, j)(C(X j
n+1)) (9)

sends Pn to Pn+1, where Pn+1 is of the same form as Pn , with [Pn+1] corre-
sponding to un+1 under the isomorphism from Lemma 3.7. Hence the map in
(9) restricts to a unital homomorphism

PnM∞(C(Xn))Pn → Pn+1M∞(C(Xn+1))Pn+1 (10)

which in K0 induces γ by Lemma 3.5.
Now we turn to K1. Assume Kn = ⊕i K

i
n is an abelian group, where

for a distinguished index i , K i
n = Tn is a finitely generated torsion group

Tn = ⊕k T
k
n , T

k
n = Z/Nk

n , and K i
n = Z for all i �= i . Similarly, let

Kn+1 = ⊕ j K
j
n+1 be an abelian group, where for a distinguished index

j , K j
n+1 = Tn+1 is a finitely generated torsion group Tn+1 = ⊕l T

l
n+1,

T l
n+1 = Z/Nl

n+1, and K
j
n+1 = Z for all j �= j . For fixed n, letχ : Kn → Kn+1

be a homomorphism which is a sum χ = χ̂ + τ + t , where χ̂ : ⊕i �=i K
i
n →⊕

j �= j K
j
n+1 is given by an integer matrix (χ̂ j i ) (viewing χ̂ j i as a homomor-

phism K i
n → K j

n+1), τ : Tn → Tn+1 is given by an integer matrix (τlk)

(viewing τlk as a homomorphism T k
n → T l

n+1), and t : ⊕i �=i K
i
n → Tn+1 is

given by an integer matrix (tli ) (viewing tli as a homomorphism K i
n → T l

n+1).
We can always arrange that all the entries of these matrices are positive inte-
gers.

The following is a direct consequence of Lemma 3.3.

Lemma 3.8 Let Y i
n =∨k YNk

n
and Yn = Y i

n ∨∨i �=i S
3. Then K0(C(Yn)) ∼= Z

and K1(C(Yn)) ∼= Kn.
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We view Yn as a pointed space, and let θn be the base point of Yn . Now
let ψk

τ : C(YNk
n
) → C(

∨
l YNl

n+1
) = C(Y j

n+1) be the dual homomor-

phism of the map
∨

l �(�∗
τlk

) : Y j
n+1 = ∨l YNl

n+1
→ YNk

n
. Here �(�∗

τlk
)

are the maps from Lemma 3.6. The direct sum
⊕

k ψk
τ : ⊕k C(YNk

n
) →

M#1(k)(C(Y j
n+1)) restricts to a homomorphism ψi : C(Y i

n ) = C(
∨

k YNk
n
) →

M#1(k)(C(Y j
n+1)) ↪→ M#1(k)(C(Yn+1)).

For i �= i , define ψ j i : C(Y i
n) = C(S3) → C(Y j

n+1) as the dual map of the
composite

Y j
n+1 =

∨
l

YNl
n+1

∨
l �(ψ∗

tli
)−→
∨
l

YNl
n+1

∨
l �

∗
l−→ S3,

where �∗
l is the map YNl

n+1
→ S3 constructed in Lemma 3.4.

For i �= i and j �= j , define ψ j i : C(Y i
n) = C(S3) → C(S3) = C(Y j

n+1)

as the dual map of ��μχ̂ j i : S3 ∼= ��S1 → ��S1 ∼= S3, where μχ̂ j i is the
map from Lemma 3.1.

For every i �= i , we thus obtain the direct sum
⊕

j ψ j i : C(Y i
n) →⊕

j C(Y j
n+1) with image in C(Yn+1) = C(

∨
j Y

j
n+1) ⊆⊕ j C(Y j

n+1). Hence

we obtain a homomorphism ψi : C(Y i
n) → C(Yn+1).

Now let #1(i) be the number of summands of Kn . Then let ψ : C(Yn) →
M#1(k)+#1(i)−1(C(Yn+1)) be the restriction of

⊕
i ψi to C(Yn) = C(

∨
i Y

i
n) ⊆⊕

i C(Y i
n). By construction, and using Lemmas 3.4 and 3.6 , ψ induces χ in

K1.
We now combine our two constructions. Define Zn = Xn ∨ Yn , where

we identify the base point θ i
n ∈ X i

n ⊆ Xn with θn ∈ Yn . We extend Pn
from Xn constantly to Yn (with value Pn(θ i

n)). Note that rk (Pn+1(θ
j
n+1)) =

γ̂ j i ·rk (Pn(θ i
n)). Because of (2) and (6),we can arrange γ̂ j i ≥ #1(k)+#1(i)−1.

By adding evθn on the diagonal if necessary, we can modify ψ to a homomor-
phism ψ : C(Yn) → Mγ̂ j i (C(Yn+1)) which induces γ in K1. We can thus

think ofM[n,i](ψ) as a unital homomorphism Pn(θ i
n)Ms(n,i)(C(Yn))Pn(θ i

n) →
Pn+1(θ

j
n+1)Ms(n+1, j)(C(Yn+1))Pn+1(θ

j
n+1), i.e., as a unital homomorphism

PnMs(n,i)(C(Yn))Pn → Pn+1Ms(n+1, j)(C(Yn+1))Pn+1. In combination with
the homomorphism (10), we obtain a unital homomorphism

PnM∞(C(Zn))Pn → Pn+1M∞(C(Zn+1))Pn+1

which induces γ in K0, sending un to un+1, and χ in K1.
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Evaluation at θ i
n = θn and θ in (for i �= i) induces a quotient homomorphism

which fits into a commutative diagram

PnM∞(C(Zn))Pn Pn+1M∞(C(Zn+1))Pn+1

⊕
i M[n,i]

⊕
j M[n+1, j]

(11)

which induces in K0

Hn γ
Hn+1

Ĥn
γ̂

Ĥn+1.

Remark 3.9 If all Kn are torsion-free, then we can replace S3 by S1 in our
construction of Yn .

4 The complete construction

4.1 The general construction with concrete models

Applying our construction in Sect. 3, we obtain concrete models for Fn , F̂n ,
γn and γ̂n which we now plug into the general construction in Sects. 2.1 and
2.2. Note that it is crucial that we work with these concrete models from
Sect. 3. The reason is that only for these models can we provide groupoid
descriptions of the C*-algebras and their homomorphisms which arise in the
general construction (see Sect. 6).

Note that with these concrete models, the composition

M[n,i] ↪→ F̂n
β•−→ En � M{n,p},

where the first and third maps are the canonical ones, is of the form

x �→ u∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
. . .

x
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
u

for a permutation matrix u.
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Simple C*-algebra has a Cartan subalgebra 675

Apart from inserting these concrete models, we keep the same construction
as in Sects. 2.1 and 2.2.

4.2 Summary of the construction

In both the unital and stably projectionless cases, the C*-algebra with the
prescribed Elliott invariant which we constructed is an inductive limit whose
building blocks are of the form

An = {( f, a) ∈ C([0, 1], En) ⊕ Fn: f (t) = βt (a) for t = 0, 1} , (12)

where:

• En is finite dimensional;
• Fn is homogeneous of the form PnM∞(Zn)Pn , where Pn is a sum of line
bundles, and there are points θ in ∈ Zn , one for each connected component,
and all connected components just consist of θ in with the only possible
exception being the component of a distinguished point θ i

n;• both β0 and β1 are compositions of the form Fn → ⊕i M[n,i] → En ,
where the first homomorphism is given by evaluation in θ in ∈ Zn and
the second homomorphism is determined by the composites M[n,i] ↪→⊕

i M[n,i] → En � E p
n (where E p

n is a matrix block of En), which are of
the form

x �→ v∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
. . .

x
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

v

for a permutation matrix v.

The connectingmaps ϕn of our inductive limit can be described as two parts:

An → An+1 � Fn+1; (13)

An → An+1 � C([0, 1], En+1). (14)

Both parts send ( f, a) ∈ An to an element which is in diagonal form up to
permutation, i.e.,
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u∗

⎛
⎜⎝

∗
∗

. . .

