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A B S T R A C T

Marine protected areas (MPAs) underpin the sustainable management of marine ecosystems but require accurate
knowledge of species distributions. Recently, advances in tracking technology and habitat modelling have en-
abled the production of large-scale species distribution models (SDM), which provide the basis for hotspot
mapping. In the UK, hotspot mapping to inform seabird MPA identification has involved converting observed or
predicted distributions to polygons using either Maximum Curvature or Getis-Ord (Gi*) analysis. Here, we apply
both mapping techniques to UK-wide, breeding season SDM predictions for four seabird species (Black-legged
Kittiwakes Rissa tridactyla, Common Guillemots Uria aalge, Razorbills Alca torda and European Shags
Phalacrocorax aristotelis) in order to compare their performance and inform seabird MPA. When using Maximum
Curvature, grid cells within the identified maximum curvature boundaries were defined as hotspots. For Getis-
Ord analysis, we defined hotspots as either (1) grid cells containing the top 1% or (2) the top 5% Gi* scores or (3)
cells in which Gi* scores were statistically significant. Hotspots based upon Maximum Curvature or statistically
significant Gi* scores covered the greatest area and were generally larger than current marine Special Protection
Areas. Hotspots based on the top 1% or top 5% of Gi* scores were smaller and were concentrated around the
largest breeding colonies. All hotspot methods consistently identified several high-density areas that should be
prioritised for seabird conservation. Ultimately, the choice of hotspot identification method should be informed
by considering species ecology alongside conservation goals to ensure hotspots are of sufficient size to protect
target populations.

1. Introduction

Accurate species distribution estimates are key to effective wildlife
management and conservation, enabling researchers to identify and
prioritize geographical areas for environmental protection. However,
obtaining the requisite data to assess species distributions is often
challenging, particularly in the marine environment (Embling et al.,
2010). Seabirds are considered important indicators of ecosystem
function (Furness and Camphuysen, 1997) and are among the world's
most endangered avian groups (Croxall et al., 2012). Many threats
seabirds face are anthropogenic and while some are inherently wide
scale and transnational (e.g. climate change, Sydeman et al., 2012;
marine pollution, Wilcox et al., 2015), others such as offshore devel-
opments (Furness et al., 2012; Furness et al., 2013) or interaction with
national fisheries (Žydelis et al., 2013; Bærum et al., 2019) can often be

managed effectively at the local or national scales. Marine Protected
Areas (MPAs) therefore represent an important tool for the protection
of marine biodiversity, including seabirds (Lascelles et al., 2012).
However, the identification and protection of areas for conservation in
the marine environment has generally lagged behind that in the ter-
restrial environment (Perrow et al., 2015). This is despite wide-spread
recognition that effective conservation of seabirds and other higher
marine predators requires protecting important at-sea areas (Game
et al., 2009). To address this shortfall, there is a pressing need to de-
velop effective means of mapping the at-sea distributions of seabirds
and identify priority areas for conservation (Lascelles et al., 2012).

The most common methods used to estimate the distribution of
seabirds at sea are systematic surveys from boats or planes
(Camphuysen et al., 2004) and tracking movements of individuals using
data loggers. The nature of the data collected differs between these two
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approaches and each has pros and cons (Camphuysen et al., 2012). One
important advantage of electronic tracking is that the provenance of
individuals is known (Perrow et al., 2015). For example, such in-
formation allows areas of high usage associated with specific colonies to
be identified (Camphuysen et al., 2012) and potential impacts of lo-
calized anthropogenic and natural processes to be apportioned to spe-
cific colonies (Montevecchi et al., 2012). Unfortunately, tracking data
are typically only available for a subset of tracked seabird colonies,
which precludes understanding of broad-scale seabird distributions and
hinders efforts to design national MPA networks. One solution is to
construct species distribution models (SDM) that describe the dis-
tribution of seabirds at sampled colonies as functions of environmental
and ecological indices (Aarts et al., 2008; Wakefield et al., 2011;
Lascelles et al., 2012), allowing the distribution of unsampled in-
dividuals or colonies to be predicted. This approach is rapidly coming
into widespread use and predictive SDMs have recently been used to
determine suitable areas for protection in a variety of marine and ter-
restrial species (Moilanen et al., 2005; Bailey and Thompson, 2009;
Wilson et al., 2014) and to aid marine MPA design (Hyrenbach et al.,
2000; Embling et al., 2010).

