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Abstract—Real-world computationally expensive design opti-
mization problems with discrete variables pose challenges to
surrogate-based optimization methods in terms of both effi-
ciency and search ability. In this paper, a new method is intro-
duced, called surrogate model-aware differential evolution with
neighbourhood exploration, which has two phases. The first
phase adopts a surrogate-based optimization method based on
efficient surrogate model-aware search framework, the goal
of which is to reach at least the neighbourhood of the global
optimum. In the second phase, a neighbourhood exploration
method for discrete variables is developed and collaborates
with the first phase to further improve the obtained solutions.
Empirical studies on various benchmark problems and a real-
world network-on-chip design optimization problem show the
combined advantages in terms of efficiency and search ability:
when only a very limited number of exact evaluations are
allowed, the proposed method is not slower than one of
the most efficient methods for the targeted problem; when
more evaluations are allowed, the proposed method can ob-
tain results with comparable quality compared to standard
differential evolution, but it requires only 1% to 30% of exact
function evaluations.

1. Introduction

Many real-world design optimization problems require
computationally expensive simulations to evaluate candidate
solutions. To address these problems, using computation-
ally cheap surrogate models to replace expensive exact
evaluations is a routine approach. For design optimization
problems, the objective functions are often continuous but
the design variables are or include discrete variables in
many real-world applications (e.g., mixed-integer problems).
Far less research has been carried out for expensive design
optimization problems with discrete variables (EDOD) than

that focusing on expensive continuous optimization. Dis-
crete variables include numerical, categorical and Boolean
variables, etc. Categorical and Boolean variables involve
combinatorial space, where the distance measure between
candidate solutions is a main research concentration [1], [2]
and is not the goal of this research. Instead, we focus on dis-
crete numerical variables, which are sometimes unavoidable
in product design and manufacturing. For example, [3], [4]
show that most discrete variables in electronic circuit and
system design (e.g., number of fingers of transistors, design
grids) are discrete numerical variables and other categories
of discrete variables are often not involved. In this paper, we
try to obtain combined advantages on efficiency and solution
quality for complex EDOD. In particular, the following two
requirements must be met at the same time: (1) The allowed
number of exact evaluations can be very limited due to
expensive evaluations; (2) High search ability is required
because of both discontinuous landscapes and problem com-
plexity. This poses significant challenges to surrogate-based
non-population optimization algorithms (SBNOAs) and sur-
rogate model-assisted evolutionary algorithms (SAEAs) [5],
[6], [7].

For SBNOAs, successful methods that handle discrete
numerical variables include [5], [8], [9], etc. The generation
of possible promising candidate solutions is based on a ran-
dom sampling strategy [5], solving an auxiliary optimization
problem [9], or traditional heuristic search methods [8] such
as branch and bound. A reasonably optimal solution can of-
ten be obtained within a limited number of exact evaluations.
However, because matured population-based search engines
are often not adopted for the search, obtaining highly opti-
mized results (e.g., comparable to standard EA) for complex
problems and / or problems with dozens of variables is often
a challenge even when more exact evaluations are allowed
for many SBNOAs. Many SAEA methods, on the other
hand, can often obtain highly optimized solutions, but may



have difficulty to obtain a great efficiency improvement due
to the nature of standard EAs (see Section 3 for details).
[10] develops a radial basis function (RBF)-assisted genetic
algorithm for mixed continuous and discrete optimization
and requires 30% to 80% exact evaluations compared to
a standard genetic algorithm obtaining comparable results.
The surrogate model-aware evolutionary search (SMAS)
[11] framework uses a population-based search but with
a new algorithm structure different from standard EA. It
inherits the high search ability of EA to a large extent, but
avoids the more necessary function evaluations of SAEAs
with a standard EA structure. Comparisons show a substan-
tial speed improvement compared to several state-of-the-art
SAEAs using 20-30-dimensional continuous optimization
problems [11]. However, pilot experiments show that SMAS
can be trapped in local optima for EDOD.

