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Abstract:	Current	 technical	 advances	 in	 sensors,	 actuators,	 and	wireless	networks	enable	 the	 Internet	of	Things	 (IoT)	
technology.	Key	features	of	IoT	are	the	'smart	things’,	which	have	significant	computational	capabilities.	In	this	paper	we	
focus	on	waste	management	using	dynamic	allocation	of	collection	and	transfer	points	with	subsequent	transporting	of	
waste	to	processing	facilities.	Waste	management	involves	a	variety	of	tasks	from	the	collection	of	the	waste	in	the	field	
to	 the	 transport	 and	 disposal	 to	 the	 appropriate	 locations.	 The	 proposed	 waste	 management	 system	 contributes	 to	
innovative	Smart	City	(SC)	applications	with	impact	in	the	dynamic	allocation	management	of	mobile	depots	in	the	SC.	
We	 propose	 a	 set	 of	models,	which	 advocate	 for	 replacing	 traditional	way	 of	 tipping	waste	 into	 larger	 containers	 by	
swapping	full	waste	bins	with	empty	ones.	We	also	propose	the	concept	of	mobile	depots	as	intermediate	collection	and	
transfer	 points.	 Quantitative	 and	 qualitative	 metrics	 to	 assess	 the	 efficiency	 of	 the	 proposed	 models	 are	 used.	 We	
incorporate	the	CT,	TT,	L,	D	and	F	quantitative	metrics	and	the	S	qualitative	metric.	The	S	metric	takes	as	input	the	values	
of	the	quantitative	metrics	and	gives	an	output	of	high	or	low	satisfaction.	The	models	demonstrate	their	efficiency	and	
potential	adoption	by	SCs.	
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1					Introduction	

The	majority	 of	 earth	population	 (i.e.,	 70%)	will	move	 to	urban	areas	by	2050,	 thus,	 forming	vast	 cities,	 (Fazio	 et	 al.,	
2012).	 Certain	 infrastructure	 is	 required	by	 such	 cities	 to	manage	 citizens’	 needs	 and	offer	 basic	 and	more	 advanced	
services,	 (Balakrishna,	2012).	 Internet	of	Things	(IoT)	 technology	enables	people	and	 things	 to	be	connected	anytime,	
anyplace,	with	anything	and	anyone,	 ideally	using	any	network	and	any	service,	 (Guillemin	P	&	Friess	P,	2009).	Smart	
Cities	(SCs),	are	defined	in	(Centre	of	Regional	Science,	2007):	“A	Smart	City	is	a	city	well	performing	in	a	forward-looking	
way	 in	 the	 following	 fundamental	 components	 (i.e.,	 Smart	 Economy,	 Smart	Mobility,	 Smart	 Environment,	 Smart	 People,	
Smart	 Living,	 and	 Smart	 Governance),	 built	 on	 the	 ‘smart’	 combination	 of	 endowments	 and	 activities	 of	 self-decisive,	
independent	and	aware	citizens”.	We	focus	on	the	specific	application	domain	of	waste	management	in	SCs.	
Testbed	of	our	system	is	the	city	of	St.	Petersburg,	Russia.	Specifically,	St.	Petersburg	is	a	city	covering	a	total	area	of	

1,439	 square	 kilometers	with	 5	million	 citizens,	which	 denote	 a	 density	 of	 3,391	 citizens	 per	 square	 kilometer.	 Solid	
waste	produced	in	the	city	is	1.7	million	tons,	on	average,	per	year.	During	the	day,	the	amount	of	municipal	solid	waste	
generated	 is	 0.93	 kilograms	per	 citizen.	On	 a	 daily	 basis,	 the	municipality	 of	 St.	 Petersburg	uses	 476	waste	 collection	
trucks,	each	of	them	with	a	capacity	of	5	tons.	Fuel	consumed	per	year	is,	on	average,	1.8	million	liters.	On	average,	the	
costs	spent	on	fuel	in	one	year	for	waste	collection	is	more	than	1	million	US	dollars,	(Anagnostopoulos	et	al.,	2015).	The	
fleet	of	waste	collection	trucks	causes	traffic	congestion	during	rush	hours,	which	is	significant	due	to	the	narrow	roads	
and	small	backyards.	This	causes	indirect	problems	in	citizens’	activities.	Obviously,	it	is	critical	to	manage	efficiently	the	
waste	disposed	of	 in	every	 location	of	an	SC	not	only	focusing	on	the	collection	activities	but	also	on	its	transport	and	
recycling.		