A variety of statistical methods have been used to delineate im-
portant areas of marine animal usage objectively and repeatably from
distribution data (Wilson et al., 2009; Embling et al., 2010; Garthe
et al., 2012; Perrow et al., 2015). Often this involves converting a
continuous, typically grid-based, measure of distribution to a catego-
rical measure, typically defined by a spatial polygon. For example, an
animal or population's utilisation distribution (UD – a probability
density function describing space use (Fieberg and Kochanny, 2005),
may be calculated by Kernel density estimation (van Winkle, 1975).
The contours containing 95 or 50% of the UD volume may then be
determined and assumed to represent the home range or core area of
that animal or population (Laver and Kelly, 2008). More generally, UD
contours highlight regions where higher density estimates are separated
from regions of lower density (Azzalini and Torelli, 2007). As such, UDs
typically make it easy to visualise areas of high abundance or intense
use and benefit from widespread use among ecologists due to their ease
of biological interpretation. A potential objection to using percentage
UD contours to delineate higher or lower use areas is that the threshold
chosen may or may not have biological relevance. On the other hand,
percentage UD contours are readily interpretable and may lend them-
selves to target-driven management approaches. The most common
methods used to delineate potential seabird MPA boundaries from
continuous distribution data in the UK are Maximum Curvature
(O'Brien et al., 2012) and Getis-Ord hotspot analysis (Kober et al., 2010,
2012). The Maximum Curvature method identifies the point at which
the relationship between cumulative area and cumulative number of
birds within that area changes most sharply. It therefore provides an
objective means of balancing the proportion of the population to be
protected against the size of the protected area, making it appealing to
wildlife managers. The Getis-Ord (Gi*) statistic is a widely used local
indicator of spatial association (Anselin, 1995) that identifies areas in
which clusters of density or intensity are distinct from patterns in the
surrounding landscape. For example, a point will be included in a
hotspot only if both it and its neighbours have high utilisation values.
The Gi* statistic itself is calculated by comparing the sum of a point and
its neighbours to the sum of all points across a study area. Unlike
Maximum Curvature and UD contours, the significance of inclusion of
locations in hotspot areas can be tested. Getis-Ord analysis is a rela-
tively established technique (Getis and Ord, 1992) and its use for de-
lineating important areas for conservation has grown in recent years
(e.g. Sussman et al., 2019; Yurkowski et al., 2019). In contrast, use of
Maximum Curvature for identification of important marine conserva-
tion areas has largely been restricted to the UK.

The UK is signatory to multiple international agreements that aim to
protect biodiversity and ecosystem health (e.g. OSPAR Convention,
1992; Convention on Biological Diversity, 2004). In particular, the

European Union (EU) Birds Directive (Directive 2009/147/EC) requires
the UK and other member states to designate a network of sites, termed
Special Protection Areas (SPAs), across both the terrestrial and marine
environment to protect avian species, and this requirement has been
transposed into UK law. At present, many seabirds are protected by
terrestrial SPAs encompassing certain breeding colonies (Stroud et al.,
2001). In addition, extensive survey and data collection has been con-
ducted over many years to identify important UK offshore areas used by
seabirds (Kober et al., 2010, 2012, Fig. S1). Latterly, Wilson et al.
(2014) used SDMs to identify several offshore seabird hotspots, several
of which are now designated as marine SPAs (see also Fig. S1 – Sup-
plementary material). Recently, Wakefield et al. (2017) used SDMs to
model breeding seabird habitat usage from telemetry data and predict
the UDs of four seabird species (European Shags Phalacrocorax aris-
totelis, Black-legged Kittiwakes Rissa tridactyla, Common Guillemots
Uria aalge, and Razorbills Alca torda) foraging from all of their UK co-
lonies. The predictions provide unprecedented information on the dis-
tribution and provenance of these species at the national scale and re-
present a valuable new resource for MPA design. Here, our objectives
are: 1) to delineate important, high density sites for each of the four
seabird species listed above at the UK-scale using the pre-existing SDM
outputs from Wakefield et al. (2017) as the underlying distribution data
on which to perform both Maximum Curvature and Getis-Ord hotspot
mapping techniques; and 2) examine the performance of both Max-
imum Curvature and Getis-Ord techniques in terms of the location and
area of the hotspots identified as well as the assessing the similarity
between the location of identified hotspots and the underlying SDM
predictions used to delineate such hotspots.

2. Materials and methods

2.1. Predicted utilisation distributions

All analyses are based upon the predicted seabird distributions
produced by Wakefield et al. (2017), which contains a detailed de-
scription of the statistical methodology. Briefly, Wakefield et al. (2017)
used telemetry data to model space use by four UK seabird species as
functions of environmental covariates, intra-specific competition and
accessibility. Birds were tracked using GPS loggers during the breeding
season (May–July, 2010–2014) as they were approaching the end of the
incubation period or raising small chicks. In total the sample sizes used
in the species distribution models of Wakefield et al. (2017) were:
Black-legged Kittiwake – 464 birds tracked from 20 sites, median
tracking duration per individual = 42 h; Common Guillemot – 178
birds tracked from 12 sites, median tracking duration per in-
dividual = 54 h; Razorbill – 281 birds tracked from 14 sites, median
tracking duration per individual = 70 h; European Shags – 230 birds
tracked from 13 sites, median tracking duration per individual = 75 h.
Maps showing the location of tracked colonies for each species is
available in the Supplementary material, Fig. S2.The intensity of
tracking locations was modelled as an Inhomogeneous Poisson Process
(IPP) using numerical quadrature. Separate models were fitted for each
species, but within species data from multiple colonies was included
and colony was treated as a random effect. Once the best fitting models
were selected, model coefficients were used to predict usage for all UK
breeding sites (breeding sites were defined as those listed in the UK-
wide Seabird 2000 census, Mitchell et al., 2004). Raw usage predictions
were then normalized to create a Utilisation Distribution (UD, Fieberg
and Kochanny, 2005) for each breeding site. Breeding site level UDs,
weighted by colony size, were then combined to create a UK-wide UD
map for each species (Fig. 1a). For Kittiwakes, Guillemots and Razor-
bills, UDs were calculated at a 1 km2 resolution, whereas for Shags
resolution was 0.5 km2.
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Fig. 1. (a) Utilisation distributions separated by species for birds originating from the UK and the Republic of Ireland based on Wakefield et al. (2017). At the UK-
level, Maximum Curvature and Getis-Ord analysis were based on the density estimates of birds originating from both the UK and Ireland. (b) Cells selected for UK-
level hotspot mapping (UK-level analysis field) are shown in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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2.2. Estimating usage boundaries using the maximum curvature