⎞
⎟⎠ u, (15)

where for the entries on the diagonal, there are the following possibilities:

• a map of the form

[0, 1] � t �→ f p(λ(t)), for a continuous map λ : [0, 1] → [0, 1]
with λ−1({0, 1}) ⊆ {0, 1} , (16)

where f p is the image of f under the canonical projectionC([0, 1], En) �
C([0, 1], E p

n );
• a map of the form

[0, 1] � t �→ τ(t)a(x(t)), (17)

where x : [0, 1] → Zn is continuous and τ(t) : Pn(x(t))M∞Pn(x(t)) ∼=
Pn(θ in)M∞Pn(θ in) is an isomorphism depending continuously on t , with θ in
in the same connected component as x(t), and τ(t) = id if x(t) = θ in;• an element of Pn+1M∞(C(Zn+1))Pn+1 with support in an isolated point
θ
j
n+1, which is of the form

f p(t), for some t ∈ (0, 1), (18)

where f p is the image of f under the canonical projectionC([0, 1], En) �
C([0, 1], E p

n );
• an element of Pn+1M∞(C(Zn+1))Pn+1 with support in an isolated point

θ
j
n+1, which is of the form

τ(a(x)) for some x ∈ Zn with x /∈ {θ in}i
and an isomorphism τ : Pn(x)M∞Pn(x) ∼= Pn(θ

i
n)M∞Pn(θ

i
n), (19)

where θ in is in the same connected component as x ;
• an element of Pn+1M∞(C(Zn+1))Pn+1 with support in an isolated point

θ
j
n+1, which is of the form

a(θ in), where θ in is an isolated point in Zn; (20)

• an element of Pn+1M∞(C(Zn+1))Pn+1, which is of the form

(ai j · q)i j , where q is a line bundle over Zn+1, and (ai j ) = a(θ in); (21)

123



Simple C*-algebra has a Cartan subalgebra 677

• an element of Pn+1M∞(C(Zn+1))Pn+1 of the form

a ◦ λ, (22)

where λ : Zn+1 → Zn is a continuous map whose image is only contained
in one wedge summand of Zn (see our constructions in Sect. 3).

Note that in (17) and (19), we identify Pn(θ i
n)M∞Pn(θ i

n) with M[n,i] via a
fixed isomorphism.

Let Pa ∈ M(An+1) be projections, with
∑

a P
a = 1, giving rise to the diag-

onal form in (15), and let ϕa be the homomorphism An → PaAn+1Pa, x �→
Pauϕ(a)u∗Pa. Since each of the Pa either lies inC([0, 1], Eq

n+1) or Fn+1, we
have im (ϕa) ⊆ PaC([0, 1], Eq

n+1)P
a or im (ϕa) ⊆ PaFn+1Pa. Then both

maps in (13), (14) are of the form u∗(
⊕

a ϕa)u. The unitary u is a permutation
matrix for the map in (13) and is a unitary in C([0, 1], En+1) such that u(0)
and u(1) are permutation matrices for the map in (14).

Remark 4.1 Let us writeCn := C([0, 1], En) and un+1 ∈ Cn+1 for the unitary
for the map in (14). The only reason we need un+1 is to ensure that we send
( f, a) to an element satisfying the right boundary conditions at t = 0 and t = 1.
For this, only the values un+1,t := un+1(t) at t ∈ {0, 1} matter. Therefore,
by an iterative process, we can change βt in order to arrange un+1 = 1 for
the map in (14): First of all, it is easy to see that ϕn extends uniquely to a
homomorphism �n : Cn ⊕ Fn → Cn+1 ⊕ Fn+1. Let us write �C

n and �F
n for

the composites

Cn ⊕ Fn
�n−→ Cn+1 ⊕ Fn+1 � Cn+1 and

Cn ⊕ Fn
�n−→ Cn+1 ⊕ Fn+1 � Fn+1.

As ϕn sends strictly positive elements to strictly positive elements,�n is unital.
Now, for all n, let �n(t) ⊆ [0, 1] be a finite set such that for all ( fn, an) ∈ An
with ϕ( fn, an) = ( fn+1, an+1) ∈ An+1, fn|�n(t) ≡ 0 implies fn+1(t) = 0.
In other words, �n(t) are the evaluation points for fn+1(t). Similarly, let
Tn ⊆ (0, 1) be such that for all ( fn, an) ∈ An withϕ( fn, an) = ( fn+1, an+1) ∈
An+1, fn|Tn ≡ 0 and an = 0 imply an+1 = 0. Now we choose inductively on
n unitaries vn ∈ U (Cn) and un+1 ∈ U (Cn+1) such that, for all n, vn(s) = 1
for all s ∈ (�n(0)∪�n(1)∪ Tn) \ {0, 1}, un+1(t) = un+1,t for t ∈ {0, 1}, and
vn+1 = �C

n (vn, 1)u∗
n+1: Simply start with v1 := 1, and if vn and un have been

chosen, choose un+1 ∈ U (Cn+1) such that un+1(t) = un+1,t for all t ∈ {0, 1}
and un+1(s) = �C

n (vn, 1)(s) for all s ∈ (�n(0)∪�n(1)∪Tn)\ {0, 1}, and set
vn+1 := �C

n (vn, 1)u∗
n+1. If we now take this un+1 for the map in (14) giving

rise to ϕn and �n , then we obtain a commutative diagram
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Cn ⊕ Fn

∼=(v∗
n�vn)⊕id

�n Cn+1 ⊕ Fn+1

∼= (v∗
n+1�vn+1)⊕id

Cn ⊕ Fn
(un+1,1)�n(un+1,1)∗

Cn+1 ⊕ Fn+1

which restricts to

An
�n

∼=(v∗
n�vn)⊕id

An+1

∼= (v∗
n+1�vn+1)⊕id

Ān
ϕ̄n

Ān+1

where the unitary ūn+1 for the map in (14) for ϕ̄n is now trivial, ūn+1 = 1,
and Ān is of the same form (12) as An , with β̄t = vn(t)∗βtvn(t) of the same
form as βt for t = 0, 1 (the point being that vn(t) is a permutation matrix).
Obviously, we have lim−→

{
Ān; ϕ̄n

} ∼= lim−→{An; ϕn}.
Remark 4.2 Note that the construction described in Sect. 4.2 also encompasses
(a slightmodification of) theC*-algebra construction in [19, § 6]. (In particular,
one obtainsmodel algebras of rational generalized tracial rank one, in the sense
of [19].)

5 Inductive limits and Cartan pairs revisited

In this section, we improve the main result in [4, § 3] and give a C*-algebraic
interpretation. Let us first recall [4, Theorem 3.6]. We use the same notations
and definitions as in [4,36]. We start with the following

Remark 5.1 Wecan drop the assumptions of second countability for groupoids
and separability for C*-algebras in [36] if we replace “topologically princi-
pal” by “effective” throughout. In other words, given a twisted étale effective
groupoid (G, �), i.e., a twisted étale groupoid (G, �) where G is effective
(not necessarily second countable), (C∗

r (G, �),C0(G(0))) is a Cartan pair;
and conversely, given a Cartan pair (A, B) (where A is not necessarily separa-
ble), the Weyl twist (G(A, B), �(A, B)) from [36] is a twisted étale effective
groupoid. These constructions are inverse to each other, i.e., there are canonical
isomorphisms (G, �) ∼= (G(C∗

r (G, �),C0(G(0))), �(C∗
r (G, �),C0(G(0))))

(provided by [36, 4.13, 4.15, 4.16]) and (A, B) ∼= (C∗
r (G(A, B), �(A, B)),

C0(G(A, B)(0))) (provided by [36, 5.3, 5.8, 5.9]). Similarly, everything in [4,
§ 3] works without the assumption of second countability. In particular, [4,
Theorem 3.6] holds for general twisted étale groupoids if we replace “topo-
logically principal” by “effective”. This is why in this section, we formulate
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Simple C*-algebra has a Cartan subalgebra 679

everything for twisted étale effective groupoids and general Cartan pairs. In
our applications later on, however, we will only consider second countable
groupoids and separable C*-algebras.

Now suppose that (An, Bn) are Cartan pairs, let (Gn, �n) be their Weyl
twists, and set Xn := G(0)

n . Let ϕn : An → An+1 be injective *-
homomorphisms. Assume that there are twisted groupoids (Hn, Tn), with
Yn := H (0)

n , together with twisted groupoid homomorphisms (in, ın) :
(Hn, Tn) → (Gn+1, Tn+1) and ( ṗn, pn) : (Hn, Tn) → (Gn, Tn) such that
in : Hn → Gn+1 is an embedding with open image, and ṗn : Hn → Gn
is surjective, proper, and fibrewise bijective (i.e., for every y ∈ Yn , ṗn|(Hn)y

is a bijection onto (Gn) ṗn(y)). Suppose that ϕn = (ın)∗ ◦ p∗
n for all n. Fur-

ther assume that condition (LT) is satisfied, i.e., for every continuous section
ρ : U → ρ(U ) for the canonical projection�n � Gn , whereU ⊆ Gn is open,
there is a continuous section ρ̃ : ṗ−1

n (U ) → ρ̃( ṗ−1
n (U )) for the canonical

projection Tn � Hn such that ρ̃( ṗ−1
n (U )) ⊆ ṗ−1

n (ρ(U )) and pn ◦ ρ̃ = ρ ◦ ṗn .
Also assume that condition (E) is satisfied, i.e., for every continuous section
t : U → t (U ) for the source map of Gn , where U ⊆ Xn and t (U ) ⊆ Gn are
open, there is a continuous section t̃ : ṗ−1

n (U ) → t̃( ṗ−1
n (U )) for the source

map of Hn such that t̃( ṗ−1
n (U )) ⊆ ṗ−1

n (t (U )) and ṗn ◦ t̃ = t ◦ ṗn .
In this situation, define

�n,0 := �n and �n,m+1 := p−1
n+m(�n,m) ⊆ Tn+m for all n and m = 0, 1, . . . ,

Gn,0 := Gn and Gn,m+1 := ṗ−1
n+m(Gn,m) ⊆ Hn+m for all n and m = 0, 1, . . . ,

�̄n := lim←−
m

{
�n,m; pn+m

}
and Ḡn := lim←−

m

{
Gn,m; ṗn+m

}
for all n. (23)

Then [4, Theorem 3.6] tells us that

(a) (Ḡn, �̄n) are twisted groupoids, and (in, ın) induce twisted groupoid
homomorphisms (īn, ı̄n) : (Ḡn, �̄n) → (Ḡn+1, �̄n+1) such that īn is an
embedding with open image for all n, and

�̄ := lim−→
{
�̄n; ı̄n
}
and Ḡ := lim−→

{
Ḡn; īn
}

(24)

defines a twisted étale groupoid (Ḡ, �̄),
(b) & (c) (lim−→{An; ϕn} , lim−→{Bn; ϕn}) is a Cartan pair whose Weyl twist is

given by (Ḡ, �̄).

