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Abstract. In the paper, the optimization of an electro-thermo-elastic microactuator is proposed. In 
particular, the maximum temperature of the actuator is to be minimized, while the total displacement is to 
be maximized. For solving this problem, the Adaptive Gaussian Process-Assisted Differential Evolution 
AGDEMO method is applied. 
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1 Introduction 

 The never-ending advance of technology at both the micrometer and the nanometer scales 

asks for the development of powerful and flexible modelling tools in order to help the design 

process of integrated devices and systems. In fact, design equations based on lumped-parameter 

models, like e.g. circuit models, are only able to size the device taking its main effect into account. 

However, a more accurate design cannot omit secondary effects like e.g. 3D effects and non-

linear material properties; this generally implies the use of distributed-parameter models like 

field models. This is fortiori true when multiple physical domains coexist in the same device, 

giving rise to non-linear 3D coupled field models in three dimensions. The issue of computational 

cost, traditionally opposing lumped parameters against distributed parameters, is nowadays 

somehow obsolete, considering the broad availability of low-cost solid-state memories as well 

as multi-core processors. Moreover, real-life design models often incorporate various design 

criteria in mutual conflict which should be simultaneously minimized. Moving from this 

background, a contribution to multiobjective shape design based on coupled-field models is 

proposed here. 

In the literature, interesting references can be found. For instance, in [1] the design optimization 

of an electromagnetic valve actuator is proposed, and a suitable combination of three design 

criteria is exploited. In turn, in [2] a shape optimization of comb drive electrostatic actuators, in 

order to achieve prescribed driving force profiles, is proposed. In [3] the magnetic field in a 

permanent-magnet spherical motor at no-load is recovered, after inverting the magnetic 

induction measured along an accessible surface; the final aim is to compute the on-load torque 

by means of the Lorentz’s law.  

For solving the analysis problem, a multiphysics field analysis becomes more and more important 

for modelling the behaviour of an industrial device, like e.g. in [4] and [5], or a MEMS device like 

e.g. [6]. Commercial software for solving this kind of problems are available, like e.g. Comsol 

Multiphysics[7]. 



In the last few years, automated optimization procedures for MEMS devices, based on stochastic 

optimization algorithms, have been proposed. In particular, the optimal design of a class of 

MEMS has been solved successfully with both evolutionary algorithms like e.g. in [8] and [9] and 

cooperative algorithms like e.g. the biogeography-based optimization algorithm as shown in [10] 

and [11] or the wind-driven optimization as shown in [12]. 

In the paper, evolutionary algorithms are linked with multiphysics finite-element analysis for 

approximating the Pareto front underlying the design problem: the case study is the optimal 

shape design of an electro-thermo-elastic microactuator. 

The focused electro-thermo-elastic microactuator can be used in various systems, each of which 

may have different specifications on maximum temperature and displacement. Therefore, 

understanding the optimal trade-off relation of the microactuator design is important to support 

bespoke design for system integration. A natural way to achieve this is to approximate the Pareto 

front of the microactuator by multiobjective optimization methods. However, this is not trivial.  

A major challenge is that the performance analysis of candidate designs has to be done by 

numerical simulations, which are computationally expensive. In particular, the FEA model built 

by COMSOL Multiphysics costs from 10 minutes to more than 1 hour per simulation for the 

targeted microactuator. Embedding the FEA model to existing multiobjective optimization 

methods may cost prohibitive optimization time. A routine method to address this issue is to 

employ surrogate modelling. A surrogate model is a computationally cheap mathematical 

approximation model aiming to estimate the output of the numerical simulation, which is often 

constructed by statistical learning techniques [13]. When collaborating surrogate modelling with 

the optimization, some computationally expensive numerical simulations can be replaced by 

cheap surrogate model predictions, the optimization time is therefore reduced.  

There are two kinds of available surrogate-based optimization methods trying to solve this 

problem: (1) surrogate model-assisted multiobjective evolutionary algorithms (SA-MOEAs) [14] 



and [15],(2) off-line surrogate model-based methods, which have been applied to MEMS design 

exploration [16].  