To address the above challenges, a new method,
called two-phase surrogate model-aware differential evo-
lution (DE) with neighbourhood exploration (SMDN), is
proposed. SMDN has two main innovations for achieving
the combined high search ability and high efficiency: (1)
Proposing a two-phase approach rather than traditional one
phase SAEA or memetic SBO: The first phase adopts an
improved SMAS framework-based SAEA for handling dis-
crete variables, the goal of which is to reach at least the
neighbourhood of the global optimum efficiently even when
being trapped in local optima. A neighbourhood exploration
method is used in the second phase and is collaborating
with SMAS to jump out of local optima and shorten the
distance to the global optimum. (2) Proposing a neighbour-
hood exploration method for discrete numerical variable
optimization: unlike local search in memetic algorithms, the
neighbourhood exploration has an opposite goal. It must
have the ability to find potentially good candidates with
discrete numerical variables, to improve diversity and to
make use of surrogate modeling in the neighbourhood.
SMDN aims to:

• obtain comparable efficiency with state-of-the-art
SBNOAs using a very limited number of exact eval-
uations;

• provide highly optimized results comparable to stan-
dard EAs when slightly more exact evaluations are
allowed, including problems with both discontinuous
and rugged landscapes;

• use much fewer exact evaluations than standard EAs;
• although concentrating on fundamental problem (un-

constrained EDOD), it should be straightforward to
be applied to more general problems, such as mixed-
integer problems, and has a good compatibility with
existing successful techniques, e.g., constraint han-
dling, hybrid surrogate models [12].

The remainder of this paper is organized as follows.
Section 2 briefly introduces the basic techniques. Section 3
presents the SMDN method. Section 4 presents results of the
empirical study, including benchmark problems and a real-
world electronic engineering problem. Concluding remarks
are presented in Section 5.

2. Basic Techniques

2.1. Gaussian Process Surrogate Modeling

In literature, Gaussian process (GP) [13] and RBF sur-
rogate modeling are widely used for the targeted problem.
GP modeling is adopted in SMDN because GP modeling
can provide an estimate of the model uncertainty for each
predicted point and several presceening methods utilizing
the prediction uncertainty show good performance [14].
To model an unknown function y = f(x), x ∈ Rd, GP
modeling assumes that f(x) at any point x is a Gaussian
random variable N(µ, σ2), where µ and σ are two constants
independent of x. For any x, f(x) is a sample of µ+ ε(x),
where ε(x) ∼ N(0, σ2). By maximizing the likelihood
function that f(x) = yi at x = xi (i = 1, . . . ,K) (where
x1, . . . , xK ∈ Rd and their f -function values y1, . . . , yK are
K training data points) and best linear unbiased prediction:

f̂(x) = µ̂+ rTC−1(y − 1µ̂) (1)

the mean squared error is:

s2(x) = σ̂2[1− rTC−1r +
(1− 1TC−1r)2

1TC−1r
] (2)

where r = (c(x, x1), . . . , c(x, xK))T . C is a K ×K matrix
whose (i, j)-element is c(xi, xj). c(xi, xj) is the correlation
function between xi and xj [13]. y = (y1, . . . , yK)T and
1 is a K-dimensional column vector of ones. Detailed
implementations are in [11].

For a minimization problem, given the predictive distri-
bution N(f̂(x), s2(x)) for f(x), a lower confidence bound
(LCB) prescreening of f(x) is used as in [11] to promote
explorative global search:

flcb(x) = f̂(x)− ωs(x)
ω ∈ [0, 3]

(3)

where ω is a constant. More details are in [15].

2.2. Individual Solution-based Training Data Selec-
tion

There are different simple empirical methods to select
proper training data points from a database for surrogate
modeling. A revised individual solution-based training data
selection (ISS) method [16] is used in SMDN. Given a
database D, and a population of candidate solutions U to
be predicted, ISS for discrete variables works as follows:

(1): Round vectors in D and U to the nearest
allowed discrete values.

(2): For each solution in U , take the nearest s1×d
solutions in D (based on Euclidean distance) as
temporary training data points.

(3): Combine all the temporary training data points
and remove the duplicate ones.



2.3. Differential Evolution

DE is an effective and popular global optimization al-
gorithm. Besides continuous optimization, [17] shows its
good ability to handle mixed-discrete optimization problems
by a quantization method: the floating numbers are used
in the DE operators and they are rounded to the nearest
allowed values only for function evaluations. DE with this
quantization method is used as the search engine in SMDN.

Suppose that P is a population and the best individual
in P is xbest. Let x = (x1, . . . , xd) ∈ Rd be an individual
solution in P . To generate a child solution u = (u1, . . . , ud)
for x, the DE/current-to-best/1 strategy works as follows.