In	(Anagnostopoulos	et	al.,	2017)	we	surveyed	existing	models	for	waste	collection	in	SCs.	We	presented	the	strengths	
and	weaknesses	 of	 the	 surveyed	models.	 In	 this	 paper	we	 extend	 our	 research	 focusing	 on	waste	management	 using	
dynamic	allocation	of	collection	and	transfer	points	with	subsequent	transporting	of	waste	to	processing	 facilities.	We	
use	IoT	as	an	enabling	technology	to	apply	dynamic	tip	and	swap	models	on	the	waste	collection	process.	Term	dynamic	
denotes	the	ability	of	a	system	to	change,	in	real	time,	the	routing	parameters	that	affect	the	collection	of	waste	during	
the	 collection	 activity.	 Such	 features	 can	 result	 in	 an	 online	 set	 of	 dynamic	 route	 directions	 provided	 to	 the	 waste	
collection	trucks.	We	propose	a	set	of	models,	which	advocate	for	replacing	traditional	way	of	tipping	waste	into	larger	
containers	by	swapping	full	waste	bins	with	empty	ones.	We	also	propose	the	concept	of	mobile	depots	as	intermediate	
collection	 and	 transfer	 points.	 Examples	 of	 mobile	 depots	 include	 waste	 trucks	 or	 temporary	 waste	 bins	 placed	 at	
dynamically	 allocated	 points.	We	 use	 a	 heterogeneous	 fleet,	 which	 consists	 by	 low	 capacity	 trucks	 and	 high	 capacity	
trucks	serving	as	intermediate	mobile	depots	in	the	waste	collection	task	within	the	SC.	We	prove	that	swapping	models	
are	more	 cost	 efficient	 than	 tipping	models.	 Concretely,	we	use	 certain	quantitative	and	qualitative	metrics	 to	assess	 the	
efficiency	of	the	proposed	models.	 	

The	 structure	 of	 the	 paper	 is	 as	 follows.	 In	 Section	 2	we	 present	 the	 literature	 review	 performed	 in	 contemporary	
research.	 In	 Section	 3,	 we	 describe	 the	 proposed	 waste	 management	 system.	 Section	 4,	 describes	 the	 experimental	
environment.	In	Section	5,	we	present	and	discuss	the	results,	while	Section	6	concludes	the	paper	and	proposes	future	
work.	

2					Waste	Management	for	Smart	Cities:	State	of	the	Art	

Research	community	has	proposed	a	number	of	dynamic	routing	models	for	waste	collection.	Dynamic	routing	models	
are	 of	 significant	 interest	 since	 static	 approaches	 cannot	 exploit	 the	 dynamic	 nature	 of	 IoT	 technology.	 A	 simulation	
framework	has	been	proposed	in	(Banditvilai	et	al.,	2017)	for	modeling	the	night	shift	solid	waste	collection	in	Phuket	
Municipality,	 Thailand,	 which	 develops	 a	 heuristic	 approach	 for	 assigning	 waste	 collection	 zones	 and	 routings.	 An	
integer-programming	 model	 has	 been	 proposed	 in	 (Braier	 et	 al.,	 2017)	 to	 optimize	 the	 dynamic	 routs	 of	 collection	
vehicles	for	the	case	of	waste	collection	in	Morón,	Argentina.	In	the	project	named	Dynacargo	(Dynamic	Cargo	Routing	
on-the-Go),	has	been	proposed	various	routing	algorithms	to	solve	dynamic	routing	problems	using	IoT	components	and	
real-time	monitoring	of	waste	bins	trash	levels	(Christodoulou,	et	al.,	2016).	