Unfortunately, both of the above methods are difficult to solve the targeted problem. SA-MOEA 

is an emerging area in the computational intelligence field and to the best of our knowledge, 

there is no matured method although there is exciting progress. Most available SA-MOEAs can 

be classified into: (1) Methods simulating “Pareto-optimal” solutions predicted by the current 

surrogate model, although its quality may not be good enough [14,15]; they are efficient but the 

generated solutions still have some distance to the true Pareto-front. (2) Methods using 

standard EAs for certain generations so as to build a good quality global surrogate model, and 

then starting to use surrogate models[17]; they can obtain near true Pareto-front solutions but 

the computing overhead is still not affordable for the targeted microactuator due to the 

generations using standard EAs. In addition, the targeted microactuator design exploration 

involves constraints, which are seldom involved by available SA-MOEAs. Off-line surrogate 

model-based methods first build a high-quality surrogate model using one-shot sampling. In the 

optimization, the numerical simulations will (mostly) be replaced by surrogate model prediction. 

Clearly, to obtain an accurate surrogate model, a sufficient number of samples are needed, 

which is determined by the volume of design space. In our microactuator, although there are 4 

design variables (see Fig. 1), the ranges (L, dw) are quite large. A reasonable sampling (e.g., 2 µm 

grid for all design variables, 5µm grid for L and 2 µm grid for other design variables) needs around 

5,000 to 10,000 simulations, which are not affordable.  

On the other hand, there are several high-performance surrogate model-assisted single 

objective evolutionary algorithms (SA-SOEAs) [18] and [19]. A new framework, called surrogate 

model-aware evolutionary search framework is proposed in [19] and comparisons show up to 8 

times speed improvement with comparable or better solution qualities with several popular SA-

SOEAs based on more than 10 mathematical benchmark problems. The central idea of that 

framework is to improve the locations of training data points in order to construct high-quality 



surrogate models using fewer training data points (i.e. fewer simulations) [19, 20, 21]. Its 

application in MEMS design problems leads to more than 10 times speed improvement 

compared to standard EAs (wall clock time) [19].Taking advantage of employing AGDEMO, a new 

framework is proposed to address the targeted microactuator. 

2 The electro-thermo-elastic microactuator 

In the early times of MEMS technology, the main actuation principle relied on electrostatic field 

[2], which is still moderately used. More recently, however, the techniques of actuation most 

performing in terms of position control fall in three categories: piezoelectric, thermal or 

magnetic actuation, respectively [3] and [8]. In the paper, reference is made to a thermally 

actuated device because it is a clear example of a multiphysics domain which asks for a coupled-

field model. 

In particular, a electro-thermo-elastic microactuator is considered. This kind of microactuators 

can be applied in many different fields e.g. in civil engineering for monitoring the building 

deterioration and movements due to earthquakes, in electrical and electronics engineering for 

microrobotics, microrelays, microfluidics as well as in biomedical engineering for robotic surgery 

and miniature medical instrumentation. 

Because these fields of application need very well performing devices, there is the need to 

optimize such kind of devices. In particular, the aspects to be improved have to be chosen, 

depending on the application. Usually, in the design of MEMS circuit models or lumped-

parameter models of devices are preferred to field models. This is certainly convenient in view 

of a preliminary design, like, e.g., in the prototyping stage; however, design optimization is 

recommended to be based on field or distributed-parameter models, in order to take into 

account secondary effects in the device behavior. In this area of industrial products, searching 

for a marginal improvement of the design of a class of devices is an effective way to innovate, 

which brings also the benefit of reducing the cost of prototyping. 



The device under study, shown in Fig. 1, has length L and width hh. An electric voltage is applied 

between two electrodes A and B; therefore, an electric current I flows in two out of three arms 

of the device (hot arms), while the third arm is current free (cold arm), as shown in Fig. 2.  

The actuator is fixed to a substrate at the three arm ends, while three cylindrical bushings act on 

the cold arm, in order to make it rotate in the xy-plane (Fig. 2). The deformation due to the 

overheating of the hot arms with respect to the cold one is responsible for the rotation of the 

actuator. 

