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Abstract
TheFubini product of operator spaces provides a powerful tool for analysing properties
of tensor products. In this paper, we apply the theory of Fubini products to the problem
of computing invariant parts of dynamical systems. In particular, we study the invariant
translation approximation property of discrete groups.

Keywords Fubini product · Slice map property · Invariant translation approximation
property
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1 Introduction

The Fubini product ofC∗-algebras was first defined and studied by Tomiyama [20–23]
and Wassermann [24]. It has been used in the study of operator algebras and operator
spaces for a long time. See, for instance, [1,3,10,11,13–15].

In this paper, we use old and new results about Fubini products for the study of the
invariant translation approximation property. In Sect. 2, we beginwith a brief survey of
the theory of Fubini products and its applications.Most of these results appear scattered
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in numerous articles, most notably [6,9,10,12,15,21,24]. After briefly recalling some
definitions concerning operator spaces in Sect. 2.1, we define the Fubini product
and prove its fundamental properties regarding functoriality, intersections, kernels,
relative commutants, invariant elements, combinations in Sects. 2.2–2.8. In Sect. 2.9,
we review the relation between the operator approximation property and the slice map
property.

In Sect. 3, we apply the results in Sect. 2 to the study of groups with the invariant
translation approximation property (ITAP) of Roe [17, Section 11.5.3]. In Sect. 3.1,
we recall the definition of the uniform Roe algebra. In Sect. 3.2, we analyse the
uniform Roe algebra of a product space. Finally, in Sect. 3.3, we study the ITAP of
product groups. We show that for countable discrete groups G and H , if G has the
approximation property (AP) of Haagerup–Kraus [6], the productG×H has the ITAP
if and only if H has the ITAP.

Finally, in Sect. 4, we study the crossed product version of the Fubini product.

2 The Fubini Product

In this section, we recall the Fubini product and prove its fundamental properties. We
study intersections, kernels, relative commutants, invariant elements, combinations in
terms of the slice map property in Sects. 2.2–2.8. In Sect. 2.9, we review the relation
between the operator approximation property and the slice map property.

2.1 Operator Spaces

For the sake of completeness, we start with some notations, definitions and results
concerning operator spaces and their tensor products. We omit the standard proofs
(see [4,16] for a complete treatment).

LetH be a Hilbert space and let B(H ) denote the Banach space of bounded linear
operators onH . The ideal of compact operators onH is denoted K (H ) ⊆ B(H ).

Recall that an operator space onH is a closed subspace of B(H ). For an operator
space A and a subspace S ⊆ A, we write S for the norm closure of S in A.

For a ∈ B(H ) and b ∈ B(K ), we write a ⊗ b for the corresponding element in
B(H ⊗K ). For subsets A ⊆ B(H ) and B ⊆ B(K ), we write A× B for the subset
{a ⊗ b | a ∈ A, b ∈ B} ⊆ B(H ⊗ K ) and A � B for the linear span of A × B.

Definition 2.1 Let A ⊆ B(H ) and B ⊆ B(K ) be operator spaces. We define the
tensor product A ⊗ B := A � B as the norm closure of A � B or, equivalently, the
closed linear span of A × B in B(H ⊗ K ).

This is called the spatial tensor product and the norm is well defined. The following
property is often used implicitly.

Lemma 2.2 ([20, Lemma 3]) Suppose S, A ⊆ B(H ) and T , B ⊆ B(K ). If S⊗ T ⊆
A ⊗ B, then S ⊆ A and T ⊆ B.

We say that a linear map φ : A → B of operator spaces is completely bounded if the
algebraic tensor product map φ � idD : A � D → B � D is bounded for all operator
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spaces D.Wewriteφ⊗idD for the extension A⊗D → B⊗D. Completely contractive
and completely isometric maps are defined similarly. The completely bounded norm
of a completely bounded map φ : A → B is defined as

‖φ‖cb := ∥
∥φ ⊗ idK (H ) : A ⊗ K (H ) → B ⊗ K (H )

∥
∥ ,

whereH is a separable infinite-dimensional Hilbert space. This definition is justified
as follows. For any operator space D, we have ‖φ ⊗ idD ‖ ≤ ‖φ‖cb. For an operator
space A, we write A∗ for the space of bounded linear functionals on A. We note that
bounded linear functionals are automatically completely bounded.

2.2 The Fubini Product

We recall the Fubini product and the slice map property. See [10,21,24] for more
details.

Definition 2.3 Let S ⊆ A and T ⊆ B be operator spaces. The Fubini product
F(S, T , A ⊗ B) of S and T in A ⊗ B is defined as the set of all x ∈ A ⊗ B such that
(φ ⊗ idB)(x) ∈ T for all φ ∈ A∗ and (idA ⊗ψ)(x) ∈ S for all ψ ∈ B∗.

Remark 2.4 We have

S ⊗ T ⊆ F(S, T , A ⊗ B) ⊆ A ⊗ B.

Lemma 2.5 Let K , L be subspaces of A∗, B∗, respectively, such that the closed unit
ball of K and L is weak-∗-dense in the unit balls of A∗ and B∗, respectively. Then for
any S ⊆ A, T ⊆ B operator spaces the Fubini product F(S, T, A⊗ B) equals the set

{x ∈ A ⊗ B | (φ ⊗ idB)(x) ∈ T and (idA ⊗ψ)(x) ∈ S for all φ ∈ K , ψ ∈ L}.

The assumptions are, for instance, satisfied if K and L are the set of normal linear
functionals in faithful representations of A and B.