In	 addition	 to	 the	 capabilities	 offered	 by	 IoT	 infrastructure,	 (Elia	 et	 al.,	 2016)	 have	 discussed	 the	 importance	 of	
evaluating	the	performance	of	new	business	models	coming	to	the	waste	management	market	as	a	result	of	IoT-based	
solutions.	 They	 compared	 the	 cost	 efficiency	 of	 dynamics	 scheduling	 models	 of	 waste	 pick	 up	 (based	 on	 household	
needs)	with	the	traditional	waste	collection	models	such	as	fixed	routing	and	call-based	service.	(Gruler	et	al.,	2017)	have	
combined	metaheuristics	with	simulation	and	proposed	a	hybrid	algorithm	 for	waste	management	 in	clustered	urban	
areas	 considering	 the	 impact	 of	 cooperation	 among	 vehicles	 departed	 from	 different	 depots	 and	 the	 corresponding	
savings	 this	 cooperation	 could	 create.	 An	 Ant	 Colony	 algorithm	 has	 been	 developed	 in	 (Sharmin	 et	 al.	 2016),	 which	
solved	 a	 dynamic	 routing	 system	 to	 find	 the	 shortest	 path	 while	 minimizing	 transportation	 costs	 with	 the	 overall	
purpose	of	waste	management	in	smart	cities.		

A	 dynamic	 smart	 solid	waste	management	 system	 (WMS)	 has	 been	designed	 in	 (Shinde	 et	 al.,	 2017)	 by	 integrating	
RFID,	GSM,	GIS	system	to	manage	the	solid	waste	 in	an	automatic	waste	monitoring	system.	In	order	to	solve	periodic	
routing	problem	in	the	municipal	waste	collection,	(Triki,	2017),	developed	a	model	for	defining	the	routing	of	collection	
vehicle	with	considering	the	extended	planning	horizon	for	some	zones,	where	not	all	the	zones	should	be	served	in	one	
planning	 horizon	 and	 the	 planning	 horizon	 can	 be	 flexible	 depending	 on	 the	 needs	 of	 different	 regions.	 A	 stochastic	
optimization	 model	 based	 on	 chance-constrained	 programming	 is	 developed	 in	 (Shah	 et	 al.,	 2018)	 to	 optimize	 the	
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planning	 of	 waste	 collection	 operations.	 The	 objective	 of	 the	 proposed	 optimization	 model	 is	 to	 minimize	 the	 total	
transportation	 cost	 while	 maximizing	 the	 recovery	 of	 value	 still	 embedded	 in	 waste	 bins.	 A	 multi-agent	 system	 is	
incorporated	 in	(Anagnostopoulos	et	al.,	2018)	 for	 IoT-enabled	waste	management	 to	stochastically	reassign	trucks	 to	
collect	waste	from	bins	through	time	in	smart	cities.		

An	urban-decision	support	system	(U-DSS)	is	proposed	in	(Abbatecola	et	al.,	2016),	which	is	devoted	to	manage,	in	a	
unified	 framework,	 the	 logistic	 services	 of	 the	 smart	 cities,	 such	 as	 postal	 delivery	 (PD)	 and	 waste	 collection	 (WC)	
services.	The	U-DSS	architecture	is	proposed	by	describing	its	main	components.	Specifically,	the	system	focuses	on	the	
core	 of	 the	U-DSS,	 i.e.,	 the	model	 component	 that	 provides	 the	 solutions	 of	 a	 general	 vehicle	 assignment	 and	 routing	
optimization	problem	with	the	aim	of	minimizing	the	length	of	the	routes	and	satisfying	time	and	capacity	constraints.	
The	 problem	 of	 planning	 a	 door-to-door	 waste	 management	 of	 separated	 multiple	 materials	 for	 a	 municipality	 is	
analyzed	in	(Anghinolfi	et	al.,	2016).	It	is	incorporated	a	mixed	integer	linear	programming	model	and	a	multi-objective	
optimization	model	 to	 minimize	 the	 operational	 costs	 and	 face	 the	 inefficiencies	 which	 are	 possible	 to	 occur	 by	 the	
adopted	waste	recycling	logistic	system	that	may	cause	negative	environmental	impacts.		

Figure	1			Dynamic	routing	adapts	to	real-time	emergency	situations	like	a	road	under	construction	with	an	online	detour	

	

Figure	2			Components	of	Waste	Management	System	(WMS)	

	

	
	