We estimated Maximum Curvature for each species using UDs
constructed by Wakefield et al., 2017. Maximum Curvature analysis
starts by ordering UD grid cells xi by decreasing probability density,
selecting the highest density grid cell and plotting the probability
density of birds in this cell against its area. The next highest density grid
cell is then added and the cumulative probability density of birds ρi is
plotted against cumulative area, Ai and so on. The curvature, k, of the
relationship between ρi and Ai indicates how predicted usage increases
and is defined as
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Maximum curvature identifies the point kmax at which the slope of
the relationship between Ai and ρi shows the greatest change from rapid
increase to slow increase. By determining the cumulative area at this
point, Amax, the set of grid cells at which Ai < Amax can be identified.
The Maximum Curvature boundary is defined as the polygon bounding
these grid cells. Note that grid cells that fall within the Maximum
Curvature boundaries identified by Amax are not necessarily contiguous
as Maximum Curvature treats individual grid cells on a case-by-case
basis and does not consider lack of independence between cells that are
close neighbours.

We limited the analysis field (spatial extent of the analysis) to all
those cells that satisfied two criteria: 1) Cell falls within the boundaries
of the UK Exclusive Economic Zone (EEZ), 2) cell falls within the 95%
home range of at least one UK colony (Fig. 1b). Definition of the ana-
lysis field is important as the size of the resulting Maximum Curvature
boundaries are sensitive to its size (Webb et al., 2009). We chose the
95% home range due to its long-standing use as measure of home range
within ecology (Kie et al., 2010). Moreover, use of the 95% home range
ensures we do not include a large number of low density or zero density
cells in the analysis which reduces computing time considerably
(Kranstauber et al., 2017). In previous studies of UK seabirds, the point
of maximum curvature kmax was identified by fitting exponential
growth models to A vs. ρ and taking the second derivative of the re-
sulting curves (O'Brien et al., 2012). However, we found that this ap-
proach often performed poorly and occasionally identified two maxima
in k, neither of which corresponded well to the point of maximum

curvature evident visually from plots of A vs. ρ. Therefore, we used
Loess smoothing (Loader, 1999) to fit the more flexible model

= +ρ μ A ε( )i i i (2)

to the data, where μ(Ai) is a polynomial fitted in a sliding window. This
model was fitted and its second derivatives obtained using the R locfit
package (Loader, 2013). The degree of loess smoothing in (2) is de-
termined by the bandwidth, h, which ranges from 0 to 1 and determines
how much of the data is used to fit each local polynomial. Exploratory
analysis showed that the location of kmax (and therefore the size of
Amax) was sensitive to h. A value of h = 0.001 provided curves which
approximated the data well in a reasonable computing time. Decreasing
h below this value resulted in little change in Amax but resulted in a
prohibitive demand for computing power. Hence, h = 0.001 was used
in all analyses.

2.3. Estimating usage boundaries using the Getis-Ord method

Getis-Ord, Gi* analysis compares the value of a variable in a given
cell and its neighbouring cells to all cells within the analysis field in
order to measure the intensity of clustering of high or low values. To
generate a Gi* score for a given cell, the sum for a cell and its neigh-
bours (local value) is then compared proportionally to the sum of all
cells (global value). The formula for the Getis-Ord, Gi* statistic is
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where w i,j denotes a spatial weights matrix with elements i, j, where

= <{w d if d d for all i j
otherwise

( ) 1,
0,

, .i j
i j

,
,

(4)

The numerator in (3) is the local sum of the variable x within a
circle of given radius (d) from the centre of cell i and including cell i
itself. The denominator in (3) is the sum of variable x across the entire
region. Gi* scores are standardized and the resulting Gi* value reported
is a standard normal deviate or z-score. Note that cells that are on land
or beyond the analysis field are treated as NAs.

We conducted Getis-Ord analysis for each species in the R en-
vironment (R version 3.5.1, R Development Core Team, 2018) via the
usdm package (Naimi et al., 2014) using UDs predicted by Wakefield
et al. (2017) as the response variable. As with Maximum Curvature,
Getis-Ord analysis is sensitive to the spatial extent of the initial analysis

Fig. 1. (continued)
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field. Therefore, following our approach with Maximum Curvature, we
limited the analysis field to cells that fell both within the boundaries of
the UK EEZ and the 95% home range of at least one UK colony (Fig. 1b).