Proof Suppose that (φ ⊗ idB)(x) ∈ T for all φ ∈ L . We need to show that (φ ⊗
idB)(x) ∈ T for all φ ∈ A∗. Let φ ∈ A∗ and let (φn) ⊆ L be a bounded sequence
(or net) converging pointwise (i.e. in the weak-∗-sense) to φ. Then (φn ⊗ idB)(z) →
(φ ⊗ idB)(z) for all z ∈ A � B, and using norm boundedness of φn ⊗ idB , an ε/3-
argument shows that the same holds for z ∈ A ⊗ B. Since (φn ⊗ idB)(x) ∈ T by
assumption, we conclude that (φ ⊗ idB)(x) ∈ T . 
�

Definition 2.6 We say that (S, T , A ⊗ B) has the slice map property if

F(S, T , A ⊗ B) = S ⊗ T .
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2.3 Functoriality

The Fubini product enjoys functoriality with respect to completely bounded maps.

Lemma 2.7 For i = 1, 2, let Si ⊆ Ai and Ti ⊆ Bi be operator spaces. Suppose that
completely bounded maps σ : A1 → A2 and τ : B1 → B2 satisfy σ(S1) ⊆ S2 and
τ(T1) ⊆ T2. Then

(σ ⊗ τ)(F(S1, T1, A1 ⊗ B1)) ⊆ F(S2, T2, A2 ⊗ B2).

Proof Let x ∈ F(S1, T1, A1 ⊗ B1). Let φ2 ∈ A∗
2 and let φ1 := φ2 ◦ σ ∈ A∗

1. Then
(φ1 ⊗ idB1)(x) ∈ T1, thus

(φ2 ⊗ idB2)[(σ ⊗ τ)(x)] = τ [(φ1 ⊗ idB1)(x)]

belongs to T2. Similarly for ψ2 ∈ B∗
2 , we have (idA2 ⊗ψ2)[(σ ⊗ τ)(x)] ∈ S2. Thus

(σ ⊗ τ)(x) ∈ F(S2, T2, A2 ⊗ B2). 
�
Lemma 2.8 Let S ⊆ A and T ⊆ B be operator spaces. Let σ : A → A and τ : B → B
be completely bounded maps. If σ restricts to the identity on S and τ on T , then σ ⊗ τ

restricts to the identity on F(S, T , A ⊗ B).

Proof For x ∈ F(S, T , A ⊗ B) and φ ∈ A∗ and ψ ∈ B∗, we have

〈φ ⊗ ψ, (σ ⊗ τ)(x)〉 = 〈φ, σ [(idA ⊗(ψ ◦ τ))(x)]〉
= 〈φ, (idA ⊗(ψ ◦ τ))(x)〉
= 〈ψ, τ [(φ ⊗ idB)(x)]〉
= 〈φ ⊗ ψ, x〉.

Thus (σ ⊗ τ)(x) = x . 
�
This implies the following corollaries.

Corollary 2.9 (cf. [10, Lemma 2]) For i = 1, 2, let S ⊆ Ai and T ⊆ Bi be operator
spaces. Suppose that completely bounded maps σ1 : A1 → A2, σ2 : A2 → A1 and
τ1 : B1 → B2, τ2 : B2 → B1 satisfy, for i = 1, 2, σi (s) = s for s ∈ S and τi (t) = t
for t ∈ T , then σ1 ⊗ τ1 restricts to an isomorphism

F(S, T , A1 ⊗ B1) ∼= F(S, T , A2 ⊗ B2).

Corollary 2.10 (cf. [21, Proposition 3.7]) Let S ⊆ A and T ⊆ B be operator spaces.
If there exist completely bounded projections A → S and B → T , then (S, T , A⊗ B)

has the slice map property:

F(S, T , A ⊗ B) = S ⊗ T .
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2.4 Intersections

The Fubini product is compatible with intersections of operator spaces.

Lemma 2.11 For operator spaces S ⊆ A and T ⊆ B, we have

F(S, T , A ⊗ B) = F(A, T , A ⊗ B) ∩ F(S, B, A ⊗ B).

More generally, for families of operator spaces {Sα ⊆ A} and {Tβ ⊆ B}, we have

F(∩αSα,∩βTβ, A ⊗ B) = ∩α,βF(Sα, Tβ, A ⊗ B).

Proof Clear from the definitions. 
�
As a corollary, we express the compatibility between intersections and tensor prod-

ucts in terms of a slice map property.

Corollary 2.12 (cf. [24, Corollary 5]) Let S1, S2 ⊆ A and T1, T2 ⊆ B be operator
spaces. If (S1 ∩ S2, T1 ∩ T2, A ⊗ B) has the slice map property, then

(S1 ∩ S2) ⊗ (T1 ∩ T2) = (S1 ⊗ T1) ∩ (S2 ⊗ T2).

Proof We have

(S1 ∩ S2) ⊗ (T1 ∩ T2) ⊆ (S1 ⊗ T1) ∩ (S2 ⊗ T2)

⊆ F(S1, T1, A ⊗ B) ∩ F(S2, T2, A ⊗ B)

= F(S1 ∩ S2, T1 ∩ T2, A ⊗ B).


�

2.5 Kernels

The Fubini product is compatible with kernels of completely bounded maps.

Proposition 2.13 Let A, B and D be operator spaces and let τ : B → D be a com-
pletely bounded map. Then

F(A, ker(τ ), A ⊗ B) = ker(idA ⊗τ).

Proof Let x ∈ A ⊗ B. For φ ∈ A∗, we have

τ [(φ ⊗ idB)(x)] = (φ ⊗ idD)[(idA ⊗τ)(x)].

Thus x ∈ F(A, ker(τ ), A ⊗ B) iff x ∈ ker(idA ⊗τ). 
�
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Corollary 2.14 (cf. [21, Corollary 1]) Let A, B and D be operator spaces and let
τ : B → D be a completely bounded map. Then the equality

A ⊗ ker(τ ) = ker(idA ⊗τ)

holds if and only if the triple (A, ker(τ ), A ⊗ B) has the slice map property.

Theorem 2.15 Let A, B, C and D be operator spaces and let {σα : A → C} and
{τβ : B → D} be families of completely bounded maps. Then

F(∩α ker(σα),∩β ker(τβ), A ⊗ B) = (∩α ker(σα ⊗ idB)) ∩ (∩β ker(idA ⊗τβ)).