Remark 5.2 It is clear that the proof of [4, Theorem 3.6] shows that if all Bn are
C*-diagonals, i.e., all Gn are principal, then Ḡ is principal, i.e., lim−→ {Bn; ϕn}
is a C*-diagonal.

It turns out that conditions (LT) and (E) are redundant.
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Lemma 5.3 In the situation above, conditions (LT) and (E) are automatically
satisfied.

Proof To prove condition (LT), let ρ : U → ρ(U ) be a continuous section
for the canonical projection πn : �n � Gn , where U ⊆ Gn is open. Let
πn+1 : �n+1 � Gn+1 be the canonical projection. Then πn+1|p−1

n (ρ(U ))
:

p−1
n (ρ(U )) → ṗ−1

n (U ) is bijective. Indeed, given τ1, τ2 ∈ p−1
n (ρ(U )) with

πn+1(τ1) = πn+1(τ2) =: η ∈ Hn , we must have τ2 = z · τ1 for some
z ∈ T. Also, πn(pn(τ1)) = ṗn(η) = πn(pn(τ1)). As πn|ρ(U ) : ρ(U ) → U
is bijective (with inverse ρ), we deduce pn(τ1) = pn(τ2). Hence pn(τ1) =
pn(τ2) = z · pn(τ1), which implies z = 1, i.e., τ2 = τ1. This proves injectivity,
and surjectivity is easy to see. As πn+1 is open, ρ̃ := (πn+1|p−1

n (ρ(U ))
)−1 :

ṗ−1
n (U ) → p−1

n (ρ(U )) is the continuous section we are looking for.
To verify (E), let t : U → t (U ) be a continuous section for the source map

sn of Gn , where U ⊆ Xn and t (U ) ⊆ Gn are open. Let sn+1 be the source
map of Hn . Then sn+1| ṗ−1

n (t (U ))
: ṗ−1

n (t (U )) → ṗ−1
n (U ) is bijective. Indeed,

given η1, η2 ∈ ṗ−1
n (t (U )) with sn+1(η1) = sn+1(η2) =: y ∈ Yn , we must

have sn( ṗn(η1)) = ṗn(y) = sn( ṗn(η2)). As sn|t (U ) : t (U ) → U is bijective
(with inverse t), we deduce ṗn(η1) = ṗn(η2). Since ṗn is fibrewise bijective,
this implies η1 = η2. This proves injectivity, and surjectivity is easy to see.
As ṗ−1

n (t (U )) is open and sn+1 is open, t̃ := (sn+1| ṗ−1
n (t (U ))

)−1 : ṗ−1
n (U ) →

ṗ−1
n (t (U )) is the continuous section we are looking for.

Let us now determine which *-homomorphisms are of the form ı∗ ◦ p∗.
Let (A, B) and ( Â, B̂) be Cartan pairs with normalizers N := NA(B), N̂ :=
NÂ(B̂) and faithful conditional expectations P : A � B, P̂ : Â � B̂. Let

(G, �) and (Ĝ, �̂) be the Weyl twists of (A, B) and ( Â, B̂). Suppose that
ϕ : A → Â is an injective *-homomorphism.

Proposition 5.4 The following are equivalent:

(i) ϕ(B) ⊆ B̂, ϕ(N ) ⊆ N̂ , P̂ ◦ ϕ = ϕ ◦ P;
(ii) There exists a twisted étale effective groupoid (H, T ) and twisted groupoid

homomorphisms (i, ı) : (H, T ) → (Ĝ, �̂), ( ṗ, p) : (H, T ) → (G, �),
where i is an embedding with open image and ṗ is surjective, proper and
fibrewise bijective, such that ϕ = ı∗ ◦ p∗.

Proof (ii) ⇒ (i): It is easy to see that (ı∗ ◦ p∗)(B) ⊆ B̂. Given an open
bisection S of G, ṗ−1(S) is an open bisection of H , and then i( ṗ−1(S))

is an open bisection of Ĝ. Therefore, (ı∗ ◦ p∗)(N ) ⊆ N̂ . Finally, we have
P̂ ◦ (ı∗ ◦ p∗) = (ı∗ ◦ p∗) ◦ P because ṗ−1(G(0)) = H (0).
(i) ⇒ (ii): Let B̆ be the ideal of B̂ generated by ϕ(B), and Ă :=

C∗(ϕ(A), B̆). Then ( Ă, B̆) is a Cartan pair: It is clear that B̆ contains an
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approximate unit for Ă. To see that B̆ ismaximal abelian, take a ∈ Ă∩(B̆)′. Let
b ∈ B̂, and take an approximate unit (hλ) ⊆ B̆ for Ă. Then ba = limλ bhλa =
limλ abhλ = limλ ahλb = ab. Hence a ∈ Ă ∩ (B̂)′ = Ă ∩ B̂ = B̆ (the last
equality holds because B̆ contains an approximate unit for Ă, and B̆ · B̂ ⊆ B̆).
This shows Ă ∩ (B̆)′ = B̆. Moreover, we have ϕ(N ) ⊆ N̆ := NĂ(B̆): Let
n ∈ ϕ(N ), b ∈ B̆, and (hλ) ⊆ B be an approximate unit for A. Then nbn∗ ∈ B̂

as n ∈ ϕ(N ) ⊆ N̂ , and thus nbn∗ = limλ ϕ(hλ)nbn∗ ⊆ ϕ(B) · B̂ ⊆ B̆.
Finally, it is clear that P̆ := P̂| Ă is a faithful conditional expectation onto B̆.

Let (H, T ) be the Weyl twist attached to ( Ă, B̆), and write X := G(0),
Y := H (0) and X̂ := Ĝ(0). It is easy to see that N̆ ⊆ N̂ . Hence we may define
maps

i : H → Ĝ, [x, αn, y] �→ [x, αn, y]
andı : T → �̂, [x, n, y] �→ [x, n, y], for n ∈ N̆ .

Clearly, i and ı are continuous groupoid homomorphisms. i is injective since
[x, αn, y] = [x ′, αn′, y′] in Ĝ implies x = x ′, y = y′ and αn = αn′ on a neigh-
bourhood U ⊆ X̂ of y, so that αn = αn′ on U ∩ Y , which is a neighbourhood
of y in Y , and hence [x, αn, y] = [x ′, αn′, y′] in H . The image of i is given
by
⋃

n∈N̆ {[αn(y), αn, y]: y ∈ dom (n)} which is clearly open in Ĝ. Finally, it
is easy to see that we have a commutative diagram

Ă ⊆
∼=

Â

∼=

C∗
r (H, T )

ı∗ C∗
r (Ĝ, �̂),

where the upper horizontal map is given by inclusion, and the vertical isomor-
phisms are as in [36, Definition 5.4].

We now proceed to construct ( ṗ, p). Since A = C∗(N ) and ϕ(N ) ⊆ N̆ ,
it is easy to see that Ă = span(ϕ(N ) · B̆). It follows that for every n̆ ∈ N̆
and y ∈ dom (n̆), there is n ∈ ϕ(N ) such that y ∈ dom (n) and [x, n̆, y] =
[x, n, y] in T . Indeed, for a ∈ span(ϕ(N ) · B̆) it is clear that a ≡ 0 on
T \ (⋃n∈ϕ(N ) {[αn(y), n, y]: y ∈ dom (n)} ). As the latter set is closed in T ,
we must have a ≡ 0 on T \ (⋃n∈ϕ(N ) {[αn(y), n, y]: y ∈ dom (n)} ) for all
a ∈ Ă. Hence T = ⋃n∈ϕ(N ) {[αn(y), n, y]: y ∈ dom (n)}. This observation
allows us to define the maps

ṗ : H → G, [x, αϕ(n), y] �→ [ϕ∗(x), αn, ϕ
∗(y)]and

p : T → �, [x, ϕ(n), y) �→ [ϕ∗(x), n, ϕ∗(y)], for n ∈ N ,
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where ϕ∗ : Y → X is the map dual to B → B̆, b �→ ϕ(b) determined by
ϕ(b) = b◦ϕ∗ for all b ∈ B. Note thatϕ∗ exists sinceϕ(B) is full in B̆. p iswell-
defined because [x, ϕ(m), y] = [x, ϕ(n), y] implies P̂(ϕ(n)∗ϕ(m))(y) > 0,
so that P(n∗m)(ϕ∗(y)) = ϕ(P(n∗m))(y) = P̂(ϕ(n)∗ϕ(m))(y) > 0, which
in turn yields [ϕ∗(x), αm, ϕ∗(y)] = [ϕ∗(x), αn, ϕ

∗(y)]. Similarly, ṗ is well-
defined.Clearly, ( ṗ, p) is a twisted groupoid homomorphism.Asϕ is injective,
ϕ∗ is surjective, so that ṗ is surjective.