3 Analysis problem 

A parametric finite-element model of the device has been developed; a typical mesh used, 

composed of about 8,000 three-dimensional elements, is shown in Fig. 3. 

The material properties used in the model are listed in Table I. 

The following equations, which are coupled at the right-hand side level, are subsequently solved: 

 

 V∇σ−=σ= EJ

 (1) 

)Tk(Q ∇⋅−∇=⋅= EJ  (2) 

 Th
ref )TT( ε=−α  (3) 

where J   is the current density, E  the electric field, Q the heat due to Joule-effect, T the 

temperature and h the convection coefficient which is different in the upper and in the 

lower surface, Thε  the thermal part of the total strain. 

The following boundary conditions are applied. 

Conduction current problem 

 0V,constV BA ==  (4) 



 0=⋅ Jn  (5) 

elsewhere. 

 

Thermal problem 

 K15.293T =  (6) 

at the simple supports and at the hinges 

 )TT(h)Tk( ext −=∇⋅− n  (7) 

elsewhere. 

 

Mechanical problem 

 0=⋅nu  (8) 

at the simple supports, 

 0=u  (9) 

at the hinges. 

The three problems are coupled via the thermal heat Q (electric and thermal problems) 

and via the temperature T (thermal and elastic problems). Because non-linearities of 

material parameters are not taken into account, it is possible to solve the three problems 

subsequently. Therefore, a weakly-coupled analysis problem is dealt with; to solve it, a 

cascade algorithm like e.g. the successive substitution algorithm can be applied. 

In general, in this kind of muliphysics problems the main sources of non-linearity depend 

on the electric and thermal properties of materials against temperature; in particular both 



electrical conductivity σ and thermal conductivity k are temperature dependent [4] and 

[5]. 

If the non-linearities are taken into account the problem to be solved is fully-coupled and 

this means a substantial increase of computational time. For the sake of an example, if the 

electrical conductivity is modelled as a temperature dependent function, the electrical and 

thermal problems have to be solved according to a nested loop: in fact, the electrical 

problem will give rise to a heating of the device, which, in turn, will modify the electrical 

conductivity,  eventually changing the electrical solution and consequently the 

temperature and so on. 

For the considered device, because the electrical power is low, approximately 10 mW, the 

variation range of the temperature is few hundreds K, so the electrical and thermal 

conductivities of the silicon have been assumed to be constant, referring to the average 

operating temperature. Also for the elastic problem, thanks to the assumption of small 

displacements, it is reasonable that the material properties are considered to be linear. 

 

Under the hypothesis of neglecting self-weight and inertial forces, the continuum 

mechanics subproblem consists in finding the current second Piola-Kirchhoff stress tensor 

S , the Green-Lagrange strain tensor ε and the displacement vector  u  under the action of 

a given temperature field, say  T , that translates into an assigned inelastic strain  Tε . An 

isotropic hyperelastic material of Mooney-Rivlin type is considered.  If now  X and x  

are respectively used to indicate the initial and current location of a given particle so that  

)t,(Xxx =  gives the location at time t  of a particle with material coordinates X , upon 

introduction of the deformation gradient 



 Iu
X
xF +∇=

∂
∂

=  (10) 

and of the right Cauchy-Green strain tensor C  that reads 

 FFC T=  (11) 

one may define the Green-Lagrange strain tensor   that is dual in the virtual work sense 

of the second Piola-Kirchhoff stress S  and reads 

 ( )ICε −=
2
1

 (12) 

that plays a crucial role within the Comsol programming environment that has been used 

for the purpose of finding the optimal solution. The problem is in fact solved resorting to 

a Total Lagrangian Formulation that is briefly recalled next for completeness sake 

following the classical contributions [23] and [24]. The basic equation to be solved 

writes 

 RVdδS tt

V
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t
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t
ij

t
0

t
0
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where the external virtual work Rtt ∆+  may be written as  
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and 

B
i

tt f∆+ are the external volume forces at time t+∆t 

S
i

tt f∆+ are the external surface tractions at time t+∆t 

f
tt V∆+ is the volume at time t+∆t 

f
tt S∆+ is the surface at time t+∆t 



iuδ are the virtual displacements at time t+∆t. 