Proof Follows from Lemma 2.11 and Proposition 2.13. 
�

2.6 Relative Commutants

For operators a, b ∈ B(H ), we write [a, b] = ab − ba ∈ B(H) for the commutator.
For an operator space S ⊆ B(H ), we write

S′ := {b ∈ B(H ) | [b, s] = 0 for all s ∈ S}

for the commutant of S in B(H ). As a corollary of Sect. 2.5, we obtain the following.

Proposition 2.16 Let S, A ⊆ B(H ) and T , B ⊆ B(K ) be operator spaces. Then
we have

F(S′ ∩ A, T ′ ∩ B, A ⊗ B) = (S ⊗ C1B(K ) + C1B(H ) ⊗ T )′ ∩ (A ⊗ B).

Proof For s ∈ S, let σs := [−, s] : A → B(H ). Then σs is completely bounded and

σs ⊗ idB = [−, s ⊗ 1B(K )] : A ⊗ B → B(H ) ⊗ B.

Moreover, we have

∩s∈S ker(σs) = S′ ∩ A and

∩s∈S ker(σs ⊗ idB) = (S ⊗ C1B(K ))
′ ∩ (A ⊗ B).

Similarly, τt := [−, t] : B → B(K ), t ∈ T , are completely bounded and

∩t∈T ker(τt ) = T ′ ∩ B and

∩t∈T ker(idA ⊗τt ) = (C1B(H ) ⊗ T )′ ∩ (A ⊗ B).

Thus Theorem 2.15 completes the proof. 
�
This proves the following corollaries.
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Corollary 2.17 (cf. [9, Theorem 1] and [21, Corollary 2]) Let S, A ⊆ B(H ) and T ,
B ⊆ B(K ) and suppose 1B(H ) ∈ S and 1B(K ) ∈ T . Then the equality

(S′ ∩ A) ⊗ (T ′ ∩ B) = (S ⊗ T )′ ∩ (A ⊗ B)

holds if and only if the triple (S′ ∩ A, T ′ ∩ B, A ⊗ B) has the slice map property.

Proof Follows from Proposition 2.16, since under the unitality conditions, we have

(S ⊗ T )′ = (S ⊗ C1B(K ) + C1B(H ) ⊗ T )′.


�
Corollary 2.18 (cf. [9, Corollary 1]) Let A and B be C∗-algebras. Then

Z(A) ⊗ Z(B) ∼= Z(A ⊗ B),

where Z denotes the centre.

Proof Follows from Corollary 2.17 and the slice map property for abelian algebras
discussed in Example 2.30 in Sect. 2.9. 
�

2.7 Invariant Elements

Now we turn our attention to dynamical systems and invariant elements. This subsec-
tion will play an important role in the study of the invariant translation approximation
property in Sect. 3.3.

Let A be an operator space equipped with an action of a discrete group G by
completely bounded maps. We write AG := {a ∈ A | ga = g for all g ∈ G} for the
invariant part.

Proposition 2.19 Let A and B be operator spaces. Suppose that group G acts on A
and group H acts on B by completely bounded maps. Then G × H acts on A ⊗ B by
completely bounded maps and we have

F(AG, BH , A ⊗ B) = (A ⊗ B)G×H .

Proof For g ∈ G, let σg := (idA −g) : A → A. Then σg is completely bounded and

σg ⊗ idB = (idA⊗B −1H × g) : A ⊗ B → A ⊗ B.

Moreover, we have

∩g∈G ker(σg) = AG

∩g∈G ker(σg ⊗ idB) = (A ⊗ B)G×{1H }.

123



4048 O. Uuye, J. Zacharias

Similarly, τh := (idB −h) : B → B, h ∈ H , are completely bounded and

∩h∈H ker(τh) = BH

∩h∈H ker(idA ⊗τh) = (A ⊗ B){1G }×H .

Now Theorem 2.15 completes the proof, since

(A ⊗ B)G×H = (A ⊗ B)G×{1H } ∩ (A ⊗ B){1G }×H .


�
Corollary 2.20 (cf. [24, Corollary 7]) Let A and B be operator spaces. Suppose that
group G acts on A and group H acts on B by completely bounded maps. Then the
equality

AG ⊗ BH = (A ⊗ B)G×H

holds if and only if the triple (AG, BH , A ⊗ B) has the slice map property.

2.8 Combinations

Sometimes it is useful to be able to combine slice map properties.

Lemma 2.21 Let S ⊆ A and T ⊆ B be operator spaces. Then

F(S, T , A ⊗ T ) = (A ⊗ T ) ∩ F(S, B, A ⊗ B).

Proof Clear since any element of T ∗ extends to an element of B∗. 
�
Lemma 2.22 ([12, Lemma 2.6]) Let S ⊆ A and T ⊆ B be operator spaces. If
(A, T , A ⊗ B) has the slice map property, then

F(S, T , A ⊗ T ) = F(S, T , A ⊗ B)

Proof We have

F(S, T , A ⊗ T ) = (A ⊗ T ) ∩ F(S, B, A ⊗ B)

= F(A, T , A ⊗ B) ∩ F(S, B, A ⊗ B)

= F(S, T , A ⊗ B),

by Lemmas 2.21 and 2.11. 
�
Proposition 2.23 ([12, Corollary 2.7]) Let S ⊆ A and T ⊆ B be operator spaces.
If the triples (A, T , A ⊗ B) and (S, T , A ⊗ T ) have the slice map property, then
(S, T , S ⊗ B) and (S, T , A ⊗ B) also have the slice map property. Conversely, if
(S, T , A ⊗ B) has the slice map property, then (S, T, A ⊗ T ) and (S, T, S ⊗ B) also
have the slice map property.
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Proof Follows from Lemma 2.22 and the following commutative diagram of inclu-
sions:

F(S, T , A ⊗ T ) F(S, T , A ⊗ B)

S ⊗ T F(S, T , S ⊗ B)


�

2.9 The Operator Approximation Property

In this subsection, we briefly recall the connection between the operator approximation
property and the slicemap property. This is included partly for completeness and partly
because we use it in Sect. 3. The results are mostly due to Kraus [15] and Haagerup–
Kraus [6].