To see that ṗ is proper, let K ⊆ G be compact. Given n ∈ N , write
U (n) := {[αn(y), αn, y]: y ∈ dom (n)} and K (n) := (s|U (n))

−1(s(K )). As K
is compact, there exists a finite set {ni } ⊆ N such that K ⊆ ⋃i U (ni ), so
that K =⋃i U (ni ) ∩ K ⊆⋃i K (ni ). Now given m ∈ N , ṗ([x, αϕ(m), y]) ∈
K (n) implies ϕ∗(y) ∈ s(K ), i.e., y ∈ (ϕ∗)−1(s(K )), ṗ([x, αϕ(m), y]) =
[ϕ∗(x), αm, ϕ∗(y)] = [ϕ∗(x), αn, ϕ

∗(y)], so that P(n∗m)(ϕ∗(y)) �= 0,
which yields P̂(ϕ(n)∗ϕ(m))(y) = ϕ(P(n∗m))(y) �= 0, thus [x, αϕ(m), y] =
[x, αϕ(n), y].Hence ṗ−1(K (n)) ⊆ {[αϕ(n)(y), ϕ(n), y]: y ∈ (ϕ∗)−1(s(K ))

} =
(s|U (ϕ(n)))

−1((ϕ∗)−1(s(K )) =: K̆ (n). As ϕ∗ is proper, K̆ (n) is compact for
all n ∈ N . Hence ṗ−1(K ) ⊆ ⋃i ṗ

−1(K (ni )) ⊆ ⋃i K̆ (ni ) is a closed subset
of a compact set, thus compact itself.

Moreover, given y ∈ Y , ṗ([w, αϕ(m), y]) = ṗ([x, αϕ(n), y]) implies
[ϕ∗(w), αm, ϕ∗(y)] = [ϕ∗(x), αn, ϕ

∗(y)], so that P̂(ϕ(n)∗ϕ(m))(y) =
P(n∗m)(ϕ∗(y)) �= 0, so that [w, αϕ(m), y] = [x, αϕ(n), y]. This shows injec-
tivity of ṗ|Hy , and it is clear that ṗ(Hy) = G ṗ(y). Thus ṗ is fibrewise bijective.

Finally, it is easy to see that we have a commutative diagram

A
ϕ

∼=

Ă

∼=

C∗
r (G, �)

p∗
C∗
r (H, T ),

where the vertical isomorphisms are as in [36, Definition 5.4].

Remark 5.5 In Proposition 5.4, ϕ sends full elements to full elements if and
only if we have i(H (0)) = Ĝ(0).

Theorem 1.10 now follows from [4, Theorem 3.6], Lemma 5.3, Proposi-
tion 5.4 and Remark 5.2.

Remark 5.6 TheWeyl twist of (lim−→{An; ϕn} , lim−→ {Bn; ϕn}) in the situation of
Theorem 1.10 is given by (Ḡ, �̄) as given in (23) and (24).

If, in Theorem 1.10, all ϕn send full elements to full elements, then
G(0)

n,m+1 = H (0)
n+m = G(0)

n+m+i (where we identify H (0)
n+m with in+m(H (0)

n+m)),
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so that Ḡ(0)
n = lim←−m

{G(0)
n,m; ṗn+m} ∼= lim←−{G(0)

l ; ṗl} for all n, and thus

īn(Ḡ
(0)
n ) = Ḡ(0)

n+1 for all n, which implies Ḡ(0) ∼= lim←−{G(0)
n ; ṗn}.

If all Bn in Theorem 1.10 are C*-diagonals, i.e., all Gn are principal, then
Ḡ is principal.

6 Groupoid models

6.1 The building blocks

We first present groupoid models for the building blocks that give rise to our
AH-algebras (see Sect. 3). Let Z be a second countable compact Hausdorff
space and let pi ∈ M∞(C(Z)) be a finite collection of line bundles over Z .
Let P =∑i

⊕ pi ∈ M∞(C(Z)). The following is easy to check:

Lemma 6.1
⊕

i pi M∞(C(Z))pi is a Cartan subalgebra of PM∞(C(Z))P.

Thus, by [36, Theorem 5.9], there exists a twisted groupoid (Ḟ,F) (the Weyl
twist) such that

(C∗
r (Ḟ,F), C0(Ḟ (0))) ∼= (PM∞(C(Z))P,

⊕
i

pi M∞(C(Z))pi ).

Let us now describe (Ḟ,F) explicitly. Let R be the full equivalence relation
on the finite set {pi } (just a set with the same number of elements as the number
of line bundles). Let Ḟ = Z × R, which is a groupoid in the canonical way.
For every pi , let Ti be a circle bundle over Z such that pi = C×T Ti . We form
the circle bundles Tj · T ∗

i , which are given as follows: For each index i , let{
Vi,a
}
a be an open cover of Z , and let vi,a be a trivialization of Ti |Vi,a . We view

vi,a as a continuous map vi,a : Vi,a → M∞ with values in partial isometries
such that vi,a(z) has source projection e11 and range projection pi (z), so that
vi,a(z) = pi (z)vi,a(z)e11. Here e11 is the rank one projection in M∞ which
has zero entry everywhere except in the upper left (1, 1)-entry, where the value
is 1. Then

Tj · T ∗
i =
(∐

c,a

T × (Vj,c ∩ Vi,a)
)/

∼

where we define (z, x) ∼ (z′, x ′) if x = x ′, and if x ∈ Vj,c ∩ Vi,a , x ′ ∈
Vj,d ∩ Vi,b, then z′ = vi,bv

∗
j,dv j,cv

∗
i,az.

We set

F :=
∐
j,i

Tj · T ∗
i .
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Note that Ti ·T ∗
i is just the trivial circle bundleT×Z .We define amultiplication

onF : For ([z, x], ( j, i)) and ([z′, x ′], ( j ′, i ′)) inF , we can onlymultiply these
elements if x = x ′ and i = j ′. In that case, write h := i ′ and assume that
x ∈ Vj,c ∩ Vi,b and x ′ = x ∈ Vi,b ∩ Vh,a . Then we define the product as

([z, x], ( j, i)) · ([z′, x ′], ( j ′, i ′)) = ([zz′, x], ( j, h)).

Moreover, F becomes a twist of Ḟ via the map

F → Ḟ, Tj · T ∗
i � σ �→ (π(σ ), ( j, i)),

where π : Tj · T ∗
i → Z is the canonical projection.

It is now straightforward to check (compare [36]) that the twisted groupoid
(Ḟ,F) is precisely the Weyl twist of (PM∞(C(Z))P,

⊕
i pi M∞(C(Z))pi ).

More precisely, we have the following

Lemma 6.2 WehaveaC(Z)-linear isomorphismC∗
r (Ḟ,F) ∼= PM∞(C(Z))P

sending f̃ ∈ Cc(Ḟ,F) with supp( f̃ ) ⊆ (Vj,c ∩ Vi,a
) × {( j, i)} ⊆ Ḟ

to f v j,cv
∗
i,a, where f ∈ C(Z) is determined by f̃ (([z, x], ( j, i)) =

z̄ f (x). Moreover, this C(Z)-linear isomorphism identifies C(Ḟ (0)) with⊕
i pi M∞(C(Z))pi .

Let us now fix n, and apply the result above to the homogeneous C*-
algebra F := Fn from Sect. 4.2 to obtain a twisted groupoid (Ḟ,F) such
that C∗

r (Ḟ,F) ∼= F . More precisely, we apply our construction above to the
summand of F corresponding to the component of θ i

n . Note that in the con-
struction above, all our line bundles satisfy

pi (θ
i
n) = e11 (25)

because of (7). For the other summands, it is easy to construct a groupoid
model, as these are just matrix algebras, so that we can just take the full
equivalence relation on finite sets.