Finally,	in	(Anagnostopoulos	et	al.,	2017)	a	survey	in	IoT-enabled	waste	management	approaches	is	presented	where	
the	authors	proposed	a	taxonomy	to	categorize	waste	collection	in	the	context	of	SCs.	We	also	discuss	the	strengths	and	
weaknesses	 of	 the	 surveyed	 models.	 This	 paper	 extends	 research	 performed	 in	 (Anagnostopoulos	 et	 al.,	 2017)	 by	
proposing	a	waste	management	system	(WMS),	which	is	summarized	as	follows:	(1)	a	set	of	models,	which	advocate	for	
replacing	 traditional	 way	 of	 tipping	 waste	 into	 larger	 containers	 by	 swapping	 full	 waste	 bins	 with	 empty	 ones,	 (2)	 the	



concept	of	mobile	depots,	which	act	as	intermediate	collection	and	transfer	points.	(3)	certain	quantitative	and	qualitative	
metrics	to	assess	the	efficiency	of	the	proposed	models.	Note:	Shifting	research	models	towards	swapping	approaches	lead	to	
highly	cost	efficient	models.	The	rationale	behind	our	approach	is	that	mobile	depots	are	placed	at	dynamically	allocated	
points	within	the	area	of	the	SC.	Mobile	depots	are	invoked	when	there	is	an	online	need	for	real-time	waste	collection.	

3					Waste	Management	System	(WMS)	

Incorporation	of	advanced	services	to	SCs	 is	enabled	by	IoT	technology.	 IoT	 is	defined	to	combine	the	spatiotemporal,	
technical	and	social	context,	part	of	the	SC	contextual	profile.	Specifically,	new	or	efficient	redesign	of	existing	services	in	
SCs	can	be	enabled	by	incorporating	IoT-enabled	models,	(Delicato	et	al.,	2013).	Let	us	focus	on	the	waste	management	
process	 where	 static	 waste	 management	 models	 can	 be	 transformed	 to	Waste	 Collection	 as	 a	 Service	 (WCaaS)	 thus	
enabling	online	dynamic	scheduling	and	routing	of	the	trucks,	(Lingling	et	al.,	2011).	Figure	1	presents	an	example	for	
analyzing	a	dynamic	IoT	routing	scenario	for	waste	management.		

Dynamic	waste	management	can	be	described	as	an	online	decision	process	 to	define:	 (i)	 the	exact	 timing	 to	collect	
waste	from	bins	(i.e.,	scheduling),	and	(ii)	efficient	routing	the	trucks	should	follow	(i.e.,	routing).	Specifically,	scheduling	
is	the	process,	which	defines	when	the	collection	of	the	waste	will	take	place.	For	example,	assume	that	there	are	𝑏	waste	
bins	 per	 sector.	 Then	when	 the	 volume	 capacity	𝑔	of	 a	 certain	 number	 of	 bins	 is	 above	 a	 volume	 threshold	 then	 the	
system	triggers	a	scheduling	alarm	and	invokes	the	routing	process	to	collect	the	waste	from	these	waste	bins.	

When	scheduling	has	triggered	the	system	control	is	passing	to	the	routing	process.	Specifically,	routing	process	takes	
into	 consideration	 the	 spatial	 location	 of	 the	 full	 of	waste	 bins	 as	well	 as	 the	 conditions	 on	 the	 roads	 of	 the	 city.	 For	
example,	a	detour	will	be	done	if	a	road	is	under	labor	construction	or	a	car	accident	has	done	in	that	specific	area	of	the	
road	network.		Taking	these	conditions	under	consideration	routing	process	gives	directions	to	the	𝑐	trucks	and	𝑑	mobile	
depots	to	follow	certain	trajectories	to	collect	the	waste	from	the	full	bins.	For	more	details	see	research	conducted	in	
(Anagnostopoulos	et	al.,	2015).	In	this	paper,	we	propose	a	Waste	Management	System	(WMS)	enhanced	with	IoT-based	
components	to	enable	dynamic	scheduling	and	routing	in	a	SC	with	the	adoption	of	dynamically	allocated	mobile	depots	
as	sustainable	proxies.		