A donor vector is first produced by mutation:

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (4)

where xr1 and xr2 are two different solutions randomly
selected from P and also different from xbest and xi.
F ∈ (0, 2] is the scaling factor [17]. Then the following
crossover operator is applied to produce the child u:

(1) Randomly select a variable index jrand ∈
{1, . . . , d},

(2) For each j = 1 to d, generate a uniformly
distributed random number rand from (0, 1)
and set:

uj =

{
vj , if (rand ≤ CR)|j = jrand
xj , otherwise

(5)
where CR ∈ [0, 1] is a constant called the
crossover rate.

3. The SMDN Algorithm

3.1. The SMDN Framework

The SMDN algorithm works as follows.
The SMDN Algorithm

Step 1: Use Latin Hypercube sampling [13] to sample
α candidate solutions from [a, b]d, where a and
b are the lower and upper bounds of the decision
variables, respectively. Perform exact evalua-
tions (including quantization) to these points
and let them form the initial database D.

Step 2: If a preset stopping criterion is met (e.g., a
certain maximum number of exact evaluations),
output the best solution in D; otherwise find the
current optimization phase (Phase 1 / Phase 2).
Go to Step 3.

Step 3: Select from D the λ best candidate solutions in
terms of exact evaluation to form a population
P .

Step 4: Adaptively update the crossover rate. Ap-
ply the DE current-to-best/1 mutation (4) and
crossover (5) operations on P to generate λ
child solutions.

Step 5: Use ISS to select training data to construct a
GP surrogate model for the λ child solutions.

Step 6: Prescreen the λ child solutions generated in
Step 4 by using the GP model with LCB pre-
screening. Select the estimated best child so-
lution xbe based on the LCB values of each
candidate solution.

Step 7: (1) If xbe can be found in D, (i) in Phase 1, go
to Step 7.1; (ii) in Phase 2, go to step 7.2. (2)
Otherwise, perform an exact evaluation to xbe.

Step 7.1:Use the proposed perturbation method (Section
3.3) to generate a new candidate solution and to
perform exact evaluation to it.

Step 7.2: Use the proposed neighbourhood exploration
method (Section 3.3).

Step 8: Update D by adding the new solutions and
their exact function values. Go back to Step 2.

In SMDN, Phase 1 is used from the beginning until the
best solution found so far does not improve after TH exact
evaluations. At this point, we assume that: (1) The search
will not be effective in future iterations when only using the
strategy from Phase 1. (2) The obtained solution is not far
from the global optimum due to the effective Phase 1 search.
Our pilot experiments verify that these two assumptions
happen in almost all of the test cases. In Phase 2, for the
revisited (good) solutions (xbe which is already included in
D), instead of only using the proposed perturbation method,
an iterative neighbourhood exploration operation is carried
out. Note that in Phase 2, the neighbourhood exploration
is only applied to revisited solutions. The reason is that
SMAS with DE-based search is also vital in Phase 2 when
appropriate solutions from neighbourhood exploration are
added to the population.

3.2. Phase 1: The SMAS-based SAEA

The key idea of SMAS [11] is inherited in SMDN. In
each iteration, the λ current best candidate solutions form
the parent population (it is reasonable to assume that the
search focuses on the promising subregion) and the pre-
screened best candidate in the child population is selected to
replace the worst one in the parent population. Hence, only
at most one candidate is changed in the parent population
in each iteration; so the best candidate in the child solutions
in several consecutive iterations may be quite near to each
other, which will then be evaluated and are used as training
data points. Due to this, the training data points describing
the current promising region can be much denser compared
to those generated by a standard EA population updating
mechanism, which may spread in different subregions of
the decision space and where there may not be sufficient
training data points around the candidate solutions to be
prescreened. Therefore, SMAS can obtain comparable high
quality solutions in much fewer exact evaluations than sev-
eral state-of-the-art SAEAs with the standard EA structure
[11].

Because a higher search ability is required for EDOD,
four improvements are done to the standard SMAS-based



SAEA [11]. The DE/current-to-best/1 mutation strategy and
the ISS method are used to replace the DE/best/1 and the
training data selection method using the latest available data.
The discussion and experimental verifications are in our
earlier work [16] and are not repeated here.