In many ecological applications, a cell's local neighbourhood is
defined as all cells within a given radius d from the centre of cell x. To
determine d, we performed a First-Passage Time (FPT) analysis to
identify zones of area restricted search (ARS) and determine the spatial
scale at which individuals interact with the environment (Fauchald and
Tveraa, 2003; Lascelles et al., 2016). The scale of ARS was determined
across all trips recorded within each species during the study. The
average scale of ARS for a species was then estimated using an inter-
cept-only model of ARS scale in which colony identity and individual
identity were included as random effects. The average scale of ARS
estimated using this analysis was 10 km for Kittiwakes, 9 km for
Guillemots, 7 km for Razorbills and 4 km for Shags. The average scale
of ARS was used to set d for each species when calculating Gi* scores.

To delineate seabird hotspots using Gi* scores, we defined hotspots
in three ways as: 1) all cells within the top 1% of calculated Gi* scores
or 2) all cells within the top 5% of calculated Gi* scores; 3) we exploited
the fact that standardized Gi* scores are z-scores and can be used for
statistical testing to determine whether a cell belongs to a hotspot or
not. Use of the top 1% and top 5% of Gi* scores to delineate hotspots
has previously been used to identify potential seabird MPAs in the UK
by Kober et al. (2010), whereas the use of using the statistical sig-
nificance of Gi* scores to delineate hotspots is common practice and has
previously been applied to other animal populations (Sussman et al.,
2019; Yurkowski et al., 2019). The naive use of z-scores is problematic
due to multiple statistical testing, therefore we calculated adjusted p

values (p. adj) using false discovery rate methods to control the error
rate using the FDR methods described in Benjamini and Yekutieli, 2001
via the R stats package (R version 3.5.1, R Development Core Team,
2018). Here, we define cells as belonging to a hotspot if the probability
of that cell belonging to a hotspot is p. adj < 0.01. One caveat to the
use of standardized Gi* scores (z-scores) for statistical testing is that
typically the response variable being modelled is non-normal. However,
using a conditional randomization approach Getis and Ord (1992)
showed that Gi* scores are asymptotically normal provided a cell has at
least eight neighbours (see also: Ord and Getis, 1995; Nelson & Boots,
2008). The neighbourhood sizes in the current work ensure that after
excluding NA cells every cell has ≥8 neighbours.

2.4. Assessing the performance of different hotspot measures

We compared the resulting hotspots on the basis of: (i) The area
covered (km2) by different hotspots; (ii) the area covered by hotspots as
a percentage of the total area of the analysis field (Fig. 1b.); and (iii) the
percentage of the utilisation distribution density contained within the
boundaries of a given hotspot relative to total utilisation distribution
density. The total utilisation distribution density is estimated as the
summed density of birds at sea derived from Wakefield et al. (2017)
within the selected analysis field (Fig. 1b). In addition, we used the
Jaccard Index of similarity (Jaccard, 1912) to (iv) compare polygon
boundaries of identified hotspots with a sequence of population-level
UD contours ranging from the 5% UD to the 95% UD in 5% increments.
The Jaccard index is the ratio of intersection and union areas and is
scored from 0 to 1 with higher values denoting greater similarity. For
each study population, the Jaccard Index was calculated based upon a
comparison between the hotspots identified and the different UD con-
tours. we also identified the % UD contour which corresponded most
closely (highest Jaccard similarity) to the hotspot boundary delineation
by each method. This allowed us to assess how closely the hotspots we
identify align with the underlying predicted species distributions and
determine how much of a species range a given hotspot is expected to
cover (e.g. hotspots similar to the 50% UD will contain the majority of a
species core range).

3. Results

3.1. Black-legged Kittiwakes

At the UK-level, the top 1% and top 5% Gi* methods identified
hotspots along the entire east coast of Scotland and off the coast of
Yorkshire (Fig. 2), where some of the largest Kittiwake colonies are
located. Hotspots identified using statistically significant Gi* values or
Maximum Curvature also covered these regions but included additional
hotspot areas around the coast of Shetland, the Hebrides, Northern
Ireland and North-East England.

3.2. Common Guillemots

At the UK-level, top 1% and top 5% Gi* hotspot methods empha-
sized the importance of areas along the east coast of Scotland (Fig. 3).
Other hotspots were also evident around some of the larger UK co-
lonies, e.g. Flamborough Head, Yorkshire and Rathlin Island, Northern
Ireland. The larger areas identified by statistically significant Gi* or
Maximum Curvature hotspots covered these regions as well, but also
encompassed almost the entirety of Scottish inshore waters. In addition,
Guillemot hotspots in the Irish Sea, including areas off the Pembroke-
shire coast and Anglesey, were identified by both Maximum Curvature
or statistically significant Gi*.