The	proposed	WMS	is	presented	in	Figure	2.	We	can	observe	that	waste	collection	is	treated	as	a	cloud	service,	which	
interacts	with	a	variety	of	mechanisms.	Trucks	collect	waste	 from	bins	and	transfer	 it	 to	mobile	depots.	Subsequently,	
mobile	depots	transport	waste	to	dumps	and	recycling/processing	plants	outside	of	the	city.	Such	waste	transportation	
performed	by	the	mobile	depots	is	proved	to	reduce	the	route	trips,	initially	performed	by	the	trucks,	because	waste	is	
transported	to	the	dumps	with	fewer	trips,	thus,	reducing	the	operational	costs	of	the	waste	management.	Our	WMS	does	
not	require	any	extra	land	space	for	temporary	storage	(i.e.,	static	depots)	of	the	waste,	which	results	in	a	more	flexible	
model.	This	leads	to	a	better	quality	of	life	for	the	citizens,	which	is	positively	affected,	as	static	depots	are	not	required	
within	 the	 SC.	 In	 addition,	 the	 areas	 near	 the	 static	 depots	 are	 degraded	 leading	 to	 low	 quality	 of	 living	 for	 nearby	
residents.	By	incorporating	mobile	depots	efficient	scheduling	and	routing	is	enabled	which	has	chain	effects	in	the	SC	
daily	 life.	For	 instance,	SCs	 traffic	 regulators	can	achieve	efficient	 traffic	management	 in	rush	hours.	Android	apps	are	
used	 by	 the	 truck	 drivers’	 smartphones,	 which	 enable	 them	 to	 navigate	 in	 real	 time	 through	 route	 trips	 that	 can	 be	
altered	dynamically;	e.g.,	a	road	could	be	closed	due	to	unexpected	traffic	or	a	truck	could	be	overloaded/damaged.	We	
also	used	IoT	equipment	embedded	in	the	waste	bins	to	support	the	waste	collection	scenarios	studied	in	this	paper.	

	

	

	

	

	

	

	

	

	

	

	

4					Experimental	Setup	

To	set	up	the	experiments,	we	first	defined	certain	parameters	as	shown	in	Table	1.	SC	of	St.	Petersburg	is	assumed	to	be	
divided	into	waste	collection	sectors	with	assigned	bins,	trucks,	and	mobile	depots	per	sector.	Bins,	trucks,	and	mobile	
depots	have	a	certain	capacity.	There	are	defined	 two	 Infrastructure	Scenarios	 (IS).	 In	 the	 first	 scenario,	 IS-1,	 there	 is	
only	a	single	dump	and	recycling/processing	unit	in	the	SC.	In	the	second	scenario,	IS-2,	there	are	multiple	dumps	and	
recycling/processing	units.	The	models	are	assessed	through	three	Use	Cases	(UC)	per	IS.	The	UC	are	differentiated	by	

Table	1			Experimental	parameters	
Description	 Value	

Number	of	sectors	 10	
Number	of	bins	per	sector	 300	
Number	of	trucks	per	sector	 6	
Number	of	mobile	depots	per	sector	 1	
Number	of	containers	per	each	truck	 4	
Number	of	containers	per	each	mobile	depot	 12	
Number	of	dumps	in	the	SC	 3	
Volume	capacity	of	each	bin	(Kg)	 100	
Volume	capacity	of	each	container	(Kg)	 1000	
Volume	capacity	of	each	truck	(Kg)	 4000	
Volume	capacity	of	each	mobile	depot	(Kg)	 12000	
Volume	capacity	of	each	dump	(Kg)	 ∞	
Average	time	required	to	tip	a	bin	(min)	 2.5	
Average	time	required	to	swap	a	container	(min)	 1.5	
Average	time	required	to	swap	a	bin	(min)	 1	
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the	method	 of	 collecting	waste	 from	 bins.	 In	 UC-1	waste	 is	 collected	 by	 tipping	 bins	 to	 certain	 trucks.	 UC-2	 uses	 the	
method	 of	 tipping	 bins	 to	 truck	 containers	 and	 then	 swapping	 containers	 to	 mobile	 depots,	 while	 in	 UC-3	 waste	 is	
collected	by	swapping	bins	to	trucks	and	then	swapping	bins	from	trucks	to	mobile	depots.	

	

4.1.				Metrics	

To	assess	the	models,	as	described	in	Section	4.2,	there	are	certain	quantitative	and	qualitative	metrics,	which	need	to	be	
optimized.	Specifically,	minimization	of	the	following	quantitative	metrics	is	performed	by	the	proposed	models:	

Collection	Time	(CT):	It	is	the	time	required	to	collect	waste	from	bins	either	by	(1)	tipping,	(2)	tipping	and	swapping,	
or	(3)	swapping.	CT	should	be	minimal	since	it	 is	the	basic	metric	of	the	system	that	affects	all	the	waste	management	
process.	