The crossover rate CR is adaptively adjusted in SMDN.
CR is usually the most sensitive parameter in standard DE
and good values for CR generally fall into a small range for
some problems [18]. [18] proposes an effective self-adaptive
method to select CR. Because a standard EA structure is
not used and only one mutation strategy is used in SMAS, a
method is proposed based on similar ideas. CR is generated
from N(CRm, 0.1) for each pair of candidate solutions. In
the first L iterations, the initial CRm is used. Then, the
following procedure will be used.

The Self-Adaptive Generation of CR

CRm = median(CRM)
FOR i = 1 to λ
CRi = Normrnd(CRm, 0.1)
IF CRi < 0, CRi = 0; IF CRi > 1, CRi = 1;

END
CRM = CRM ∪ CRb

where the function Normrnd generates a Gaussian dis-
tributed random number, and CRb refers to the CR value
used for generating xbe (see Step 6), which will be added
to the memory of successful CR values, CRM . It is rea-
sonable to assume that most of the CR values used for
generating xbe are appropriate for the given problem.

In Phase 1, when xbe can be found from D, a new
candidate solution is generated by the proposed perturbation
method to explore the neighbourhood, as will be introduced
in the next subsection.

3.3. Phase 2: SMAS+Neighbourhood Exploration

Experimental results show that for complex problems
with both discontinuous and (very) rugged landscapes, there
is a high probability that the result is trapped in local optima
near the global optimum when only using Phase 1 (Sec-
tion 3.2). A neighbourhood exploration method is therefore
proposed. Different from local search, the neighbourhood
exploration aims to jump out of local optima, to introduce
diversity which cannot be obtained by Phase 1 and also to
directly improve the solution. Starting from a revisited xbe,
neighbourhood exploration works as follows.

The Neighbourhood Exploration Method for Discrete
Numerical Variables

(1): Generate a new candidate solution xne using
the perturbation method below.

(2): If the number of maximum iterations TN is
met, go to Step 5; otherwise go to Step 3.

(3): Construct a surrogate model using the nearest
s2 × d points to xne. Estimate the value of xne
using the GP model with LCB prescreening.

(4): If improvement based on prescreening is
shown compared to xbe, evaluate xne using

an exact evaluation. Update the database D. If
f(xne) is better than f(xbe), replace xbe by xne
and go back to Step 2.

(5): Generate an opposite point of the (final up-
dated) xbe in the neighbourhood and evaluate it
using an exact evaluation. Update the database
D.

The Perturbation Method

(1): Generate the number of units of perturbation
by ceil(Normrnd(0,1)).

(2): Generate the percentage of selection for per-
turbation for each variable x1, . . . , xd, the sum
of which is 100%. xi with the same value in P
have two times the rate of selection than those
with different values in P .

(3): Select a single variable xi to be perturbed by
roulette wheel selection with the above percent-
age.

(4): Perturb xi by the number of units from Step
1 in a random direction.

Here the function ceil(Normrnd(0, 1)) means to get the
nearest integer larger than Normrnd(0, 1). Hence, in about
95% rate, one or two units will be used. In Step 2, if
the xi have the same value in P , xi cannot be changed
using DE mutation (4); we therefore assign a higher rate of
perturbation to it.

Method to generate an opposite point

(1): Sort the database D in ascending order (consid-
ering a minimization problem). Save the first
Dj,i 6= xi, j = 1, . . . , nD, i = 1, . . . , d into
DFi.

(2): LBi = min(xi, DFi), UBi = max(xi, DFi),
i = 1, . . . , d.

(3): The neighbourhood opposite point xoi = LBi+
UBi − xi, i = 1, . . . , d.

where nD is the number of points in D. Some traces of
opposite DE [19] can be observed. But rather than using
the original space, we define a subregion using currently
being visited good solutions as the search space and explore
the opposite side of it for diversity enhancement. Our pilot
experiments show that this method performs especially well
for problems with rugged landscapes.

4. Experimental Studies

4.1. Parameter Settings

Most of the parameters in SMDN are inherited from (or
similar to) SAEAs based on SMAS with DE search and ISS.
We set α = 5 × d, λ = 5 × d, F = 0.8, ω = 2, s1 = 0.5
and s2 = 5 in our experiments. They are not sensitive when
following the setting rules, which are verified by [16], [20].
More details of the reasons behind the parameter setting
rules are provided in [16], [20]. The newly added parameters
are CRm, L, TN and TH . To avoid a wrong judgement of



Table 1. TEST INSTANCE F1-F9 USED IN THE EXPERIMENTAL STUDIES

Problem Function Range Unit Global
Opt.