3.3. Razorbill

At the UK-level, the top 1% and top 5% Gi* hotspot methods

Fig. 2. Hotspots identified at the UK-scale for Black-legged Kittiwakes using
Getis-Ord hotspot analysis with a neighbourhood size of d = 10 km based on
FPT analysis or Maximum Curvature. Getis-Ord hotspots defined as all cells
with the top 1% of calculated Gi* scores; all cells within the top 5% of Gi* score;
all cells in which Gi* scores were deemed statistically significant at the
α < 0.01 level. UK EEZ also displayed.
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emphasized the importance of a variety of locations around the UK.
Multiple hotspots were identified along the east coast of Scotland and
the Orkney Islands as well as hotspots in the Hebrides and around
Foula, Shetland (Fig. 4). Outside Scotland, the top 1% and top 5% Gi*
methods also identified hotspots along the Northern Irish coast, around
the Yorkshire coast, England and around the Pembrokeshire coast,
Wales. The hotspots identified by statistically significant Gi* values or
Maximum Curvature covered these regions as well but also extended
further off-shore.

3.4. European Shags

At the UK-level, the top 1% and top 5% Gi* hotspot methods em-
phasized the importance of a variety of locations around the UK
(Fig. 5). However, the area covered by hotspots was small and the
distribution of hotspots reflected the location of the larger Shag co-
lonies. For example, top 1% Gi* hotspots were identified around Foula
and the Isle of May in Scotland as well as the Isles of Scilly and the
Farne Islands in England, which represent the four largest Shag colonies
counted during the Seabird 2000 census (Mitchell et al., 2004). The
hotspots identified by either statistically significant Gi* scores or
Maximum Curvature covered a greater area but were still restricted to
coastal locations close to larger breeding colonies.

3.5. Hotspot efficiency across species

For all four species, hotspots based upon Maximum Curvature en-
compassed the largest areas (Table 1) and were most similar to the
80%–90% UD volume contours (Table 2) demonstrating that such
hotspots cover the majority of each species' foraging range. When using
Getis-Ord analysis, defining hotspots as those cells within the top 1% or

top 5% of Gi* scores gave smaller areas than hotspots defined using the
statistical significance of Gi* scores (Table 1). Across species, the larger
areas identified by Maximum Curvature or statistically significant Gi*
scores contained a higher proportion of the total utilisation distribution
density (> 60%), but even the smallest areas, defined using the top 1%
of Gi* scores, were expected to contain> 10% of the total utilisation
distribution density (Table 1). Hotspots based upon the top 1% or top
5% of Gi* scores for Kittiwakes, Guillemots and Razorbills were most
similar to 15% - 40% UDs. However, for Shags such hotspots showed
greater similarity to larger UD contours (Table 2). In addition, the si-
milarity between hotspots and the UD contours which they most closely
resembled were noticeably lower in Shags than in the other species
(Table 2).

4. Discussion

Ecologists and conservation managers often need to convert con-
tinuous measures of species distributions to categorical measures - ty-
pically polygons, delineating the extent of areas used most frequently.
Our analysis demonstrates how previously established hotspot mapping
techniques that have been used to identify seabird MPAs (Kober et al.,
2010; O'Brien et al., 2012) can be applied to predictions from species
distribution models fitted to GPS tracking data (Wakefield et al., 2017)
to map seabird hotspots. We also provide the first quantitative com-
parison of the performance of these different hotspot mapping techni-
ques.

Getis-Ord and Maximum Curvature methods, when applied to pre-
dicted utilisation distributions of four species of UK-breeding seabird,
generally identified similar core areas but with some important differ-
ences. Across all species, Maximum Curvature boundaries consistently
encompassed the largest areas and covered a greater percentage of the

Fig. 3. Hotspots identified at the UK-scale for Common Guillemots using Getis-
Ord hotspot analysis with a neighbourhood size of d = 9 km based on FPT
analysis or Maximum Curvature. UK EEZ also displayed.

Fig. 4. Hotspots identified at the UK-scale for Razorbills using Getis-Ord hot-
spot analysis with a neighbourhood size of d = 7 km based on FPT analysis or
Maximum Curvature. UK EEZ also displayed.
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total utilisation distribution density. Conversely, defining hotspots
using the top 1% of Gi* scores consistently identified hotspots with the
smallest areas and utilisation distribution coverage. At the UK-scale, the
areas identified by the different hotspot methods were relatively large.
For example, the combined area covered by currently designated UK
SPAs with marine components is 22,997 km2 with the largest single SPA

covering 3924 km2 (data source: http://jncc.defra.gov.uk/page-1409 -
SPAs with marine components, date accessed 20/11/2018, last updated
12/10/2018). In comparison, the Maximum Curvature boundary for
Kittiwakes covered 157,802 km2 and the corresponding top 1% Gi*
hotspots covered 5852 km2 (Table 1, Fig. 6). Results were similar for
the other three species, with identified hotspots often exceeding the size
of the UK's largest extant SPA and occasionally exceeding the total area
covered by all current marine UK SPAs. This was particularly true of
boundaries obtained using Maximum Curvature. These results highlight
the importance of UK waters for breeding seabirds but also demonstrate
that, alongside effectively managed MPAs, approaches that are im-
plemented at larger scales, such as industry-level regulations, will be
required to protect wide-ranging seabird species (Oppel et al., 2018).