Definition 2.24 We say that A has the slice map property for B if (A, T , A ⊗ B) has
the slice map property for all operator spaces T ⊆ B.

We write F(A, B) for the space of finite-rank maps A → B. Recall that finite-rank
maps of operator spaces are completely bounded.

Let A and B be operator spaces and let x ∈ A ⊗ B. Define

FB(x) := {(Φ ⊗ idB)(x) | Φ ∈ F(A, A)} ⊆ A ⊗ B,

TB(x) := {(φ ⊗ idB)(x) | φ ∈ A∗} ⊆ B,

where T ⊆ B denotes the norm closure of T ⊆ B.
Then we have

FB(x) = A ⊗ TB(x).

Moreover, we have

F(A, T , A ⊗ B) = {x ∈ A ⊗ B | TB(x) ⊆ T }
= {x ∈ A ⊗ B | FB(x) ⊆ A ⊗ T }.

Lemma 2.25 ([15, Theorem 5.4]) Let A and B be operator spaces. Then A has the
slice map property for B if and only if x ∈ FB(x) for all x ∈ A ⊗ B.

Proof (⇒): Let x ∈ A ⊗ B. Clearly, x ∈ F(A, TB(x), A ⊗ B). Since A has the slice
map property for B, we have F(A, TB(x), A ⊗ B) = A ⊗ TB(x) = FB(x). Thus
x ∈ FB(x).

(⇐): Let T ⊆ B be operator subspace and let x ∈ F(A, T , A⊗ B). Then FB(x) ⊆
A ⊗ T . Thus x ∈ A ⊗ T . 
�
Definition 2.26 An operator space B is matrix stable if for each n ∈ N, there is a
completely bounded surjection B → B ⊗ Mn .
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Definition 2.27 We say that A has the operator approximation property (OAP) for B
if there is a net Φα ∈ F(A, A) of finite-rank maps such that Φα ⊗ idB converges to
idA ⊗ idB in point-norm topology.

Theorem 2.28 (cf. [15, Theorem 5.4]) Let A and B be operator spaces. If A has the
operator approximation property for B, then A has the slice map property for B. If B
is matrix stable, then the converse also holds.

Proof The first statement is clear from Lemma 2.25.
Now we prove the second statement. Suppose B is matrix stable. Let x1, . . . , xn ∈

A ⊗ B and let ε > 0. Let C := B ⊗ Mn and choose a completely bounded surjection
π : B → C .

Let x := x1 ⊕ · · · ⊕ xn ∈ A ⊗ B ⊗ Mn = A ⊗ C . Then there exists y ∈
A ⊗ B such that x = (idA ⊗π)(y). By Lemma 2.25, there is Φ ∈ F(A, A) such that
‖(Φ ⊗ idB)(y) − y‖ < ε/(‖π‖cb + 1). Then

‖(Φ ⊗ idC )(x) − x‖ = ‖(Φ ⊗ idC )((idA ⊗π)(y)) − (idA ⊗π)(y)‖
= ‖(idA ⊗π)((Φ ⊗ idB)(y) − y)‖
< ε.

It follows that for any 1 ≤ k ≤ n, we have ‖(Φ ⊗ idB)(xk) − xk‖ < ε. 
�
Definition 2.29 LetH is a separable infinite-dimensional Hilbert space. We say that
an operator space A has the operator approximation property (OAP) if A has the OAP
for K (H ) and the strong operator approximation property (SOAP) if A has the OAP
for B(H ).

If an operator space has the strong OAP, then it has the OAP for any B.

Example 2.30 An operator space A is said to have the completely bounded approxi-
mation property (CBAP) if the there is a constant C > 0 and a net Φα ∈ F(A, A) of
finite-rank maps with ‖Φα‖cb ≤ C , converging to idA in the point-norm topology.

We have the implications

CBAP �⇒ SOAP �⇒ OAP.

It follows that, nuclear, in particular, abelian C∗-algebras have the slice map property
for any operator space. See [3] for more details.

Definition 2.31 ([6, Definition 1.1]) A countable discrete group G has the approxima-
tion property (AP) if the constant function 1 is in the σ(M0A(G), Q(G))-closure of
A(G) in M0A(G), where A(G) is the Fourier algebra of G and M0A(G) is the space
of completely bounded Fourier multipliers of G and Q(G) is the standard predual of
M0A(G) and σ(M0A(G), Q(G)) is the weak topology on M0A(G) determined by
Q(G).

Theorem 2.32 ([6, Theorem 2.1]) A countable discrete group G has the AP if and only
if its reduced group C∗-algebra C∗

λ(G) has the (strong) OAP.

Proof See the original article [6] or [3, Section 12.4]. 
�
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The Fubini Product and Its Applications 4051

3 The Invariant Translation Approximation Property

In this section, we apply the results in Sect. 2 to the problem of studying the invariant
part of the uniform Roe algebra.

3.1 Uniform Roe Algebras

Definition 3.1 We say that a (countable discrete) metric space is of bounded geometry
if for any R > 0, there is NR < ∞ such that all balls of radius at most R have at most
NR elements.

Definition 3.2 (cf. [17, Section 4.1] and [25, Section 2]) Let (X , d) be a metric space
of bounded geometry and let S ⊆ B(H ) be a subset. For R > 0 and M > 0, let
AR,M (X , S) denote the set of X × X matrices a with values in S satisfying

(i) for any x1, x2 ∈ X with d(x1, x2) > R, we have a(x1, x2) = 0 and
(ii) for any x1, x2 ∈ X , we have ‖a(x1, x2)‖B(H ) ≤ M .