One should notice that the time variable t is merely used to order events whereas inertial 

effects are not accounted for as already mentioned. After some algebra, the linearized 

governing equations may be shown to be 

 ∫−∫ =∫ + ∆+
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ij0ij
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000
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where the linear and nonlinear incremental strains have been respectively defined as 

 ( )j,k
t
0i,k0j,ki,k

t
0i,j0j,i0ij0 2

1 uuuuuue +++=   

 
j,k0i,k0ij0 2

1 uuη =  (16) 

It is important to note that Equation (15) is linear in the incremental displacements since 

ij0eδ  is independent of  iu . 

For solving the whole forward problem it takes about 5 minutes on an Intel i7, 3.6 GHz, 

equipped with 16 GB of RAM. 

4 Design Exploration of the Microactuator 

The inverse problem reads as follows: acting on the design variables (see Fig. 1) 
 
L length of the actuator 
hh thickness of the actuator 
dw width of the cold arm 
d width of the hot arms  
 
Find the minimum of 
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(17) 

with Vmin=1 V, Vmax=5 V, γ=900 K, δ=1.9 10-6 m, 0<β<1, subject to the constraints:   

• Geometrical congruency (dw>2d) 



• Tmax< 1500 K  

• Stress < 1.44 GPa 

The boundaries  of the design variables are L [56 - 300] µm, hh [2 - 5] µm, dw [7 - 30] 

µm, d [1 - 7] µm.  

The objective function (17) allows to minimize the maximum temperature Tmax, 

normalized by γ, and, at the same time, maximize the displacement u, normalized by δ. 

The minimization of the temperature is important for the device performance: the lower 

the overheating, the lower the material deterioration. On the other hand, a sizable 

displacement is needed, to guarantee a good operation of the device. 

These two requirements are in conflict, because a high temperature allows for a high 

gradient of temperature and hence large displacement, on the contrary, if the temperature 

of the hot arm is low, a small displacement arises. 

For solving the inverse problem, the new framework proposed, by applying the AGDEMO 

method, is described in Fig. 4. 

A few clarifications are as follows: (1) Traditional multiobjective design exploration 

follows the idea of generating a complete Pareto front and directly selecting designs from 

it in system integration. This indicates a number of weight vectors, which largely increases 

the computational cost. In our framework, a few weight vectors are used to sparsely reflect 

the general shape of the Pareto front, providing an approximate understanding of the trade-

off relation between Tmax and u. Based on this information, the designer is able to 

estimate suitable specifications (e.g.  [ ]K405,400Tmax ∈ ,  [ ]GPa24.0,22.0Stress ∈ ) in 

system integration. AGDEMO will be run again to obtain the bespoke design. As above 

said, AGDEMO is efficient. (2) Because the number of weight vectors is small, there is 



ahigher risk of missing some parts of the Pareto front since neighbouring weight vectors 

are difficult to compensate each other. A normalization is thus carried out. 

4.1 The AGDEMO Method 

This subsection provides a brief description of the AGDEMO method. More details are in [22]. 

The AGDEMO method is a Gaussian Process (GP) [24] surrogate model assisted evolutionary 

approach for MEMS optimization problems withfield-dependent 3D analysis. It has the following 

performances: (1) Achieves comparable results with MEMS optimization methods which directly 

embed numerical simulations to a standard EA; (2) More than an order of speed improvement 

compared to standard EAs and off-line surrogate model-based methods for MEMS design; (3) 

General enough for various kinds of MEMS. AGDEMO works as shown in Fig. 5. 

In terms of constraint handling, AGDEMO uses the penalty function method [28]. The penalized 

function is often a piecewise function due to the constraints, but a reasonably continuous and 

smooth hypersurface is important for generating high-quality surrogate models. To address this 

problem, a separate GP model isconstructed for each performance, which is not piecewise. The 

penalized function value is then calculated by the predicted performance values. Experimental 

results verified this constraint handling method [19]. 

