High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster

Rovenko, B. M., Perkhulyn, N. V., Gospodaryov, D. V., Sanz, A., Lushchak, O. V. and Lushchak, V. I. (2015) High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative Biochemistry and Physiology. Part A: Molecular and Integrative Physiology, 180, pp. 75-85. (doi:10.1016/j.cbpa.2014.11.008) (PMID:25461489)

Full text not currently available from Enlighten.

Abstract

During the last 20 years, there has been a considerable scientific debate about the possible mechanisms of induction of metabolic disorders by reducing monosaccharides such as glucose or fructose. In this study, we report the metabolic rearrangement in response to consumption of these monosaccharides at concentrations ranging from 0.25% to 20% in a Drosophila model. Flies raised on high-glucose diet displayed delay in pupation and increased developmental mortality compared with fructose consumers. Both monosaccharides at high concentrations promoted an obese-like phenotype indicated by increased fly body mass, levels of uric acid, and circulating and stored carbohydrates and lipids; and decreased percentage of water in the body. However, flies raised on fructose showed lower levels of circulating glucose and higher concentrations of stored carbohydrates, lipids, and uric acid. The preferential induction of obesity caused by fructose in Drosophila was associated with increased food consumption and reduced mRNA levels of DILP2 and DILP5 in the brain of adult flies. Our data show that glucose and fructose differently affect carbohydrate and lipid metabolism in Drosophila in part by modulation of insulin/insulin-like growth factor signaling. Some reported similarities with effects observed in mammals make Drosophila as a useful model to study carbohydrate influence on metabolism and development of metabolic disorders.

Item Type:Articles
Additional Information:The work was partially supported by the FEBS Collaborative Experimental Scholarship for Central and Eastern Europe (261793) to B.R. A.S. was supported by an ERC Starting Grant (260632) and by the Academy of Finland as a Research Academy Fellow.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Sanz Montero, Professor Alberto
Authors: Rovenko, B. M., Perkhulyn, N. V., Gospodaryov, D. V., Sanz, A., Lushchak, O. V., and Lushchak, V. I.
College/School:College of Medical Veterinary and Life Sciences > Institute of Molecular Cell and Systems Biology
Journal Name:Comparative Biochemistry and Physiology. Part A: Molecular and Integrative Physiology
Publisher:Elsevier
ISSN:1095-6433
ISSN (Online):1531-4332
Published Online:15 November 2014

University Staff: Request a correction | Enlighten Editors: Update this record