Let A(X , S) := ∪R,M AR,M (X , S). For S = C, we write AR,M (X) and A(X).

Lemma 3.3 Under the natural action, elements of AR,M (X , S) act on l2(X ,H ) ∼=
l2X ⊗ H as bounded operators of norm at most M · NR.

Proof The action is given by

(aξ)(x1) :=
∑

x2

a(x1, x2)ξ(x2), ξ ∈ l2X ⊗ H .

Thus

‖(aξ)(x1)‖ ≤
∑

d(x1,x2)≤R

‖a(x1, x2)ξ(x2)‖

≤ M
∑

d(x1,x2)≤R

‖ξ(x2)‖

≤ M

⎛

⎝NR

∑

d(x1,x2)≤R

‖ξ(x2)‖2
⎞

⎠

1/2

.

It follows that

‖aξ‖2 =
∑

x1

‖(aξ)(x1)‖2

≤ M2NR

∑

x1

∑

d(x1,x2)≤R

‖ξ(x2)‖2

≤ M2N 2
R

∑

x2

‖ξ(x2)‖2

= M2N 2
R‖ξ‖2.


�
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Thus we have a canonical inclusion A(X , S) ⊆ B(l2X ⊗ H ).

Lemma 3.4 For any S ⊆ B(H ), we have

A(X) × S ⊆ A(X , S) ⊆ A(X , S) ⊆ A(X , S)

in B(l2X ⊗ H ).

Proof Only the last inclusion needs checking. Take a ∈ AR,M (X , S). For each positive
integer n ≥ 1, we define an ∈ A(X , S) as follows. For x1, x2 ∈ X , if d(x1, x2) > R,
then let an(x1, x2) = 0, and if d(x1, x2) ≤ R, then choose an(x1, x2) ∈ S to satisfy
‖an(x1, x2)− a(x1, x2)‖ ≤ 1/n. Then an ∈ AR,M+1(X , S) and ‖an − a‖ ≤ NR/n by
Lemma 3.3. Hence, the sequence an converges to a in B(l2X ⊗ H ) as n → ∞ and
thus a ∈ A(X , S). 
�
Definition 3.5 (cf. [17, Section 4.4] [25]) Let X be ametric space of bounded geometry
and let S ⊆ B(H) be an operator space. The uniform Roe operator space C∗

u (X , S)

is the closure of A(X , S) in B(l2X ⊗ H ). For S = C, we write C∗
u (X).

Lemma 3.6 For any operator space S ⊆ B(H ), we have

C∗
u (X) ⊗ S ⊆ C∗

u (X , S).

Proof Follows from Lemma 3.4. 
�

3.2 Products

For metric spaces (X , dX ) and (Y , dY ), we equip the product X × Y with the metric

dX×Y ((x1, y1), (x2, y2)) := max{dX (x1, x2), dY (y1, y2)}.

If X and Y are of bounded geometry, then so is X × Y .

Lemma 3.7 Let X and Y be metric spaces of bounded geometry and let S ⊆ B(H )

be a subset. Then for R, R′ > 0 and M, M ′ > 0 we have a natural inclusion

AR,M (X) × AR′,M ′(Y , S) ⊆ AR′′,M ′′(X × Y , S),

where R′′ := max{R, R′} and M ′′ := M · M ′. In particular, we have

A(X) × A(Y , S) ⊆ A(X × Y , S)

in B(l2X ⊗ l2Y ⊗ H ).

Proof Take a ∈ AR,M (X) and b ∈ AR′,M ′(Y , S) and let R′′ = max{R, R′} and
M ′′ = M · M ′. For x1, x2 ∈ X and y1, y2 ∈ Y , we define

(a ⊗ b)((x1, y1), (x2, y2)) := a(x1, x2) ⊗ b(y1, y2).
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(i) For x1, x2 ∈ X and y1, y2 ∈ Y with d((x1, y1), (x2, y2)) > R′′ = max{R, R′},
we have either d(x1, x2) > R′′ ≥ R thus a(x1, x2) = 0, or d(y1, y2) > R′′ ≥ R′
thus b(y1, y2) = 0, hence (a⊗b)((x1, y1), (x2, y2)) = a(x1, x2)⊗b(y1, y2) = 0
and

(ii) For x1, x2 ∈ X and y1, y2 ∈ Y , we have

‖(a ⊗ b)((x1, y1), (x2, y2))‖ = ‖a(x1, x2)‖ · ‖b(y1, y2)‖ ≤ M · M ′ = M ′′.

Hence, a ⊗ b belongs to AR′′,M ′′(X × Y , S). The last statement is clear. 
�
Lemma 3.8 Let X and Y be metric spaces of bounded geometry and let S ⊆ B(H )

be a subset. Then for R > 0 and M > 0, we have a natural inclusion

AR,M (X × Y , S) ⊆ AR,M ′(X , AR,M (Y , S)),

where M ′ := M · N X
R . In particular, we have

A(X × Y , S) ⊆ A(X , A(Y , S))

in B(l2X ⊗ l2Y ⊗ H ).

Proof Take a ∈ AR,M (X × Y , S). Fix x1, x2 ∈ X and consider

bx1,x2(y1, y2) := a((x1, y1), (x2, y2)).

First we show that bx1,x2 is an element of AR,M (Y , S).

(i) For y1, y2 ∈ Y with d(y1, y2) > R, we have d((x1, y1), (x2, y2)) ≥ d(y1, y2) >

R, thus bx1,x2(y1, y2) = a((x1, y1), (x2, y2)) = 0.
(ii) For y1, y2 ∈ Y , we have ‖bx1,x2(y1, y2)‖ = ‖a((x1, y1), (x2, y2))‖ ≤ M .

Now we show that b is an element of AR,M ′(X , AR,M (Y , S)).