Hotspots based on the top 1% or top 5% of Gi* scores tended to
encompass only inshore areas close to the largest colonies, whereas the
larger areas identified by statistically significant Gi* scores or
Maximum Curvature extended further offshore. Maximum Curvature
also produced hotspots with more complex boundaries than the simpler
shapes produced by Gi* hotspots. This arises because Getis-Ord analysis
involves smoothing across local neighbourhoods whereas Maximum
Curvature does not. Previously, Getis-Ord analysis has been used to
assist in the design of potential SPAs by delineating hotspots as poly-
gons that encompass a given percentage of the top Gi* scores (Kober
et al., 2010). There is no correspondence between Getis-Ord thresholds
and numerical population thresholds (i.e. the top 1% Getis-Ord hotspot
will not necessarily contain 1% of the population), but the hotspots
identified will cover a given percentage of the analysis field (Kober
et al., 2012). Therefore, Gi* percentage thresholds are not closely
linked to population-based thresholds but are more akin to area-based
thresholds. Similarly, Maximum Curvature boundaries not are not di-
rectly interpretable in terms of numerical population thresholds. Ra-
ther, this method balances the proportion of the population protected
against the size of the protected area.

Significance testing of Gi* scores has not previously been used to
delineate seabird hotspots around the UK but has been used to identify
hotspots for various marine predators (including seabirds) in polar re-
gions (Yurkowski et al., 2019) and is also used in other fields within
conservation and ecology (Ord and Getis, 1995; Harris et al., 2017;
Sussman et al., 2019). When applied to our data, the hotspots identified
were typically larger than those defined using the top 1% and top 5%

Fig. 5. Hotspots identified at the UK-scale for European Shags using Getis-Ord
hotspot analysis with a neighbourhood size of d = 4 km based on FPT analysis
or Maximum Curvature. UK EEZ also displayed.

Table 1
Summary of the total area of hotspots and percentage the total utilisation distribution density contained within hotspots identified by Maximum Curvature or Getis-
Ord analysis for each species at the UK-scale. UK analysis field comprises all cells within the UK EEZ and within the 95% home range of at least one UK colony
(Fig. 1b). Species codes: BLKI = Kittiwake, COGU = Guillemot, RAZO = Razorbill, EUSH = Shag.

Analysis Area of hotspots identified Hotspot area as % of UK analysis field % of total utilisation distribution density within hotspot

BLKI
Top 1% Gi* hotspot 5852 km2 1.0% 11.7%
Top 5% Gi* hotspot 29,256 km2 5.0% 35. 8%
Statistically significant Gi* hotspot 122,623 km2 20.9% 74.1%
Maximum curvature 157,802 km2 26.9% 80.4%

COGU
Top 1% Gi* hotspot 2933 km2 1.0% 10.5%
Top 5% Gi* hotspot 14,663 km2 5.0% 33.5%
Statistically significant Gi* hotspot 62,648 km2 21.3% 71.1%
Maximum curvature 95,093 km2 32.4% 83.1%

RAZO
Top 1% Gi* hotspot 3570 km2 1.0% 18.2%
Top 5% Gi* hotspot 17,848 km2 5.0% 39.2%
Statistically significant Gi* hotspot 46,999 km2 13.2% 59.5%
Maximum curvature 108,515 km2 30.4% 80.5%

EUSH
Top 1% Gi* hotspot 458 km2 1.0% 20.4%
Top 5% Gi* hotspot 2288 km2 5.0% 44.4%
Statistically significant Gi* hotspot 6235 km2 13.5% 68.2%
Maximum curvature 10,201 km2 22.1% 85.4%
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Gi* methods but smaller than Maximum Curvature boundaries. It
should be noted that there is not necessarily a close correspondence
between statistical significance and the top x% of Gi* scores. For ex-
ample, a completely random spatial pattern will still produce Gi* scores
in which it is possible to define a top 1% even though no statistically
significant hotspots would be identified.

Alongside methods such as Maximum Curvature and Getis-Ord
analysis, kernel density estimation of population UDs could also be used
to identify important marine areas or assess overlap with existing or
proposed MPAs using UD percentage volume contours. For example,
followed this approach, Doherty et al. (2017) show a high degree of
overlap between areas of high basking shark (Cetorhinus maximus)
usage and the proposed Sea of the Hebrides MPA, but also identified
areas of relatively high usage outside of this region. Among the ad-
vantages of UDs are their widespread use by ecologists and their ease of
interpretation. In addition, UD volume contours are designed to de-
lineate the minimum area on which the probability to relocate an an-
imal is equal to a specified value (e.g. 0.95 for a 95% home range,
Calenge, 2011). Therefore, by design, they are efficient in identifying
areas that encompass a specified usage threshold within the smallest
footprint. However, the choice of usage threshold is subjective and,

whereas local measures of spatial association like Gi* are designed to
test the null hypothesis that observed patterns arise by chance, UD
contours are not.