Transport	 Time	 (TT):	 Is	 the	 time	needed	 to	 transport	waste	 after	 collected	 it	 in	 either	 (1)	 the	 single	depot	 and	 the	
recycling/processing	unit,	or	(2)	multiple	depots	and	recycling/processing	units.	Waste	in	UC-1	is	transported	by	trucks.	
In	UC-2,	 and	UC-3	 trucks	 and	mobile	 depots	 transport	 the	waste.	Minimum	values	 of	 TT	mean	 that	 traffic	 is	 handled	
effectively	in	the	SC.	

Load	 (L):	 Is	 the	 capacity	 of	waste	 transported	when	 collected	 from	 (1)	bins,	 or	 (2)	 containers.	Maximum	values	of	 L	
mean	 that	 trucks	 and	 mobile	 depots	 are	 efficiently	 full	 of	 waste	 and	 perform	 less	 routing	 trips	 to	 serve	 the	 waste	
collection	process	in	the	SC.	

Distance	(D):	Is	the	distance	covered	from	the	collection	point	to	the	disposal	point	(i.e.,	dumps	or	recycling/processing	
units.	A	minimum	D	value	 implies	 less	 fuel	 consumption	 from	 the	 trucks	or	depots,	 as	well	 as	 a	potentially	 lower	TT	
value	
Fuel	 (F):	Is	the	quantity	of	fuel	consumed	during	certain	D,	L,	TT,	and	CT	values.	Low	values	of	F	mean	a	cost-efficient	
model,	which	 is	possible	 to	be	 incorporated	by	the	SC	 if	 the	quality	of	waste	management	service	 is	with	an	adequate	
satisfaction	level.	

Figure	3			The	Tip	algorithm	
1	 Input:	𝑏, 𝑐	//Bins,	Trucks	
2	 Output:	CT,	TT,	L,	D,	F,	S	
3	 //	Navigation	algorithm	has	introduced	in	(Anagnostopoulos	et	al.,	2015).	Current	
4	 //	research	incorporates	navigation	algorithm	into	Tip	algorithm.	
5	 Begin	
6	 	If	(𝑔! ≥ 𝑡!)	Then	//	If	bin	volume	capacity	is	greater	or	equal	to	bin	capacity		

																																			//	threshold	
7	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑇𝑟𝑢𝑐𝑘 𝑡𝑜 𝐵𝑖𝑛		
8	 			𝐶𝑇 ← 𝑇𝑖𝑝 𝐵𝑖𝑛 𝑡𝑜 𝑇𝑟𝑢𝑐𝑘	
9	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑇𝑇, 𝐿,𝐷,𝐹 + 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑇𝑟𝑢𝑐𝑘 𝑡𝑜 𝐷𝑢𝑚𝑝		

10	 End	If	
11	 𝑆 ← 𝑄𝑜𝑆 𝐶𝑇,𝑇𝑇, 𝐿,𝐷,𝐹 		
12	 End	

Except	the	quantitative	metrics,	there	is	also	a	qualitative	metric,	which	should	be	maximized	to	assess	the	proposed	
models.	Such	qualitative	metric	should	highlight	the	overall	assessment	level	of	the	proposed	models:	

Satisfaction	 (S):	 It	 is	 the	state,	which	defines	the	 impact	of	 the	waste	management	service	to	the	SC.	 It	 is	a	Quality	of	
Service	(QoS)	metric,	which	takes	one	of	the	two	discrete	values,	namely:	(1)	low	satisfaction,	and	(2)	high	satisfaction.	
High	satisfaction	level	indicates	an	efficient	model,	while	a	low	satisfaction	level	indicates	an	inefficient	model.	

Figure	4			The	Tip-Swap	algorithm	
1	 Input:	𝑏, 𝑒, 𝑐,𝑑	//Bins,	Containers,	Trucks,	Mobile	Depots	
2	 Output:	CT,	TT,	L,	D,	F,	S	
3	 //	Navigation	algorithm	has	introduced	in	(Anagnostopoulos	et	al.,	2015).	Current	
4	 //	research	incorporates	navigation	algorithm	into	Tip-Swap	algorithm.	
5	 Begin	
6	 If	(𝑔! ≥ 𝑡!)	Then	//	If	bin	volume	capacity	is	greater	or	equal	to	bin	capacity		

																																		//	threshold	
7	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑇𝑟𝑢𝑐𝑘 𝑡𝑜 𝐵𝑖𝑛		
8	 			𝐶𝑇 ← 𝑇𝑖𝑝 𝐵𝑖𝑛 𝑡𝑜 𝑇𝑟𝑢𝑐𝑘 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	
9	 End	If	