Following the parameter setting rules of [22], we use the following parameters for our 

implementation: α=30, λ=30, τ=8×d (d is the number of design variables, 4). The penalty 

coefficient is set to 50. The high optimization quality and large efficiency improvement come from 

the surrogate model-aware evolutionary search framework [19], which has been verified by 

intensive empirical tests. We also verified it in our pilot experiments and such comparisons will 

not be repeated here. 



5 Results 

Different optimizations are carried out  by varying the value of β, i.e. β = 0, β = 0.25, β = 0.5, 

β = 0.75 andβ = 1. The results are shown in Table II. 

In Fig. 6 the history of the objective function obtained for different values ofβ are shown. 

The constraints are fulfilled as shown in Table III. 

By defining the objective function space defined by functions f1 and f2, 

 [ ] [ ] maxVVminVV1 uuf
==

+=   (19) 

 [ ] [ ] maxVVmaxminVVmax2 TTf == +=   (20) 

Fig. 7is obtained, in which the optimization results are shown; a random sampling of this 

objective space is added. 

The temperature and strain field maps of the optimal devices found with β=0 and β=1 (see 

Fig. 7) are shown in Fig. 8 and Fig. 9. 

5.1 Results with normalized objective function 

The results in Fig. 7 show that the AGDEMO method finds good solutions, seemingly, 

however, they tend to form a cluster. A new optimization is carried out considering the 

following function: 

( ) ( )
maxVV1122

max

minVV1122

max

UR
u

1
UR

T
UR

u
1

UR
Tf

== 











−
β−−

−
β+













−
β−−

−
β= (21) 

where(U1,U2) is the Utopia point, while (R1,R2) is the Nadir point calculated by 

considering the approximation of the Pareto front found by AGDEMO. In particular, U1= 

2.24 10-6 m, U2=669 K, R1= 1.68 10-6 m, R2=770 K. 

The results are shown in Table IV, V and Fig. 10. 



The results obtained by the previous optimizations show that a long device is preferred. In 

fact, all the optimal microactuators are characterized by the maximum value of the length 

L (300 µm). 

The width of the hot arms and the thickness of the actuator are related to the electrical 

resistance between hinges A and B: decreasing hh and d means increasing the electrical 

resistance. Consequently, the current flowing in the hot arms decreases and the Joule 

losses decreases too. In fact, the points in Fig. 11 with lower temperatures (green and black 

triangles and green square) are characterized by the minimum values of hh and d (2 µm 

and 1 µm, respectively). 

5.2 Sensitivity analysis 

In view of a robust design, a sensitivity analysis has been carried out. 

In particular, two sensitivity parameters have been considered for each objective function   

 
δ
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ffs  (22) 
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ff

f
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=∆  (23) 

where δ=2 10-8 m is the perturbation step, f+ and f- are the objective functions evaluated 

by varying each variable of the δ quantity (f+ is evaluated by adding δ and f- by subtracting 

it), and fi is the objective function value found by the optimization procedure. 

The results about the s parameter are shown in Tables VI, VII and VIII, while those related 

to the Δf parameter are shown in Tables IX, X and XI, for the three objective functions. 



The tables VI-XI could be very useful in view of a practical construction of this device. In 

particular, they show that, in view of a robust design, the most important design variables 

are hh and d, hence the thickness of the whole actuator and the width of the hot arms. 

6 Conclusions and ongoing extensions 

A multiphysics model coupled with an evolutionary algorithm for the multi-objective 

optimization of structures has been proposed with the aim of finding the optimal shape of 

an electro-thermo-elastic actuator. Coupling between electric, thermal and structural fields 

is assumed in such a way that a cascade of subproblems are set up and solved. The electric 

problem is solved first that originates a temperature field. The temperature field is in turn 

used to generate an imposed strain field that represents the forcing term of the continuum 

mechanics subproblem. A few multi-objective optimal problems are considered that 

approximate the Pareto optimal points with reference to two distinct objectives that depend 

on the displacements and on the temperature, the design variables being of geometric type 

and namely actuator thickness, length and width. Furthermore, a peculiar sensitivity 

analysis method has been proposed to ensure the robustness of the optimal design allowing 

to assess the design variables with respect to which the design happens to be most 

sensitive.   