Hotspots for Kittiwakes, Guillemots and Razorbills, identified
through Maximum Curvature or statistically significant Gi* scores, were
most similar to larger UD contours (ranging between the 60% UD–85%
UD), and would therefore be expected to encompass most of a species
foraging range. Hotspots based upon the top 1% or top 5% of Gi* scores
cover a smaller area but would still be expected to approximate UD
contours smaller than the 50% UD (often used to indicate core range)
relatively well. Sussman et al. (2019) also noted high similarity be-
tween UD-type measures of distribution (in their case, estimated via
kernel density analysis) and Getis-Ord derived hotspots in waterbirds.
However, unlike the other species assessed here, Getis-Ord hotspots for
Shags had lower similarity to UDs. One reason this may occur is if the
local smoothing introduced by Getis-Ord analysis does not reflect the
clumped and often highly localized nature of Shag distributions parti-
cularly well (Bogdanova et al., 2014). Maximum Curvature, which does
not involve local smoothing, resulted in hotspots with greater similarity
to estimated UD contours in Shags, but even in this case similarity was
much lower than the corresponding similarity indices observed be-
tween Maximum Curvature hotspots and utilisation distributions in the
other three species. One potential explanation is that because the
maximum foraging range observed in Shags during the study was 35 km
compared to 300 km in Kittiwakes, 340 km in Guillemots and 305 km in
Razorbills the spatial scale (sensu Goodchild, 2001) of our analyses
differs between the species. Specifically, due to the interaction between
relatively limited foraging range of Shags and the grid resolution used
for analysis, hotspots defined using Maximum Curvature or Getis-Ord
hotspot boundaries tend to be coarser or blockier than the underlying
utilisation distributions resulting in relatively low similarity even when
high density areas are successfully identified. In the current work we
were limited to a grid resolution of 0.5 km2 for Shags due to constraints
on the spatial resolution of the environmental data that was used for
species distribution modelling (Wakefield et al., 2017). The result also
highlights how approaches that may be suitable for one species may not
perform as well on another species that forages at a different spatial
scale (Oppel et al., 2018).

The Wakefield et al. (2017) models pool data across years primarily
to ensure that model computing time remained within tractable limit.
Consequently, the hotspots identified here are also calculated across
years, but pooling across years in this manner does not allow us to
ascertain whether a hotspot is temporally consistent from one year to
the year next. Previous work has demonstrated that some temperate,
neritic seabird species often forage in consistent locations and habitats
within and across years (Woo et al., 2008; Wakefield et al., 2015)
suggesting that, on average, the factors determining the marine dis-
tribution of breeding seabirds can be reliably estimated using biotele-
metry, time-averaged environmental covariates, and central-place
foraging theory (Wakefield et al., 2017). The finding that, during the
breeding season, the density of breeding birds is greatest in close vici-
nity to the largest colonies is typical of central-place foragers (Dean
et al., 2015; Briscoe et al., 2018). Comparison of seabird tracking versus
at-sea transect datasets has also shown that agreement between them is
greatest closest to breeding colonies (Sansom et al., 2018). However,

Table 2
Summary table displaying for each hotspot method the corresponding UD contour to which it was most similar together with the calculated Jaccard similarity
measure, J.

Species Top 1% Gi* Top 5% Gi* Stat. sig. Gi* Max. curvature

BLKI 20% UD, J = 0.45 40% UD, J = 0.74 80% UD, J = 0.86 85% UD, J = 0.93
COGU 15% UD, J = 0.63 35% UD, J = 0.78 70% UD, J = 0.87 80% UD, J = 0.86
RAZO 20% UD, J = 0.63 40% UD, J = 0.74 60% UD, J = 0.83 80% UD, J = 0.86
EUSH 55% UD, J = 0.12 75% UD, J = 0.12 85% UD, J = 0.21 90% UD, J = 0.38

Fig. 6. Log area of hotspots identified for each species vs. the percentage of the
total utilisation distribution density expected to be within the hotspot. Points
are colour coded by species with different symbols denoting the different hot-
spot delineations. The grey histogram is for reference only and shows the fre-
quency distribution of the areas of existing SPAs with marine components
within the UK. The dashed, vertical line represents the combined area of all
SPAs with marine components currently designated. Thus, points to the right of
this dashed vertical line represent hotspots whose total area exceeds the com-
bined area of all current UK marine SPAs. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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because seabirds are known to travel further in years of poor resource
availability (Monaghan et al., 1994) there may be periods when models
fitted to pooled data predict distributions poorly. In dynamic systems,
temporally flexible MPA boundaries, set in response to changes in an-
imal movements and population size may prove efficient (Lewison
et al., 2015). Species distribution models can be conducted on an an-
nual basis and techniques for calculating Gi* hotspots that include a
temporal component are available (ESRI, 2016), however, the limiting
factor is likely to be obtaining enough tracking data over enough years
to build such models.