Now our goal is to present a groupoid model for the building block A :=
An in Sect. 4.2. Let R be an equivalence relation (on a finite set) such that
C∗(R) ∼= E := En . Write R = ∐p Rp for subgroupoids Rp such that
the isomorphism C∗(R) ∼= E restricts to isomorphisms C∗(Rp) ∼= E p :=
E p
n . Set Ċ := [0, 1] × R. Then C∗

r (Ċ) is canonically isomorphic to C :=
C([0, 1], E). Consider the trivial twist C := T × Ċ of Ċ. Clearly, we have
C∗
r (Ċ � Ḟ, C � F) ∼= C ⊕ F .
For t = 0, 1 and βt as in Sect. 4.2, write

F
βt−→ E � E p
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as the composition

F →
⊕
l

Mnl ⊗ C
I pl ↪→ E p, (26)

where each of the components F → Mnl ⊗ C
I pl of the first map is given by

a �→
⎛
⎜⎝
a(θ l)

a(θ l)
. . .

⎞
⎟⎠ ,

with #I pl copies of a(θ l) on the diagonal, and the components Mnl ⊗ C
I pl ↪→

E p of the second map are given by

x �→ u∗

⎛
⎜⎜⎜⎝

x
0

. . .

0

⎞
⎟⎟⎟⎠ u, (27)

where u is a permutation matrix.
Let E p

t be the image of
⊕

l Mnl ⊗ C
I pl in E , and set Et :=⊕p E

p
t ⊆ E ,

for t = 0, 1. Let Rp
t ⊆ Rp be subgroupoids such that the identification

C∗(Rp) ∼= E p restricts to C∗(Rp
t ) ∼= E p

t . Write Rt := ∐p R
p
t , so that

C∗(R) ∼= E restricts to C∗(Rt ) ∼= Et . Let σ
p
t be the groupoid isomorphism∐

l Rl×I pl
∼= Rp

t , given by a bijection of thefinite unit space, corresponding to
conjugation by the unitary u in (27). Let Vi,a and vi,a be as above (introduced
after Lemma 6.1). We now define a map bt : T × ({t} × Rt ) → � as
follows: Given an index l and ( j, i) ∈ Rl , choose indices a and c such that
θ l ∈ Vj,c ∩ Vi,a . Then define

z j,i := v j,c(θ
l)vi,a(θ

l)∗ ∈ T. (28)

Here, we are using (25). If θ l is not the distinguished point θ i
n , then we set

z j,i = 1. For z ∈ T and h ∈ I pl , set

bt (z, t, σ
p
t (( j, i), h)) := [z j,i , θ l] ∈ Tj · T ∗

i ⊆ �,

where we view (z j,i , θ
l) as an element in T × (Vj,c ∩ Vi,a).

Define

�̌ := {x ∈ C � F : x = (z, t, γ ) ∈ T × [0, 1] × R ⇒ γ ∈ Rt for t = 0, 1}
and � := �̌/∼
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where ∼ is the equivalence relation on �̌ generated by (z, t, γ ) ∼ bt (z, t, γ )

for all z ∈ T, t = 0, 1 and γ ∈ Rt . �̌ and� are principalT-bundles belonging
to twisted groupoids, and we denote the underlying groupoids by Ǧ and G.

By construction, the canonical projection and inclusion � � �̌ ↪→ C �F
induce on the level of C*-algebras

C∗
r (Ċ � Ḟ, C � F) ∼= C ⊕ F

C∗
r (Ǧ, �̌)

⊆

∼= Ǎ := {( f, a) ∈ C ⊕ F : f (t) ∈ Et for t = 0, 1}
⊆

C∗
r (G, �)

∼= A = {( f, a) ∈ C ⊕ F : f (t) = βt (a) for t = 0, 1}
⊆

In particular, (G, �) is the desired groupoid model for our building block.
In what follows, it will be necessary to keep track of the index n, so that

we will consider, for all n, twisted groupoids (Ċn � Ḟn, Cn � Fn), (Ǧn, �̌n),
(Gn, �n) describing the C*-algebras Cn ⊕ Fn , Ǎn and An as explained above.
Moreover, for all n, let Bn ⊆ An be the subalgebra corresponding to C0(G

(0)
n )

under the isomorphism C∗
r (Gn, �n) ∼= An .

6.2 The connecting maps

Let us now describe the connecting maps ϕn : An → An+1 in the groupoid
picture above. Let Pa

n+1, ϕa
n be as in Sect. 4.2, so that ϕn = ⊕a ϕa

n and
im (ϕa

n ) ⊆ Pa
n+1An+1Pa

n+1. Also, let �n : Cn ⊕ Fn → Cn+1 ⊕ Fn+1 be
the extension of ϕn as in Remark 4.1. Set �a

n : Cn ⊕ Fn → Pa
n+1(Cn+1 ⊕

Fn+1)Pa
n+1, x �→ Pa

n+1ϕ
a
n (x)Pa

n+1. We obtain ϕ̌n : Ǎn → Ǎn+1 and ϕ̌a
n :

Ǎn → Pa
n+1 Ǎn+1Pa

n+1 by restricting �n and �a
n . Set

(C ⊕ F)[�n] :=
{
x ∈ Cn+1 ⊕ Fn+1 : x =

∑
a

Pa
n+1x P

a
n+1

}
,

Ǎ[ϕ̌a
n ] := im (ϕ̌a

n ),

Ǎ[ϕn] :=
{
x ∈ Ǎn+1 : x =

∑
a

Pa
n+1x P

a
n+1, Pa

n+1x P
a
n+1 ∈ Ǎ[ϕ̌a

n ]
}
,

A[ϕn] := An+1 ∩ Ǎ[ϕ̌n].

Note that Ǎ[ϕ̌a
n ] = Pa

n+1Fn+1Pa
n+1 if Pa

n+1 ∈ Fn+1 and Ǎ[ϕ̌a
n ] ={

x ∈ Pa
n+1 Ǎn+1Pa

n+1: x(t) ∈ im (evt ◦ϕ̌a
n ) for t = 0, 1

}
if Pa

n+1 ∈ Cn+1.
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Let Tn be the open subgroupoid of Cn+1 � Fn+1, with Ṫn ⊆ Ċn+1 � Ḟn+1
correspondingly, such that C∗

r (Ċn+1 � Ḟn+1, Cn+1 � Fn+1) ∼= Cn+1 ⊕
Fn+1 restricts to C∗

r (Ṫn, Tn) ∼= (C ⊕ F)[�n]. Similarly, let Ťn be the
open subgroupoid of �̌n+1, with Ȟn ⊆ Ǧn+1 correspondingly, such that
C∗
r (Ǧn+1, �̌n+1) ∼= Ǎn+1 restricts to C∗

r (Ȟn, Ťn) ∼= Ǎ[ϕ̌n]. For η ∈ Ťn
and η′ ∈ �̌n+1, η ∼ η′ implies that η′ lies in Ťn . It follows that Tn = Ťn/∼
is an open subgroupoid of �n+1. Define Hn = Ȟn/∼ in a similar way. By
construction, the commutative diagram at the groupoid level

Cn � Fn Tn ⊆ Cn+1 � Fn+1

�̌n

⊆

Ťn
⊆

⊆

�̌n+1

⊆

�n Tn
⊆

�n+1

induces at the C*-level

Cn ⊕ Fn (C ⊕ F)[�n] ⊆ Cn+1 ⊕ Fn+1

Ǎn

⊆

Ǎ[ϕ̌n]
⊆

⊆ Ǎn+1

⊆

An

⊆

A[ϕn]
⊆

⊆
An+1

⊆

Let Ťn = ∐a Ť
a
n and Ȟn = ∐a Ȟ

a
n be the decompositions into sub-

groupoids such that the identification C∗
r (Ȟn, Ťn) ∼= Ǎ[ϕ̌n] ⊆ Ǎn+1 restricts

to C∗
r (Ȟ a

n , Ť a
n ) ∼= Ǎ[ϕ̌a

n ]. For fixed n and every ϕa = ϕa
n from our list in

Sect. 4.2, we now construct a map pa : Ť a
n → �n such that

C∗
r (Gn, �n)

∼=
C∗(pa)

C∗
r (Ȟ a

n , Ť a
n )

∼=

An
ϕa

Ǎ[ϕ̌a
n ]

commutes.
Recall that �̌n ⊆ Cn �Fn = (T × [0, 1] ×Rn) �Fn . Also, we denote the

canonical projection Fn � Ḟn by σ �→ σ̇ .
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• For ϕa as in (16), let pa be the composite

Ť a
n

∼= T × [0, 1] × Rn → �̌n
q−→ �n,

(z, t, γ ) �→ (z, λ(t), γ )

where we note that the first map has image in �̌n , so that we an apply the
quotient map q : �̌n � �n .

• For ϕa as in (17), let pa be the composite

Ť a
n

∼= T × [0, 1] × Rn → Fn
q−→ �n,

(z, t, γ ) �→ z · σ(t, γ ) (29)

where σ is a continuous groupoid homomorphism such that σ̇ (t, γ ) =
(x(t), γ ). For x(t) = θ l ∈ {θ in

}
and γ = ( j, i), write

σ(t, γ ) = [z j,i , θ l], (30)

which has to match up with (28).
• For ϕa as in (18), let pa be the composite

Ť a
n

∼= T × {θ j
n+1} × Rn → �̌n

q−→ �n,

(z, θ j
n+1, γ ) �→ (z, t, γ ).