The application of more complex multiphysics models characterized by a stronger 

coupling as well as the inclusion of material nonlinearities are among the extensions that 

are currently under investigation and development. The achievement of such further goals 

would open the way to the last stage of the research that is expected to include the actual 

manufacture and test of a prototypical specimen. 



Appendix 

A.A Brief Description to Gaussian Process Surrogate Modeling 

 

To model an unknown function dRx),x(fy ∈= , GP modeling assumes that )x(f  at any 

point x is a Gaussian distributed stochastic variable with mean μ, and variance σ, where μ and 

σ are two constants independent of x. For any x, )x(f  is a sample of )x(ε+µ where 

( )2,0N)x( σ≈ε . By maximizing the likelihood function that iy)x(f = at k,...,1i,xx i ==  

(where dk1 Rx...,,x ∈ and their function values k1 y...,,y are k training data points and best 

linear unbiased prediction: 

 ( )µ−+µ= − ˆ1yCrˆ)x(f̂ 1T
 (24) 

the mean squared error is: 
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(25) 

where ( ) ( )[ ]Tk1 x,xc,...,x,xcr = . C is a K×K matrix whose (i,j)-element is ( )ji x,xc . ( )ji x,xc  

is the correlation function between ix  and jx . 1 is a K-dimensional column vector of ones. 

 

B. A Brief Description to Differential Evolution Algorithm 

 

Differential Evolution is a popular population-based metaheuristic algorithm for continuous 

optimization. Suppose that P is a population and the best individual in Pis bestx  . Let 

d
d1 Rx...,,x ∈ be an individual solution in P. To generate a child solution d1 u...,,u  for x , DE 

works as follows. 

 



A donor vector is first produced by mutation (DE/current-to-best/1): 

 ( ) ( )21 rribesti
i xxFxxFxv −⋅+−⋅+=  (26) 

where 1rx and 2rx  are two different solutions randomly selected from P and also different 

from bestx  and ix . ( ]2,0F ∈ is the scaling factor. Then the following crossover operator is 

applied to produce the child u  

 

1. Randomly select a variable index d,...,1jrand ∈  

2. For each d,...,1j = generate a uniformly distributed random number rand from (0,1) and 

set: 
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

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j
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(27) 

where [ ]1,0CR ∈  is a constant called the crossover rate. More details can be found in [22]. 
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Table I  
Material properties of the finite element model 
 

Material property Value 

Electric conductivity σ [Sm-1] 5  104 

Thermal conductivity k [Wm-1K-1] 34 

Thermal expansion coefficient α [K-1] 2.6 10-6 

Young modulus [Pa] 210 109 

Fracture toughness [Pa] 1.44-2.51 109 

Poisson coefficient  0.22 

 
  



 
 
Table II  
Design variables of optimal devices and corresponding objective function for AGDEMO method 
 

β  L [µm]  hh 
[µm] 

dw 
[µm] 

d 
[µm] 

o.f. o.f. 
calls 

0  299.73 4.99 29.24 2.33 -1.18 135 

0.25  298.83 4.99 29.93 2.18 -0.67 123 

0.5  299.82 4.83 29.45 1.94 -0.17 158 

0.75  299.81 4.67 29.77 1.39 0.32 132 

1  299.82 2.00 14.69 1.01 0.74 130 

 
  



 
 
Table III 
Maximum value of the temperature and stress for each optimal point 
 

 

 
  

β  Tmax [K]  Stress [GPa] 

0  470.25 0.36 
 

0.25  463.00 0.32 

0.5  446.83 0.44 

0.75  410.32 0.25 

1  372.60 0.20 



 
Table IV 
Design variables of optimal devices and corresponding objective function, new objective function (21) 
 

β  L [µm]  hh 
[µm] 

dw 
[µm] 

d [µm] o.f. o.f.  
calls 

0 299.4 4,7 29.81 2,05 -4 159 

0.25 298.8 4,97 29.53 1,99 -1.15 152 

0.5  299.5 4.95 29.22 1,36 1.61 151 

0.75  299.8 2,06 29.26 1,00 4.17 200 

1  299.44 2,16 15.44 1,00 6.60 181 

 
  



 
Table V 
Maximum value of the temperature and stress for each optimal point. 
 