Property

F1 Problem 8.7
[21]

[−100, 100]4 1 0 multimodal

F2 Problem 8.3
[21]

[−100, 100]5 1 -737 rugged

F3 nvs09 [22] [3, 9]10 1 -43.13 unimodal
F4 Rastrigin

[23]
[−30, 30]10 0.5 0 very rugged

F5 Ellipsoid
[23]

[−30, 30]15 1 0 unimodal

F6 Rosenbrock
[23]

[−30, 30]15 1 0 narrow
valley,
multimodal

F7 Step [23] [−30, 30]20 1 0 unimodal
F8 Ackley [23] [−30, 30]20 0.5 0 rugged
F9 Griewank

[23]
[−600, 600]20 1 0 rugged

Phase 1 or Phase 2 when the best solution found so far does
not improve, TH may not be small, but it is not necessary to
make it very large. For problems with less than 10 variables,
we set TH = 80, while for problems around 20 variables
(or more), we set TH = 150. To balance the effectiveness of
neighbourhood exploration and the possible number of exact
evaluations, an empirical setting is TN = 50. CRm and L
are related to the self-adaptive crossover rate generation. L
is not sensitive but cannot be too large or too small: We set
L to 50. Experiments [11], [16] show that CR = 0.8 often
works well for many unimodal and multimodal problems
using SMAS, but may not work well for some problems with
rugged landscapes. Hence, we set initial CRm to 0.8. The
above settings are used to all the test problems of various
kinds to verify the robustness of SMDN.

4.2. Test Problems

Nine benchmark problems from [21], [22], [23] (see
Table 1) and a real-world network-on-chip (NoC) design
optimization problem are used to test SMDN. All these
problems have continuous objective functions but with dis-
crete numerical variables, which are the targeted EDOD
problem. The experiments are run on an Intel core i7 3.0GHz
computer in the MATLAB environment under the Linux
system. It can be seen that besides discontinuous landscapes,
the problems themselves include unimodal / multimodal
(only with a few local optima) / (very) rugged (numerous
local optima) landscapes with dimensions from 4 to 20. We
use these problems to mimic real-world design optimiza-
tion problems with different complexity. Note that the 15-
dimensional Rosenbrock function has a very narrow valley
with a local optimum located in it. Although the general
landscape of the continuous Griewank function is smoother
when the dimensionality is higher, the discontinuous land-
scape adds additional difficulty. For F1-F3, F5, F7 and F9,
we set 1000 evaluations. For F4, F6 and F8, we set 2000
evaluations. In all the experiments, they converge (reach the

Table 2. STATISTICS OF THE BEST FUNCTION VALUES OBTAINED BY
PURE SMAS FOR F1-F9

Problem best worst average median std sr
F1 0 6 0.3 0 1.34 95%
F2 -737 -727 -733.35 -732 3.62 45%
F3 -43.13 -43.13 -43.13 -43.13 0 100%
F4 1 15 8.30 8 5.12 0
F5 0 0 0 0 0 100%
F6 0 320 84.53 14 99.44 10%
F7 0 1 0.05 0 0.22 95%
F8 0 0 0 0 0 100%
F9 0.8 0.99 0.96 0.96 0.04 0

global optimum or get stuck in a local optimum) far before
the assigned maximum number of exact evaluations, except
F9, for which the objective function value is improving in
every 100 exact evaluations. 20 runs are carried out for F1-
F9.

4.3. SMDN Performance and Comparisons

An SMAS-based SAEA is tested first to show the
performance of SMAS for EDOD with numerical discrete
variables. Only DE/current-to-best/1 mutation and ISS are
used besides the basic SMAS from [11]. It can be considered
as a part of Phase 1 of SMDN. The results are shown in
Table 2, where sr refers to the success rate of reaching the
global optimum. It can be seen that when only SMAS is ap-
plied: (1) for unimodal problems, the performance often has
100% success, (2) for multimodal problems without rugged
landscapes, the performance is good, (3) for problems with
(very) rugged surfaces, the success rate of SMAS is often
low.