• For ϕa as in (19), let pa be the composite

Ť a
n

∼= T × {θ j
n+1} × (Ḟn)

x
x → Fn

q−→ �n,

(z, θ j
n+1, γ ) �→ z · σ(γ ),

where σ : (Ḟn)
x
x → Fn is a groupoid homomorphism with σ̇ (γ ) = (x, γ )

matching up with σ in (29).
• For ϕa as in (20), let pa be the composite

Ť a
n

∼= T × {θ j
n+1} × (Ḟn)

θ in
θ in

→ Fn
q−→ �n,

(z, θ j
n+1, γ ) �→ (z, θ in, γ ).

• For ϕa as in (21), let pa be the composite

Ť a
n

∼= T × Zn+1 × (Ḟn)
θ in
θ in

� T × (Ḟn)
θ in
θ in

→ Fn
q−→ �n,

(z, γ ) �→ z · σ(γ ),
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where σ : (Ḟn)
θ in
θ in

→ Fn is a groupoid homomorphism with σ̇ (γ ) =
(θ in, γ ) matching up with (28), just as (30).

• Forϕa as in (22),we haveC∗
r (Ȟ a

n , Ť a
n ) ∼= (∑i λ

∗(pi )
)·Fn+1·

(∑
i λ

∗(pi )
)
,

where pi are the line bundles such that Pn = ∑i pi (see Sect. 3 and
Sect. 6.1), and pa is the composite

Ť a
n → Fn

q−→ �n,

[z, x] �→ [z, λ(x)],

with (z, x) ∈ T × λ−1(Vi,a) and (z, λ(x)) ∈ T × Vi,a , where for a given
open cover Vi,a and trivialization vi,a for Fn , we choose the open cover
λ−1(Vi,a) and trivialization vi,a ◦ λ for Ť a

n (see Sect. 6.1).

The homomorphism

∐
a

pa : Ťn =
∐
a

Ť a
n → �n

must descend to pn : Tn → �n because C∗
r (
∐

a pa) : C∗
r (Gn, �n) →

C∗
r (Ȟn, Ťn), f �→ f ◦ (

∐
a pa) lands in C∗

r (Hn, Tn). Moreover, the homo-
morphisms �n and ϕ̌n admit similar groupoid models (say Pn and p̌n) as ϕn ,
so that we obtain a commutative diagram

Cn � Fn TnPn ⊆ Cn+1 � Fn+1

�̌n

⊆

Ťn
p̌n

⊆
⊆

�̌n+1

⊆

�n Tn
pn ⊆

�n+1.

7 Conclusions

Proofs of Theorems 1.2 and 1.3 All we have to do is to check the conditions
in Theorem 1.10, using Proposition 5.4 and the groupoid models in Sect. 6.
We treat the unital and stably projectionless cases simultaneously. Given a
prescribed Elliott invariant, let An and ϕn be as in Sect. 4.2. Consider the
groupoidmodels for An andϕn in Sect. 6. First of all, by construction, (Hn, Tn)
is a subgroupoid of (Gn+1, �n+1) and Hn ⊆ Gn+1 is open. Let (in, ın) be the
canonical inclusion. Secondly, pn is proper because all the pa in Sect. 6.2 are
proper (they are closed, and pre-images of points are compact). Thirdly, pn
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is fibrewise bijective because this is true for p̌n and the canonical projections
�̌n � �n , Ťn � Tn . By construction, all the connecting maps ϕn in Sect. 4.2
are of the form ϕn = (ın)∗ ◦ (pn)∗. Thus, by Proposition 5.4, the conditions
in Theorem 1.10 are satisfied. Hence lim−→{Bn; ϕn}, with Bn as in Sect. 6.1,
is a Cartan subalgebra of lim−→{An; ϕn}, and actually even a C*-diagonal by
Remark 5.6 because all Gn are principal.

Remark 7.1 By Remark 5.6, the twisted groupoids (G, �) we obtain in the
proofs of Theorems 1.2 and 1.3 are given by the Weyl twists described by
(23) and (24). Moreover, it is easy to see that for the groupoids in Sect. 6, we
have (Cn � Fn)

(0) = Ǧ(0)
n , and since �n , ϕ̌n and ϕn send full elements to full

elements, Ṫ (0)
n = (Cn �Fn)

(0), Ȟ (0)
n = Ǧ(0)

n+1 and H (0)
n = G(0)

n+1, for all n (by

Remark 5.5). So Remark 5.6 tells us that G(0) ∼= lim←−{G(0)
n ; ṗn}.

We now turn to the additional statements in Sect. 1. In order to prove Corol-
laries 1.6 and 1.7 , we need to show the following statement. In both the
unital and stably projectionless cases, let A = C∗

r (G, �), D = C0(G(0)), and
γ = γ̃ |T be as in Corollaries 1.6 and 1.7 . Let C be the canonical diagonal
subalgebra of the algebra of compact operators K.

Proposition 7.2 There exists a positive element a ∈ D ⊗ C ⊆ A ⊗ K such
that d•(a) = γ .

Here d•(a) denotes the function T � τ �→ dτ (a). For the proof, we need
the following

Lemma 7.3 Given a continuous affine map g : T → (0, ∞) and ε > 0, there
exists z ∈ D⊗ Dk ⊆ A⊗ Mk ⊆ A⊗K with ‖z‖ = 1, z ≥ 0, z ∈ Ped(A⊗K)

such that g − ε < d•(z) < g + ε.

Here Dk is the canonical diagonal subalgebra of Mk .

Proof We treat the unital and stably projectionless cases simultaneously. Let
F̂n be as in Sect. 2.1 and F̂ := lim−→ F̂n . Choose a ∈ F̂ ⊗ K with a ≥ 0 and

d•(a) = g. Then we can choose b ∈ F̂n ⊗ Mk (for n big enough) with b ≥ 0,
d•(b) continuous and

g − ε < d•(b) < g + ε.

Using [1, Theorem 3.1] just as in [37, Proof of (6.2) and (6.3)], choose c ∈
D(F̂n) ⊗ Dk with c ≥ 0 such that c and b are Cuntz equivalent, where D(F̂n)
is the canonical diagonal subalgebra of F̂n . Choose d ∈ Ped(An ⊗ Mk) with
d ∈ D(An) ⊗ Dk such that (π ⊗ id)(d) = c, where π : An � Fn � F̂n is
the canonical projection. Let z denote the image of d under the canonical map
An ⊗ Mk → A ⊗ Mk . Then z ∈ D ⊗ Dk . It is now straightforward to check,
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using the isomorphism T (A) ∼= T (F̂) from [20, § 13], that z has the desired
properties.

Proof of Proposition 7.2 There is a sequence (γi ) of continuous affine maps
T → [0, ∞)withγi ↗ γ −min(γ ). Choose εi > 0 such that

∑
i εi = min(γ ).

Define fi := γi +∑i−1
h=1 εh . Then fi ↗ γ and fi > 0. Moreover,

fi+1 = γi+1 +
i∑

h=1

εh ≥ γi +
( i−1∑
h=1

εh

)
+ εi = fi + εi .

Using Lemma 7.3, proceed inductively on i to find zi ∈ D ⊗ Dk(i) such that

(
fi+1 −

i∑
h=1

d•(zh)
)

− εi+1 < d•(zi+1) <
(
fi+1 −

i∑
h=1

d•(zh)
)

+ εi+1.

Note that fi+1 −∑i
h=1 d•(zh) > 0 since

∑i
h=1 d•(zh) < fi + εi ≤ fi+1.

By construction, we have

fi − εi <

i∑
h=1

d•(zh) < fi + εi , so that
i∑

h=1

d•(zh) ↗ γ.

Now set

a :=
∑∞

h=1
⊕ 2−hzh, where we put the elements 2−hzh

on the diagonal in D ⊗ C.

In this way, we obtain an element a ∈ D ⊗ C ⊆ A ⊗ K with d•(a) = γ .

Proof of Corollaries 1.6 and 1.7 Given γ̃ as in Corollaries 1.6 and 1.7, let
γ = γ̃ |T . Using Proposition 7.2, choose a positive element a ∈ D ⊗ C
with d•(a) = γ . In the unital case, it is straightforward to check that we
can always arrange a to be purely positive. Then it is straightforward to
check that (a(A ⊗ K)a, a(D ⊗ C)a) is a Cartan pair. Hence, by [36, Theo-
rem5.9], there is a twisted groupoid (G̃, �̃) such that (C∗

r (G̃, �̃),C0(G̃(0))) ∼=
(a(A ⊗ K)a, a(D ⊗ C)a). It is now easy to see (compare also [19, Corol-
lary 6.12]) that (G̃, �̃) has all the desired properties.