β  Tmax [K]  Stress [GPa] 

0  453 0.37 

0.25  451.6 0.21 

0.5  409.2 0.22 

0.75  372.5 0.26 

1  373.59 0.19 

 
  



 
Table VI 
Objective function 1, s parameter 
 

β L [µm] hh [µm] dw [µm] d [µm] 

0  -7.51 10-3 3.77 10-2 -6.05 10-4 5.32 10-3 

0.25  3.91 10-3 3.48 10-2 5.04 10-3 3.95 10-2 

0.5  1.61 10-3 4.09 10-2 4.99 10-3 1.06 10-1 

0.75 2.11 10-3 2.60 10-2 1.84 10-3 4.06 10-1 

1 6.12 10-4 1.20 10-2 9.81 10-3 5.57 10-1 

 
 
  



 
Table VII  
Objective function 2, s parameter 
 

β L [µm] hh [µm] dw [µm] d [µm] 

0  -1.22 106 6.18 106 3.21 10-4 5.74 107 

0.25  -1.15 106 5.66 106 2.97 10-4 5.99 107 

0.5  -1.06 106 5.00 106 2.68 10-4 6.28 107 

0.75 -8.32 105 3.17 106 1.79 10-4 7.23 107 

1 -5.87 105 8.19 106 4.90 10-4 6.34 107 

 
  



 
Table VIII  
Objective function weighted sum, s parameter 
 

β L [µm] hh [µm] dw [µm] d [µm] 

0  3.95 103 -1.99 104 3.18 102 -2.8 103 

0.25  -1.86 103 -1.22 104 -1.96 103 1.04 103 

0.5  -1.01 103 -7.98 103 -1.30 103 6.86 103 

0.75 -9.71 102 -7.80 102 -2.51 102 6.74 103 

1 -6.52 102 9.10  103 2.59  101 7.05 104 

 
  



 
Table IX  
Objective function 1, Δf parameter 
 

β L [µm] hh [µm] dw [µm] d [µm] 

0  -1.34 10-4 6.74 10-4 -1,08 10-5 9,512 10-5 

0.25  7.01 10-5 6.23 10-4 9.02 10-5 7.07 10-4 

0.5  2.90 10-5 7.39 10-4 9.01 10-5 1.92 10-3 

0.75 4.05 10-5 5.00 10-4 3.54 10-5 7.81 10-3 

1 1.46 10-5 2.86 10-3 1.17 10-4 1.32 10-2 

 
 
 
  



 
Table X  
Objective function 2, Δf parameter 
 

β L [µm] hh [µm] dw [µm] d [µm] 

0  -6,34 10-5 3.21 10-4 2.22 10-6 2.98 10-3 

0.25  -6,02 10-5 2.97 10-4 5.19 10-6 3.14 10-3 

0.5  -5.68 10-5 2.68 10-4 9.00 10-7 3.36 10-3 

0.75 -4.70 10-5 1.79 10-4 -6.09 10-7 4.08 10-3 

1 -3.51 10-5 4.90 10-4 6.97 10-7 3.79 10-3 

 
  



 
Table XI 
Objective function weighted sum, Δf parameter 
 

β L [µm] hh [µm] dw [µm] d [µm] 

0  -1.34 10-4 6.74 10-4 -1.08 10-5 9.51 10-5 

0.25  -1.11 10-4 7.26 10-4 1.17 10-4 -6.22 10-5 

0.5  2.40 10-4 1.90 10-3 3.10 10-4 -1.63 10-3 

0.75 -1.23 10-4 -9.86 10-5 -3.17 10-5 8.53 10-4 

1 -3.51 10-5 4.90 10-4 6.97 10-7 3.79 10-3 

 
 
  



 
Fig. 1 Geometry of the microactuator; the design variables of the inverse problem are also shown. 
 