We then investigate the efficiency of the above SAEA
using a very limited computing budget. We use three uncon-
strained mixed-integer global optimization problems from
[5] (6 problems are used in [5] and a few of them are similar.
3 of them with different types are used for comparison in
this paper) and the comparison is shown in Table 3. It is
easy to extend the above SAEA for solving mixed-integer
optimization by not rounding the continuous variables to the
nearest integers in surrogate modeling. The average values
are compared for both methods. It can be seen that when
using a very restricted computing budget, the efficiency of
SMAS is comparable to SO-MI [5], which is one of the most
efficient methods designed for very expensive mixed-integer
optimization.

The performance of SMDN is shown in Table 4. Com-
pared to Table 2, a substantial improvement in terms of
solution quality can be observed for multimodal problems
and especially for every problem with (very) rugged land-
scapes. For example, for F6, the 10% success rate of pure
SMAS increases to 95% when SMDN is used. The improve-
ments verify the effectiveness of the two phase approach
and the neighbourhood exploration phase. The efficiency
of SMDN is equal to or better than pure SMAS. This is
straightforward because: (1) for problems which can be well



Table 3. COMPARISON OF SMAS AND SO-MI USING T10,T11,T13
FROM [5]

Method-Problem 100 eval. 200 eval. 300 eval. 500 eval.
SMAS-T10 -491.20 -527.40 -528.09 -528.09
SOMI-T10 -386.33 -420.91 -432.59 N.A.
SMAS-T11 -35.08 -42.57 -42.93 -43.07
SOMI-T11 -42.92 -42.99 -42.99 N.A.
SMAS-T13 -4.42 -7.76 -9.61 -11.37
SOMI-T13 -4.89 -8.48 -9.63 N.A.

Table 4. STATISTICS OF THE BEST FUNCTION VALUES OBTAINED BY
SMDN FOR F1-F9

Problem best worst average median std sr
F1 0 0 0 0 0 100%
F2 -737 -737 -737 -737 0 100%
F3 -43.13 -43.13 -43.13 -43.13 0 100%
F4 0 4 1.25 1 1.16 30%
F5 0 0 0 0 0 100%
F6 0 4 0.2 0 0.89 95%
F7 0 0 0 0 0 100%
F8 0 0 0 0 0 100%
F9 0.76 0.97 0.87 0.85 0.08 0

handled by SMAS, Phase 1 of SMDN has the same or better
performance in terms of efficiency for problems which are
sensitive to the CR value, (2) for problems for which SMAS
gets stuck in local optima (i.e., the result is difficult to be
improved even when more exact evaluations are used), Phase
2 provides significant help.

To verify the efficiency of SMDN, SMDN is compared
with standard DE [17] with the same mutation strategy and
common parameters. 30 runs are carried out for standard
DE. The number of exact evaluations is 100,000. The results
are shown in Table 5. It can be observed that the success
rate of SMDN and standard DE are comparable except for
F6 (where SMDN is better) and for F9 (where standard DE
is better).

The median of both SMDN and standard DE are used.
The results are shown in Table 6. SMDNM is the me-
dian of the converged values by SMDN. SMDNFE exact
evaluations are used to reach SMDNM , which are less
than the assigned maximum number of exact evaluations.
DEFE is the number of exact evaluations used to obtain

Table 5. STATISTICS OF THE BEST FUNCTION VALUES OBTAINED BY
STANDARD DE FOR F1-F9

Problem best worst average median std sr
F1 0 0 0 0 0 100%
F2 -737 -732 -736.75 -737 1.12 95%
F3 -43.13 -43.13 -43.13 -43.13 0 100%
F4 0 4 0.9 1 1.07 45%
F5 0 0 0 0 0 100%
F6 0 201 34.65 9 56.32 40%
F7 0 0 0 0 0 100%
F8 0 0 0 0 0 100%
F9 0 0.2 0.05 0.01 0.06 50%

Table 6. COMPARISON BETWEEN SMDN AND STANDARD DE

Problem SMDNM SMDNFE DEFE speedup
F1 0 270 860 3.2
F2 -737 489 1675 3.4
F3 -43.13 129 1700 13.2
F4 1 1830 173700 94.9
F5 0 478 9600 20.1
F6 0 1213 N.A. Inf
F7 0 762 19800 26.0
F8 0 1105 28200 25.5
F9 0.86 998 33500 33.6

SMDNM by standard DE. For F6, the median of standard
DE is 9, which is much worse than that of SMDN. For other
problems, it can be seen that SMDN consumes about 1%
to 30% of the number of exact evaluations of standard DE
to get comparable high quality results. Note that the speed
enhancement increases with increasing dimensionality and
complexity of the function landscape. This shows the ability
of SMDN to obtain highly optimized results using a limited
computing budget, even for very complex problems.