Proofs of Corollaries 1.8 and 1.9 (i) follows from the observation that we
only need the twist if G0 has torsion. The claims in (ii)–(iv) about subho-
mogeneous building blocks and their spectra follow immediately from our
constructions (see also Remark 3.9). Moreover, the inverse limit description of
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the unit space in Remark 7.1 and the dimension formula for inverse limits (see
for instance [17, Chapter 3, § 5.3, Theorem 22]) imply that dim (G(0)) ≤ 3
in (ii), dim (G(0)) ≤ 2 in (iii) and dim (G(0)) ≤ 1 in (iv) and (v). Since
C0(G(0)) is projectionless in Theorem 1.3, we obtain dim (G(0)) �= 0, which
forces dim (G(0)) = 1 in (v), in the situation of Theorem 1.3. In particular, this
shows thatW and Z0 have C*-diagonals with one-dimensional spectra. Sim-
ilarly, given a groupoid G with Z ∼= C∗

r (G), the only projections in C(G(0))

are 0 and 1, so that dim (G(0)) �= 0 and hence dim (G(0)) = 1. It remains to
prove that dim (G(0)) ≥ 3 in (ii), dim (G(0)) ≥ 2 in (iii) and dim (G(0)) ≥ 1
in (iv).

To do so, let us use the same notation as in Sect. 6, and write Xn := G(0)
n ,

Qn := Ċ(0)
n , and Wn := Ḟ (0)

n . Clearly, Qn is homotopy equivalent to a finite
set of points, so that for any cohomology theory H• (satisfying the Eilenberg–
Steenrod axioms, see [40, Chapter 17]), we have

H•(Qn) ∼= {0} whenever • ≥ 1. (31)

Let Pn :=
{
(t, x) ∈ Qn: t ∈ {0, 1} , x ∈ R(0)

t

}
. Then we have a pushout dia-

gram

Pn Wn

Qn Xn,

where Pn → Wn is induced by bt and the left vertical arrow is the canoni-
cal inclusion. The long exact (Mayer-Vietoris type) sequence attached to the
pushout reads

. . . → H•−1(Pn) → H•(Xn) → H•(Qn) × H•(Wn) → H•(Pn) → H•+1(Xn) → . . . .

Since H•(Pn) ∼= {0} and H•(Qn) ∼= {0} (see (31)), we deduce that the
canonical mapWn → Xn induces a surjection H•(Xn) → H•(Wn) for • ≥ 1.
Moreover, the map

Qn+1 � Wn+1 = (Ċn+1 � Ḟn+1)
(0) = Ǧ(0)

n+1 = Ȟ (0)
n

p̂n−→ Ĝ(0)
n = Qn � Wn
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induces for • ≥ 1 a homomorphism H•( p̌n) : H•(Wn) → H•(Wn+1) which
fits into the commutative diagram

H•(Xn)

H•(pn)

H•(Wn)

H•( p̌n)

H•(Xn+1) H•(Wn+1).

Thus the canonical maps Wn → Xn induce for all • ≥ 1 surjections

Ȟ•(G(0)) ∼= lim−→
{
H•(Xn); H•(pn)

}
� lim−→

{
H•(Wn); H•( p̌n)

}
.

Here Ȟ• is Čech cohomology, and the first identification follows from the
inverse limit description of G(0) in Remark 7.1 and continuity of Čech coho-
mology. By construction, Wn = Zn × In for some finite set In and Zn is
as in Sect. 4.2. Now it is an immediate consequence of our construction that
lim−→
{
H•(Wn); H•( p̌n)

}
surjects onto Tor(G1) in case (ii) for • = 3, Tor(G0)

in case (iii) for • = 2, and G1 in case (iv) for • = 1. Hence it follows that
Ȟ3(G(0)) � {0} in case (ii), Ȟ2(G(0)) � {0} in case (iii), and Ȟ1(G(0)) � {0}
in case (iv). As cohomological dimension is always a lower bound for covering
dimension, this implies dim (G(0)) ≥ 3 in case (ii), dim (G(0)) ≥ 2 in case
(iii), and dim (G(0)) ≥ 1 in case (iv), as desired.

8 Examples

Let us describe concrete groupoid models for the Jiang–Su algebra Z , the
Razak–Jacelon algebra W and the stably projectionless version Z0 of the
Jiang–Su algebra as in [19, Definition 7.1]. These C*-algebras can be con-
structed in a way which fits into the framework of Sect. 4.2, so that our general
machinery in Sect. 5 produces groupoid models as in Sect. 6. In the following,
we focus on Z .

Firstwe recall the original construction ofZ in [23]. For everyn ∈ N, choose
natural numbers pn and qn such that they are relatively prime, with pn | pn+1
and qn | qn+1, such that

pn+1
pn

> 2qn and
qn+1
qn

> 2pn . ThenZ = lim−→ {An; ϕn},
where An = {( f, a) ∈ C([0, 1], En) ⊕ Fn: f (t) = βt (a) for t = 0, 1}, En =
Mpn ⊗ Mqn , Fn = Mpn ⊕ Mqn , β0 : Mpn ⊕ Mqn → Mpn ⊗ Mqn , (x, y) �→
x ⊗ 1qn , β1 : Mpn ⊕ Mqn → Mpn ⊗ Mqn , (x, y) �→ 1pn ⊗ y.

To describe ϕn for fixed n, let d0 := pn+1
pn

, d1 := qn+1
qn

, d := d0 ·d1, and write
d = l0qn+1 + r0 with 0 ≤ r0 < qn+1, d = l1 pn+1 + r1 with 0 ≤ r1 < pn+1.
Note that we must have d1 | r0 and d0 | r1. Then

ϕn( f ) = u∗
n+1 · ( f ◦ λy)y∈Y(n) · un+1,
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where Y(n) = {1, . . . , d} and λy(t) =

⎧⎪⎨
⎪⎩

t
2 if 1 ≤ y ≤ r0,
1
2 if r0 < y ≤ d − r1,
t+1
2 if d − r1 < y ≤ d.

Here we think of An as a subalgebra of C([0, 1], En) via the embedding
An ↪→ C([0, 1], En), ( f, a) �→ f .
To construct groupoid models for building blocks and connecting maps,

start with a setX (1)with p1 ·q1 elements, and define recursivelyX (n+1) :=
X (n)×Y(n). LetR(n) be the full equivalence relation on X (n). LetR(n, p)
andR(n, q) be the full equivalence relations on finite setsX (n, p) andX (n, q)

with pn and qn elements. For t = 0, 1, let ρn+1,t be the bijections correspond-
ing to conjugation by un+1(t), which induce σn,t : R(n, p)×R(n, q) ∼= R(n)

corresponding to conjugation by vn(t) introduced in Remark 4.1. Now set

Ǧn := {(t, γ ) ∈ [0, 1] × R(n): γ } ∈ σn,0(R(n, p)

×X (n, q)) if t = 0, γ ∈ σn,1(X (n, p) × R(n, q)) if t = 1,

Gn := Ǧn/∼ where ∼ is given by (0, σn,0(γ, y))

∼ (0, σn,0(γ, y′)) and (1, σn,1(x, η)) ∼ (1, σn,1(x
′, η)).

Define p̌n : Ȟn → Ǧn as the restriction ofPn : Ṫn := [0, 1]×R(n)×Y(n) →
[0, 1] × R(n), (t, γ, y) �→ (λy(t), γ ) to Ȟn := P−1

n (Ǧn). Set Hn := Ȟn/∼
where ∼ is the equivalence relation defining Gn+1 = Ǧn+1/∼. The map p̌n
descends to pn : Hn → Gn . The groupoid G with Z ∼= C∗

r (G) is now given
by (23) and (24). As explained in Remark 7.1, its unit space X := G(0) is
given by X ∼= lim−→ {Xn; pn}, where Xn = G(0)

n .
To further describe X , let pn be the set-valued function on [0, 1] defined by

pn(s) := {λy(s): y ∈ Y(n)
}
. We can form the inverse limit

X := lim←−
{[0, 1]; pn

} :=
{
(sn) ∈

∞∏
n=1

[0, 1] : sn ∈ pn(sn+1)
}
.

as in [21, § 2.2]. It is easy to see that Xn �→ [0, 1], [(t, x)] �→ t gives rise
to a continuous surjection X � X whose fibres are all homeomorphic to
the Cantor space. Moreover, X is connected and locally path connected. The
space X itself is also connected. This follows easily from the construction
itself (basically from gcd(pn, qn) = 1) and also from abstract reasons because
Z is unital projectionless. In addition, it is straightforward to check that for
particular choices for ρn,t and hence σn,t , our space X becomes locally path
connected as well. In that case, it is a one-dimensional Peano continuum.
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Every Xn is homotopy equivalent to a finite bouquet of circles. It is then
easy to compute K-theory and Čech (co)homology:

K0(C(X)) = Z[1], K1(C(X)) ∼=
∞⊕
i=1

Z; (32)

Ȟ•(X) ∼=

⎧
⎪⎨
⎪⎩

Z for • = 0,⊕∞
i=1 Z for • = 1,

{0} for • ≥ 2,

and Ȟ•(X) ∼=

⎧
⎪⎨
⎪⎩

Z for • = 0,∏∞
i=1 Z for • = 1,

{0} for • ≥ 2.