(i) For x1, x2 ∈ X with d(x1, x2) > R and for any y1, y2 ∈ Y , we have
d((x1, y1), (x2, y2)) ≥ d(x1, x2) > R, and thus

bx1,x2(y1, y2) = a((x1, y1), (x2, y2)) = 0

i.e. bx1,x2 = 0
(ii) For x1, x2 ∈ X , we have ‖bx1,x2‖ ≤ M · N X

R = M ′ by Lemma 3.3.


�
Theorem 3.9 Let X and Y be metric spaces of bounded geometry and let S ⊆ B(H)

be an operator space. Then we have a natural inclusion

C∗
u (X) ⊗ C∗

u (Y , S) ⊆ C∗
u (X × Y , S) ⊆ C∗

u (X ,C∗
u (Y , S)).

Proof Follows from Lemmas 3.7 and 3.8. 
�
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3.3 The Invariant Translation Approximation Property

Let G be a countable discrete group. A length function on G is a function l : G →
{0, 1, 2, . . . } such that l(s) = 0 if and only if s = 1G , and l(st) ≤ l(s) + l(t) and
l(s) = l(s−1) for all s, t ∈ G. We say that the length function l is proper if, in addition,
lims→∞ l(s) = +∞.

Let |G| denote the metric space of bounded geometry onG associated with a proper
length function. Then G acts on |G| isometrically by right translations.

Example 3.10 Let G be a countable discrete group. Then A(G) is the ∗-algebra gener-
ated by C[G] and l∞(G), and therefore C∗

u |G| = C∗(l∞(G), λ(G)). It is well known
that C∗

u |G| ∼= l∞(G) �r G and (C∗
u |G|)G = L(G) ∩ C∗

u |G|, where L(G) denote the
von Neumann algebra generated by C∗

λ(G) and the fix points are taken under the right
translation. See [3, Section 5.1].

Definition 3.11 Let S be an operator space. We say G has the invariant translation
approximation property (ITAP) for S, if we have

C∗
λ(G) ⊗ S = C∗

u (|G|, S)G .

Definition 3.12 We say G has the (strong) invariant translation approximation prop-
erty if it has the ITAP for (all operator spaces S ⊆ B(H )) C.

The following theorem connects the strong ITAP to the AP.

Theorem 3.13 ([25]) Let G be a countable discrete group. Then G has the AP if and
only if G is exact and has the strong ITAP.

Theorem 3.14 Any subgroup of a group with ITAP has ITAP.

Proof Let H be a subgroup of G and suppose that G has the ITAP. Using the coset
decomposition of G, one checks that we have inclusions C∗

λ(H) ⊆ C∗
λ(G), L(H) ⊆

L(G) and C∗
u |H | ⊆ C∗

u |G|. Now the multiplier with respect to the indicator function
of H , being positive definite, induces conditional expectations EL : L(G) → L(H),
Eu : C∗

u |G| → C∗
u |H | and Eλ : C∗

λ(G) → C∗
λ(H). The restrictions of EL and Eu to

C∗
λ(G) are equal to Eλ. Now let x ∈ L(H)∩C∗

u |H | then x ∈ L(G)∩C∗
u |G| = C∗

λ(G)

and EL(x) = x as well as Eu(x) = x . It follows that Eλ(x) = x i.e. x ∈ C∗
λ(H) and

thus H also has the ITAP. 
�
Now we consider products.

Lemma 3.15 Let G and H be countable discrete groups equipped with proper length
functions lG : G → R≥0 and lH : G → R≥0. Then lG×H : G × H → R≥0 given by
lG×H (g, h) = max{lG(g), lH (h)} is a proper length functionand |G×H | = |G|×|H |.
Proof First we check that l is a length function. Indeed, we have

lG×H (e, e) = max{lG(e), lH (e)} = 0
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and

lG×H (g−1, h−1) = max{lG(g−1), lH (h−1)}
= max{lG(g), lH (h)}
= lG×H (g, h)

and finally

lG×H (gg′, hh′) = max{lG(gg′), lH (hh′)}
≤ max{lG(g) + lG(g′), lH (h) + lH (h′)}
≤ max{lG(g), lH (h)} + max{lG(g′), lH (h′)}
= lG×H (g, h) + lG×H (g′, h′).

Moreover, it is clear that l is proper. Finally, we have

d|G×H |((g1, h1), (g2, h2)) = lG×H (g1g
−1
2 , h1h

−1
2 )

= max{lG(g1g
−1
2 ), lH (h1h

−1
2 )}

= max{d|G|(g1, g2), d|H |(h1, h2)}
= d|G|×|H |((g1, h1), (g2, h2)).


�
Proposition 3.16 Let G and H be countable discrete groups. If G × H has the ITAP,
then G and H also have the ITAP and the triple

((C∗
u |G|)G, (C∗

u |H |)H ,C∗
u |G| ⊗ C∗

u |H |)

has the slice map property.

Proof By Theorem 3.9, we have

C∗
λ(G × H) = C∗

λ(G) ⊗ C∗
λ(H)

⊆ (C∗
u |G|)G ⊗ (C∗

u |H |)H
⊆ (C∗

u |G| ⊗ C∗
u |H |)G×H

⊆ (C∗
u |G × H |)G×H

= C∗
λ(G × H).

Thus G and H have the ITAP by Lemma 2.2 (this is also immediate from Theo-
rem 3.14). The last statement follows from Corollary 2.20. 
�
Theorem 3.17 Let G be a countable discrete group with the AP and let B be an
operator space equipped with an action of a group H by completely bounded maps.
Then we have

C∗
λ(G) ⊗ BH = C∗

u (|G|, B)G×H .
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Proof Clearly, we have

C∗
λ(G) ⊗ BH ⊆ (C∗

u |G|)G ⊗ BH ⊆ (C∗
u |G| ⊗ B)G×H ⊆ C∗

u (|G|, B)G×H .