4.4. Network on Chip (NoC) Design Optimization

Due to the dramatic increase of integrated intellectual
property (IP) cores in System-on-Chip (SoC), Network-on-
Chip (NoC), serving as the underlying communication struc-
ture, is attracting more and more attention in recent years.
NoC consists of a network constructed of multiple point-to-
point data channels (links) interconnected by routers. The
routers are connected to a set of distributed IPs. Energy
consumption and delay are the main design criteria of an
NoC. To improve the design quality, the number of virtual
surface wave channels and the number of global SWI arbiter
grant period as well as all the locations of the master
nodes should be optimized. To obtain the performance of
a candidate design, computationally expensive simulation is
often necessary and explicit analytical formulations are not
available. NDPAD [24] based on SMAS has been proposed
for NoC design optimization and achieves good results. In
this paper, a 8 × 8 NoC is selected as an example. The
problem is defined as (6):

minimize E(Nc, Sp, X1, Y1, . . . , X5, Y5)
s.t. AD(Nc, Sp, X1, Y1, . . . , X5, Y5) ≤ DMAX

(6)

where E is the energy consumption, AD is the average
delay, Nc ∈ [1, 16] is the number of virtual surface wave
channels, Sp ∈ [1, 12] is the number of global SWI arbiter
grant period and (Xi, Yi) ∈ [1, 8]2 are the locations of the
master nodes, which are not overlapping. The calculation of
E and AD is based on SystemC software simulations. All
the 12 design variables are integers. The designer’s empirical
suggestion is that DMAX ∈ [21, 21.5]cycles to get a good
performance and the smaller the better in this range as long
as a feasible solution can be obtained.

NDPAD, SMDN and tournament selection-based DE
(SBDE) are compared. Following the same method as in



[24], SMDN is revised to handle constrained optimization
problems by using a revised tournament selection-based
method to rank the generated candidate solutions consider-
ing their level of constraint satisfaction. SBDE uses a con-
straint satisfaction considering tournament selection method
[25] to replace the selection operator in DE, which is widely
used in many electronic design optimization problems [3].
The parameter setting of NDPAD and SBDE follows [24].
The maximum running time of SMDN, NDPAD and SBDE
is set to 15 hours, 48 hours and 3 weeks, respectively.

When using DMAX = 21.5cycles, NDPAD and SMDN
get very similar results both in terms of solution quality
and efficiency. When using DMAX = 21.3cycles, NDPAD
cannot obtain feasible design solutions when the diversity
of P is very low over three runs. Hence, the ability of
NDPAD to get a highly optimized design near the border
of constraints is questioned, which is needed for high-
performance design optimization. The median design solu-
tion optimized by SMDN over three runs has a performance
of E = 83.17mJ and AD = 21.22cycles using about 13
hours of CPU time. The three results are very similar. SBDE
obtains E = 83.13mJ and AD = 21.30cycles (the first
solution that is better than the median of the SMDN results)
using 12 days while the final solution over three weeks’ time
is E = 83.13mJ and AD = 21.24cycles.

5. Conclusions

In this paper, the SMDN method for expensive design
optimization problems with discrete numerical variables has
been presented. According to the experiments, SMDN si-
multaneously achieves the following goals: (1) a comparable
efficiency as state-of-the-art very efficient SBNOAs, (2) the
ability to obtain a comparable solution quality as standard
DE even for complex problems, (3) it only requires 1%
to 30% of the number of exact evaluations compared to
standard DE and (4) it is easy to extend to more general
problems and is compatible with existing successful tech-
niques. Hence, SMDN combines the advantages of SBNOAs
and standard EA-based SAEAs. The performance of SMDN
is achieved by the key ideas of using the proposed two-phase
search, where Phase 1 uses an improved SMAS for EDOD
problem to find the neighbourhood of the global optimum
and Phase 2 uses a new neighbourhood exploration method
for discrete variables and collaborates with SMAS for fur-
ther improvement of the solution towards global optimum.
Future works include more applications in the ICT area and
developing methods for discrete expensive optimization with
multiple objectives and complex constraints.
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