(33)

It follows that for choices of ρn,t and σn,t such that X is locally path connected,
X must be shape equivalent to the Hawaiian earring by [7]. In particular, its
first Čech homotopy group is isomorphic to the one of the Hawaiian earring,
which is the canonical projective limit of non-abelian free groups of finite rank.
Moreover, by [9], the singular homology H1(X) coincides with the singular
homology of the Hawaiian earring, which is described in [10]. We refer the
reader to [33] for more information about shape theory, which is the natural
framework to study our space since it is constructed as an inverse limit.

Nowwe turn toW . Recall the construction in [22]. For every n ∈ N, choose
integers an, bn ≥ 1 with an+1 = 2an + 1, bn+1 = an+1 · bn . Then W =
lim−→{An; ϕn}, where An = {( f, a) ∈ C([0, 1], En) ⊕ Fn: f } (t) = βt (a) for
t = 0, 1, En = M(an+1)·bn , Fn = Mbn , with

β0 : Mbn → M(an+1)·bn , x �→

⎛
⎜⎜⎜⎝

x
. . .

x
0

⎞
⎟⎟⎟⎠

and β1 : Mbn → M(an+1)·bn , x �→
⎛
⎜⎝
x

. . .

x

⎞
⎟⎠ ,

where we put an copies of x on the diagonal for β0, and an + 1 copies of x on
the diagonal for β1. To describe ϕn for fixed n, let d := 2an+1. Then

ϕn( f ) = u∗
n+1 · ( f ◦ λy)y∈Y(n) · un+1,

where Y(n) = {1, . . . , d} and λy(t) =

⎧
⎪⎨
⎪⎩

t
2 if 1 ≤ y ≤ an+1,
1
2 if y = an+1 + 1,
t+1
2 if an+1 + 1 < y ≤ d.

Here we think of An as a subalgebra of C([0, 1], En) via the embedding
An ↪→ C([0, 1], En), ( f, a) �→ f .
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To construct groupoid models, start with a set X (1) with (a1 + 1) · b1
elements, and define recursivelyX (n+1) := X (n)×Y(n). LetR(n)be the full
equivalence relation onX (n). LetR(n, a) andR(n, b) be the full equivalence
relations on finite sets X (n, a) and X (n, b) with an + 1 and bn elements, and
let X ′(n, a) ⊆ X (n, a) be a subset with an elements (corresponding to the
multiplicity of β0). For t = 0, 1, let ρn+1,t be the bijections corresponding
to conjugation by un+1(t), which induce σn,t : R(n, a) × R(n, b) ∼= R(n)

corresponding to conjugation by vn(t) introduced in Remark 4.1. Set

Ǧn := {(t, γ ) ∈ [0, 1] × R(n): γ } ∈ σn,0(X ′(n, a) × R(n, b)) if t = 0,

γ ∈ σn,1(X (n, a) × R(n, b)) if t = 1,

Gn := Ǧn/∼ where ∼ is given by (t, σn,t (x, γ )) ∼ (t ′, σn,t ′(x
′, γ )).

Now define p̌n : Ȟn → Ǧn as the restriction of Pn : Ṫn := [0, 1] × R(n) ×
Y(n) → [0, 1] × R(n), (t, γ, y) �→ (λy(t), γ ) to Ȟn := P−1

n (Ǧn). Set
Hn := Ȟn/∼ where ∼ is the equivalence relation defining Gn+1 = Ǧn+1/∼.
The map p̌n descends to pn : Hn → Gn . The groupoid G with W ∼= C∗

r (G)

is now given by (23) and (24). As explained in Remark 7.1, its unit space
X := G(0) is given by X ∼= lim←− {Xn; pn}, where Xn = G(0)

n . As in the case of

Z , X surjects continuously onto lim←−
{
T; pn
}
with Cantor space fibres, where

T = [0, 1]/0∼1 and pn([s]) = {[λy(s)]: y ∈ Y(n)
}
. However, it is easy to

see that (at least for some choices of ρn,t and σn,t ), X will not be connected,
though its connected components all have to be non-compact.

Now let us treat Z0. For each m ∈ N, choose integers an, bn, hn ≥ 1
with an+1 = ((2an + 2)hn + 1) · an , bn+1 = ((2an + 2)hn + 1) · bn . Let
An = {( f, a) ∈ C([0, 1], En) ⊕ Fn: f (t) = βt (a) for t = 0, 1}, with En =
M(2an+2)·bn , Fn = Mbn ⊕ Mbn ,

β0 : Fn → En, (x, y) �→

⎛
⎜⎜⎜⎜⎜⎝

x
. . .

x
0
y
. . .

y
0

⎞
⎟⎟⎟⎟⎟⎠

,

and β1 : Fn → En, (x, y) �→

⎛
⎜⎜⎜⎝

x
. . .

x
y
. . .

y

⎞
⎟⎟⎟⎠ ,

where we put an copies of x and y on the diagonal for β0, and an +1 copies of
x and y on the diagonal for β1. To describe the connecting maps ϕn : An →
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An+1, fix n and let d := (2an+1+2)hn+(2anhn+1). Then (2an+1+2)·bn+1 =
d ·(2an+2)·bn . It is now easy to see that for suitable choices of unitaries un+1,
whose values at 0 and 1 are permutation matrices, we obtain a homomorphism
ϕn : An → An+1 by setting

ϕn( f ) := u∗
n+1 · ( f ◦ λy)y∈Y(n) · un+1, for Y(n) = {1, . . . , d} , λy(t)

=

⎧
⎪⎨
⎪⎩

t
2 if 1 ≤ y ≤ 2akhk + 2hk + 1,
1
2 if 2akhk + 2hk + 1 < y ≤ (2ak+1 + 2)hk,
t+1
2 if (2ak+1 + 2)hk < y ≤ d.

As above, we think of An as a subalgebra of C([0, 1], En) via An ↪→
C([0, 1], En), ( f, a) �→ f . Now arguments similar to those in [22,23] show
that lim−→ {An; ϕn}has the sameElliott invariant asZ0, so thatZ0 ∼= lim−→ {An; ϕn}
by [37, Corollary 6.2.4] (see also [19, Theorem 12.2]).

To construct groupoid models, start with a set X (1) with (2a1 + 2) · b1
elements, and define recursively X (n + 1) := X (n) × Y(n). LetR(n) be the
full equivalence relation on X (n). Let R(n, a, 1), R(n, a, 2), R(n, b, 1) and
R(n, b, 2) be full equivalence relations on finite sets X (n, a, 1), X (n, a, 2),
X (n, b, 1) andX (n, b, 2)with an+1, an+1, bn and bn elements, respectively.
Let X0(n, a, 1) ⊆ X (n, a, 1) and X0(n, a, 2) ⊆ X (n, a, 2) be subsets with
an elements (corresponding to the multiplicities of β0), and set X1(n, a, •) :=
X (n, a, •). For t = 0, 1, let ρn+1,t be the bijections corresponding to conjuga-
tion by un+1(t), which induce σn,t : R(n, a, 1) × R(n, b, 1) � R(n, a, 2) ×
R(n, b, 2) ∼= R(n) corresponding to conjugation by vn(t) introduced in
Remark 4.1. Set

Ǧn := {(t, γ ) ∈ [0, 1] × R(n): γ } ∈ σn,t (Xt (n, a, 1)

×R(n, b, 1) � Xt (n, a, 2)R(n, b, 2)) if t ∈ {0, 1} ,

Gn := Ǧn/∼ where ∼ is given by (t, σn,t (x, γ )) ∼ (t ′, σn,t ′(x
′, γ )).

Now define p̌n : Ȟn → Ǧn as the restriction of Pn : Ṫn := [0, 1] × R(n) ×
Y(n) → [0, 1] × R(n), (t, γ, y) �→ (λy(t), γ ) to Ȟn := P−1

n (Ǧn). Set
Hn := Ȟn/∼ where ∼ is the equivalence relation defining Gn+1 = Ǧn+1/∼.
The map p̌n descends to pn : Hn → Gn . The groupoid G with Z0 ∼= C∗

r (G)

is now given by (23) and (24). As explained in Remark 7.1, its unit space
X := G(0) is given by X ∼= lim←− {Xn; pn}, where Xn = G(0)

n . As for W ,

X surjects continuously onto lim←−
{
T; pn
}
with Cantor space fibres, where

T = [0, 1]/0∼1 and pn([s]) = {[λy(s)]: y ∈ Y(n)
}
. However, it is easy to

see that (at least for some choices of ρn,t and σn,t ), X will not be connected,
though its connected components all have to be non-compact.
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