Fig. 2. Current, temperature (left) and strain (right) distribution in the microactuator. 
 
Fig. 3. Mesh of the model, left, and a detail of it, right. 
 
Fig. 4. Bespoke design exploration framework for the electro-thermo-elastic microactuator. 
 
Fig. 5. The AGDEMO Method [19]. 
 
Fig. 6. History of the objective function for different values of β. 
 
Fig. 7. Objective space. Results of the five optimization runs are shown: β=0 (circle), β=0.25 (star), β=0.5 
(diamond), β=0.75 (square), β=1 (triangle). 
 
Fig. 8. Temperature [K] (up) and stress [Nm-2] (bottom) field maps for β=0. 
 
Fig. 9. Temperature [K] (up) and stress [Nm-2] (bottom) field maps for β=1. 
 
Fig. 10. Objective space. Results of the five optimization runs are shown: β=0 (circle), β =0.25 (star), 
β=0.5 (diamond), β=0.75 (square), β=1 (triangle). In black the results obtained with the objective 
function (17),in green those obtained with the new objective function (21). 
 
  



 

 
Fig. 1 Geometry of the microactuator; the design variables of the inverse problem are also shown. 
  



 
 

 

 
Fig. 2. Current, temperature (left) and strain (right) distribution in the microactuator. 
  



 
 

  
Fig. 3. Mesh of the model, left, and a detail of it, right. 

  



 
Step 1: Build a weighted-sum function of the maximum temperature (Tmax) and total displacement 
(U) as the objective function. The constraints are handled by the penalty function method. 
Step 2: Assign symmetry weight vectors 𝛽𝛽to compose multiple single objective optimization 
problems.  
Step 3: Apply AGDEMO to each of them (penalized function) and obtain several points to “sparsely” 
approximate the Pareto front.  
Step 4: Normalize the objective function using Utopia point and Nadir point. Redo Step 2 and 3.  
Step 5: Run AGDEMO for a particular set of specifications using knowledge obtained from the 
approximated Pareto front for abespoke design. 

Fig. 4. Bespoke design exploration framework for the electro-thermo-elastic microactuator. 
  



 
Step 1:  Sample   (often small) solutions from the design space using Latin Hypercube sampling 
method [26], perform numerical simulations of all these solutions and let them form the initial 
database. 
Step 2: If a preset stopping criterion (e.g., computing budget) is met, output the best solution from 
the database; otherwise go to Step 3. 
Step 3: Select the best solutions from the database based on the fitness values to form a population 
P. 
Step 4: Apply the Differential Evolution operators [27] (see Appendix) on P to generate λ child 
solutions. 
Step 5: Calculate the median of the λ child solutions. Take the τ nearest solutions to the median in 
the database (based on Euclidean distance) and their function values (performances) as the training 
data points to construct GP surrogate models(see Appendix)for each performance (the objective 
function and constraints). 
Step 6: Prescreen the λ child solutions generated in Step 4 using the adaptive prescreening method 
[26]. 
Step 7: Simulate the estimated best child solution from Step 6. Add this solution and its 
performance (via simulation) to the database. Go back to Step 2. 

Fig. 5. The AGDEMO Method [19]. 
  



 

  

  

 

 

Fig. 6. History of the objective function for different values of β. 
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Fig. 7. Objective space. Results of the five optimization runs are shown: β=0 (circle), β=0.25 (star), β=0.5 
(diamond), β=0.75 (square), β=1 (triangle). 
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Fig. 8. Temperature [K] (up) and stress [Nm-2] (bottom) field maps for β=0. 
  



 
 

 

 
Fig. 9. Temperature [K] (up) and stress [Nm-2] (bottom) field maps for β=1. 
  



 

 
Fig. 10. Objective space. Results of the five optimization runs are shown: β=0 (circle), β =0.25 (star), 
β=0.5 (diamond), β=0.75 (square), β=1 (triangle). In black the results obtained with the objective 
function (17),in green those obtained with the new objective function (21). 
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