The hotspots identified in the current study include all periods of
breeding birds' activity budgets outside the colony (commuting, resting,
foraging, etc.). Consequently, the importance of areas close to the
colony that we have identified may be upweighted if birds spend a
significant amount of time rafting or commuting in areas close to the
colony. In addition, the distribution maps and hotspots analyses pre-
sented here only represent the behaviour of breeding birds during the
late incubation and early chick rearing period of the annual cycle and
may differ from patterns seen in non-breeders and immature birds
(Votier et al., 2017) and at other times of the year. A further refinement
of a boundary-based approach to seabird management would be to fit
species distribution models to locations where birds were engaged in
specific behaviours, such as foraging (Cleasby et al., 2015). This may
result in stronger associations between habitat and distribution and
allow identification of areas and times where birds are particularly
exposed to risk from anthropogenic activities. However, the importance
of areas that are used predominantly for rafting or commuting should
not be under-stated (Weimerskirch et al., 2010). For example, foraging
birds may be more vulnerable to bycatch, commuting birds to inter-
actions with wind turbines, and resting birds to oil contamination.
Mapping these activities in space and time would allow targeted miti-
gation measures, such as seasonal and locally restricted fishery closures.

Each of the methods described here defines hotspots in a subtly
different way (Table 3), thus the choice of which method to use depends
on the objectives of scientists and policy makers. For example, if one
sought to design MPAs using numerical population thresholds, then
utilisation distributions are perhaps the most directly applicable
method (e.g. to protect 10% of the population at any time select the
10% utilisation distribution contour). However, in certain circum-
stances it may not be clear what percentage of the population should be
protected, and methods such as Maximum Curvature or Getis-Ord
analysis provide a means of identifying hotspots without prior specifi-
cation of this value. The use of Gi* as z-scores also provides a way to
examine whether hotspots are statistically significant and is the only
approach adopted here that allows for statistical testing of identified
hotspots. It is also clear that the spatial scale at which seabirds forage
and aggregate will also impact on how different hotspot approaches
perform. For example, Maximum Curvature boundaries will tend to
cover large areas unless birds have short foraging ranges (Fig. 6). In
addition, the spatial smoothing required for Getis-Ord analysis can re-
sult in the loss of information on finer-scale patterns in seabird dis-
tribution for species with limited foraging ranges, especially when the
underlying spatial resolution of the analysis is also relatively coarse. In
contrast, for wider ranging species spatial smoothing over a local
neighbourhood may be beneficial as there will typically be some un-
certainty in the underlying species distributions used for hotspot
mapping. For example, there may be uncertainty in transect counts, or
in the habitat data used for species distribution modelling. Moreover,
there is an inherent random component to animal behaviour because
recorded locations are only a punctual sample of the possible locations
an animal may be found within a habitat patch (Benhamou and
Cornélis, 2010).

Here, we show how a combination of GPS tracking technology and
predictive species distribution modelling can be used to identify seabird
hotspots using previously established techniques for informing the
identification of MPAs (Kober et al., 2010; O'Brien et al., 2012). Key

features of this approach are that species distribution modelling and,
hence, downstream hotspot mapping, is conditioned on species-habitat
relationships and can be performed at a large scale across multiple
colonies. Such features will assist in efforts to identify important at sea
areas. For example, information on species-habitat relationships has
proven important when designing protected areas (Hyrenbach et al.,
2000) including the use of both static and/or persistent oceanographic
features to define MPA boundaries (Embling et al., 2010). Within the
UK, such habitat modelling has already been used as the basis for a suite
of recently classified marine SPAs (e.g. Wilson et al., 2014). Wakefield
et al. (2017) also demonstrates that intra- and inter-specific competi-
tion across colonies as well as coastal morphology often results in dis-
tributions radically different from those predicted using foraging range
alone. Therefore, conditioning predicted seabird distributions on en-
vironmental variables to identify important seabird areas is likely to
represent an improvement on previously established techniques such as
those based upon foraging radii (BirdLife International, 2010; Thaxter
et al., 2012; Soanes et al., 2016) for marine planning. More broadly,
combining maps of identified hotspots or population UDs with other
sources of marine data such as existing MPA boundaries and anthro-
pogenic impacts will also help identify areas of high conservation
priority, including within current MPAs that may not have originally
been designated for the species in question (Bailey and Thompson,
2009). For instance, by combining hotspot maps with risk mapping we
could target regions where management of threats would have the
greatest impact on a species or colony (Bradbury et al., 2014; Wilson,
2016; Bradbury et al., 2017). The approaches outlined here could also
be augmented by a more localized approach in which hotspots for
important breeding colonies are identified (Cleasby et al., 2018). Ulti-
mately, such work will contribute to our overall understanding of fac-
tors affecting seabird distributions at sea by identifying important
seabird areas from local to national level spatial scales. More broadly,
the use of SDM outputs to identify spatial boundaries and hotspots has
wide applicability to the delineation of protected areas for other animal
species in both marine and terrestrial realms. Therefore, the outputs
from this work form a useful and valuable resource given the increasing
political, environmental, moral and legal imperatives to identify pro-
tected areas at sea and improve the management of the marine en-
vironment.
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