Since G has AP, it has the strong ITAP by Theorem 3.13, thus

C∗
u (|G|, B)G = C∗

λ(G) ⊗ B.

Moreover, theC∗-algebraC∗
λ(G) has the strongOAP by Theorem 2.32; thus by Propo-

sition 2.19, we have

(C∗
λ(G) ⊗ B)H = F(C∗

λ(G), BH ,C∗
λ(G) ⊗ B) = C∗

λ(G) ⊗ BH .

It follows that

C∗
u (|G|, B)G×H =

(

C∗
u (|G|, B)G

)H

⊆ (C∗
λ(G) ⊗ B)H

= C∗
λ(G) ⊗ BH .

This completes the proof. 
�
Theorem 3.18 Let G and H be countable discrete groups. If G has the AP and H has
the ITAP, then G × H has the ITAP.

Proof By Theorem 3.9, we have

C∗
u |G × H | ⊆ C∗

u

(|G|,C∗
u |H |) .

Thus, by Theorem 3.17, we have

(C∗
u |G × H |)G×H ⊆ C∗

u

(|G|,C∗
u (|H |))G×H = C∗

λ(G) ⊗ (C∗
u |H |)H .

Since H has ITAP, we have (C∗
u |H |)H = C∗

λ(H). Thus, we obtain

C∗
λ(G) ⊗ C∗

λ(H) = C∗
λ(G × H)

⊆ (C∗
u |G × H |)G×H

⊆ C∗
λ(G) ⊗ C∗

λ(H),

so that G × H has the ITAP. 
�
Corollary 3.19 Let G and H be countable discrete groups. Suppose G has the AP.
Then G × H has the ITAP if and only if H has the ITAP.
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4 The Fubini Crossed Product

In this section, we study the crossed product version of the Fubini product.

4.1 The Fubini Crossed Product

LetG be a countable discrete group. AG-operator space is an operator space equipped
with a completely isometric action of G. A map φ : B → D of G-operator spaces is
G-equivariant if for any g ∈ G and b ∈ B, we have φ(gb) = gφ(b).

Let A ⊆ B(H ) be an operator space equipped with a completely isometric action
α of G. Define a new action π of A onH ⊗ l2G by π(a)(v ⊗ δg) := αg−1(a)v ⊗ δg

and let G act on H ⊗ l2G by λ(g)(v ⊗ δh) := v ⊗ δgh .
The reduced crossed product A �r G is defined as the operator space spanned by

{π(a)λ(g) ∈ B(H ⊗ l2(G)) | a ∈ A, g ∈ G}.

Definition 4.1 ([14, Lemma 2.1]) For anyψ ∈ B(l2G)∗, there is a natural, completely
bounded slice map idA �rψ : A �r G → A. If S ⊆ A is a G-invariant operator
subspace, then the Fubini crossed product F(S, A �r G) is defined as the set of all
x ∈ A �r G such that (idA �rψ)(x) ∈ S for all ψ ∈ B(l2G)∗.

The slice map idA �rψ is given by the restriction of the von Neumann slice map
which maps A∗∗⊗B(l2G) to A∗∗.

Remark 4.2 We have

S �r G ⊆ F(S, A �r G) ⊆ A �r G.

In fact, many of the formal properties of the Fubini product hold for Fubini crossed
products, usually with the same proof.

Definition 4.3 We say that (S, A �r G) has the slice map property if

F(S, A �r G) = S �r G.

Lemma 4.4 If the action of G on A is trivial, then

F(S, A �r G) = F(S,C∗
λ(G), A ⊗ C∗

λ(G)).

Proof Since the action of G on A is trivial, we have A �r G = A ⊗ C∗
λ(G). The

inclusion C∗
λ(G) B(l2G) gives the diagram

B(l2G)∗ C∗
λ(G)∗

B(l2G)∗

.
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Hence, we have F(S,C∗
λ(G), A⊗C∗

λ(G)) ⊆ F(S, A�r G). By Goldstine’s theorem
for any functional ψ ∈ C∗

λ(G)∗, there exists a bounded net ψn ∈ B(l2(G))∗ with
‖ψn‖ ≤ ‖ψ‖, converging to ψ in the weak∗ topology. Now it is easy to see that for
any x ∈ A ⊗ C∗

λ(G), the elements idA ⊗ψn(x) converge to idA �ψ(x) in norm. It
follows that F(S, A �r G) ⊆ F(S,C∗

λ(G), A ⊗ C∗
λ(G)). 
�

Example 4.5 Let l∞(G) act on l2G by multiplication. Then G acts on l∞(G) by left
multiplication and c0(G) ⊆ l∞(G) is an invariant C∗-subalgebra. The Fubini crossed
product F(c0(G), l∞(G) �r G) is the ideal of all ghost operators on |G|. Thus G
is exact if and only if (c0(G), l∞(G) �r G) has the slice map property by Roe and
Willett [18].

Lemma 4.6 For families of G-invariant operator subspaces {Sα ⊆ A}, we have

F(∩αSα, A �r G) = ∩αF(Sα, A �r G).

Proposition 4.7 (cf. [14, Proposition 2.2]) Let B and D be G-operator spaces and let
σ : B → D be a completely bounded G-equivariant map. Then

F(ker(σ ), B �r G) = ker(σ �r G).

Theorem 4.8 Let G and H be countable discrete groups and let A be a (G × H)-
operator space. Then

F(AH , A �r G) = (A �r G)H .

Proof For h ∈ H , let αh : A → A denote the action by h. Then αh is G-equivariant.
Let σh := idA −αh . Then σh �r G = idA�r G −αh �r G : A �r G → A �r G. The
proof follows from Proposition 4.7 and Lemma 4.6, since

∩h∈H ker(σh) = AH ,

∩h∈H ker(σh �r G) = (A �r G)H .


�
Example 4.9 Let l∞(G) act on l2G by multiplication. Then G acts on l∞(G) by
left multiplication. As already pointed out C∗

u |G| ∼= l∞(G) �r G; moreover, think-
ing of C as embedded into l∞(G) via the constant functions we have C∗

u (|G|)G =
F(C, l∞(G)�r G). Thus G has the ITAP if and only if (C, l∞(G)�r G) has the slice
map property.

Proposition 4.10 Let G be a discrete group with the AP. Then for any S ⊆ A, we have
F(S, A �r G) = S �r G.

Proof Since G has the AP, there exists a net (uα) in M0A(G) ∩ cc(G) converging to
1 ∈ M0A(G) in the σ(M0A(G), Q(G)) topology. As explained in [25], this implies
that the net of Schur multipliers M̂uα ∈ CB(C∗

u (|G|, A)) given by M̂uα ([as,t ]) =
[uα(st−1)as,t ] converges to the identity map in the point-norm topology. Fixing a
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faithful representation A ↪→ B(K ), we can think of A �r G ⊆ B(K ⊗ �2(G)) as
matrices indexed by G with entries in A. Since the 〈δs, · δt 〉 is a normal functional on
B(�2(G)) whose slice map gives the s, t entry of the matrix in B(K ⊗ �2(G)) we can
characterise F(S, A �r G) as those matrices in A �r G with entries in S. Thus it is
clear that F(S, A �r G) ⊆ C∗

u (|G|, A). Moreover, since each uα has finite support, it
is easy to check that M̂uα (F(S, A�r G)) is contained in span{π(s)λ(g) | s ∈ S, g ∈
G} ⊆ S �r G. It follows that S �r G � M̂α(x) → x for any x ∈ F(S, A � G),
concluding the proof. 
�
Proposition 4.11 If F(S, A �r G) = S �r G for all S ⊆ A, then G has the AP.

Proof Considering trivial actions, we see that C∗
λ(G) has the slice map property for

any operator space A by Lemma 4.4, thus having the OAP by Kraus’ theorem (Theo-
rem 2.28). Hence, G has the AP by Haagerup–Kraus theorem (Theorem 2.32). 
�

4.2 Functoriality

Lemma 4.12 Let S ⊆ A and T ⊆ B be G-operator spaces. If a completely bounded
map σ : A → B maps σ(S) ⊆ T , then

(σ �r G)(F(S, A �r G)) ⊆ F(T , B �r G).

Proof Let x ∈ F(S, A�r G). For any ψ ∈ B(l2G)∗, we have (idA �rψ)(x) ∈ S, and
thus

(idA �rψ)[(σ �r G)(x)] = σ [(idA �rψ)(x)]

belongs to T . Hence, the lemma holds. 
�
Lemma 4.13 Let S ⊆ A be G-operator spaces. Let σ : A → A be a completely
bounded G-equivariant map. If σ restricts to the identity on S, then σ �r G restricts
to the identity on F(S, A �r G).

Proof For x ∈ F(S, A �r G) and ψ ∈ B(l2G)∗, we have

(idA �rψ)[(σ �r G)(x)] = σ [(idA �rψ)(x)] = (idA �rψ)(x).

Thus (σ �r G)(x) = x . 
�
Corollary 4.14 (cf. [10, Lemma 2]) Let S ⊆ A and S ⊆ B be G-operator spaces. If
φ : A → B and ψ : B → A are completely bounded G-equivariant maps such that
(ψ◦φ)|S = idS and (φ◦ψ)|S = idS, then there is a completely boundedG-equivariant
isomorphism F(S, A �r G) → F(S, B �r G) which is the identity on S �r G.

Let S be an operator space. We say that S is injective if for any operator spaces
T ⊆ B and a completely bounded map φ : T → S, there exists a completely bounded
map ψ : B → S such that ψ|T = φ and ‖ψ‖cb = ‖φ‖cb.
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An extension of S is a pair (Z , κ) of an operator space Z and a completely isometric
embedding κ : S → Z . An extension (Z , κ) of S is called an injective envelope of S
if Z is injective and idZ is the only completely contractive map from Z to Z which
extends idκ(S) : κ(S) → Z from κ(S) to Z .

Injective envelopes of C∗-algebras, operator systems and operator spaces have
been considered by various authors [2,5,7,19]. The G-injective envelope has only
been defined for operator systems in the literature [8]. However, the definitions and
constructions are all analogous. First one has to find an injective extension of the given
object in the appropriate category and then minimise it in such a way that uniqueness
is automatic.

Replacing operator spaces by G-operator spaces and completely bounded maps by
completely bounded G-equivariant maps, we obtain the definition of a G-injective
envelope, which exists and is unique up to isomorphism by the same argument. For a
G-operator space S, we denote its G-injective envelope by IG(S). We write I (S) if G
is trivial.

The following lemma follows from functoriality.

Lemma 4.15 (cf. [10, Theorem 4]) Let S be a G-operator space and let A be a G-
injective operator space containing S. Then the Fubini crossed product F(S, A�r G)

is independent of A.

Definition 4.16 The Fubini crossed product F(S, A �r G) is called the universal
Fubini crossed product of S byG and denoted F(S,G). It is the largest Fubini crossed
product of S.

We say that S has the universal slice map property for G if S �r G = F(S,G).

Example 4.17 For a discrete group G, the space c0(G) has the universal slice map
property if and only if G is exact and the space C has the universal slice map property
if and only if G has the ITAP.

Theorem 4.18 Let G be a discrete group. Then (C∗
u |G|)G ⊆ I (C∗

λ(G)).

Proof We only sketch the proof.
Since l∞(G) is G-injective, we see that F(C,G) ∼= F(C, l∞(G) �r G) ∼=

(C∗
u |G|)G by Lemma 4.15 and Example 4.9. On the other hand, for any S we have

S �r G ⊆ F(S,G) ⊆ IG(S) �r G ⊆ I (S �r G). 
�
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