10	 If	(𝑖! ≥ 𝑡!)	Then	//	If	truck	volume	capacity	is	greater	or	equal	to	truck	capacity	

																																//	capacity	threshold	
11	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑇𝑇, 𝐿,𝐷,𝐹 + 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑇𝑟𝑢𝑐𝑘 𝑡𝑜 𝑀𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑝𝑜𝑡		
12	 			𝐶𝑇 ← 𝑆𝑤𝑎𝑝 𝑇𝑟𝑢𝑐𝑘 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑡𝑜 𝑀𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑝𝑜𝑡	
13	 End	If	 	
14	 If	(𝑗! ≥ 𝑡!)	Then	//	If	mobile	depot	volume	capacity	is	greater	or	equal	to	mobile	depot	capacity	

																																	//	mobile	depot	capacity	threshold		
15	 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑇𝑇, 𝐿,𝐷,𝐹 + 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑀𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑝𝑜𝑡 𝑡𝑜 𝐷𝑢𝑚𝑝		
16	 End	If		
17	 𝑆 ← 𝑄𝑜𝑆 𝐶𝑇,𝑇𝑇, 𝐿,𝐷,𝐹 		
18	 End	



4.2				Algorithms	for	Models	

Tip	Algorithm	for	UC-1	Model:	In	UC-1	model	waste	is	collected	from	the	SC	sectors	by	tipping	full	bins	to	trucks.	When	
the	trucks	are	full	they	transport	waste	to	dumps	or	recycling/processing	units	according	to	IS-1/IS-2.	Algorithm	for	the	
UC-1	model	is	presented	in	Figure	3.	

Tip-Swap	Algorithm	 for	 UC-2	Model:	In	UC-2	model	 the	 trucks	are	 tipping	 full	bins	 to	 their	empty	container.	When		
container	 is	 full,	 trucks	 swap	 the	 full	 container	 with	 an	 empty	 container	 from	 mobile	 depots.	 Subsequently,	 trucks	
continue	to	collect	waste	 from	the	bins	 in	 the	SC.	When	Mobile	depots	containers	become	full	 they	transport	waste	to	
dumps	or	recycling/processing	units	according	to	IS-1/IS-2.	Figure	4.	describes	the	algorithm	for	the	UC-2	model.	

Figure	5			The	Swap	algorithm	
1	 Input:	𝑏, 𝑐,𝑑	//Bins,	Trucks,	Mobile	Depots	
2	 Output:	CT,	TT,	L,	D,	F,	S	
3	 //	Navigation	algorithm	has	introduced	in	(Anagnostopoulos	et	al.,	2015).	Current	
4	 //	research	incorporates	navigation	algorithm	into	Swap	algorithm.	
5	 Begin	
6	 If	(𝑔! ≥ 𝑡!)	Then	//	If	bin	volume	capacity	is	greater	or	equal	to	bin	capacity		

																																		//	threshold	
7	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑇𝑟𝑢𝑐𝑘 𝑡𝑜 𝐵𝑖𝑛		
8	 			𝐶𝑇 ← 𝑆𝑤𝑎𝑝 𝐵𝑖𝑛 𝑡𝑜 𝑇𝑟𝑢𝑐𝑘	
9	 If	(𝑖! ≥ 𝑡!)	Then	//If	truck	volume	capacity	is	greater	or	equal	to	truck	capacity	

																																//	capacity	threshold	
10	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑇𝑇, 𝐿,𝐷,𝐹 + 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑇𝑟𝑢𝑐𝑘 𝑡𝑜 𝑀𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑝𝑜𝑡		
11	 			𝐶𝑇 ← 𝑆𝑤𝑎𝑝 𝑇𝑟𝑢𝑐𝑘 𝐵𝑖𝑛𝑠 𝑡𝑜 𝑀𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑝𝑜𝑡		
12	 End	If	
13	 If	(𝑗! ≥ 𝑡!)	Then	//	If	mobile	depot	volume	capacity	is	greater	or	equal	to	mobile	depot	capacity	

																																	//	mobile	depot	capacity	threshold	
14	 			 𝑇𝑇, 𝐿,𝐷,𝐹 ← 𝑇𝑇, 𝐿,𝐷,𝐹 + 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑀𝑜𝑏𝑖𝑙𝑒 𝐷𝑒𝑝𝑜𝑡 𝑡𝑜 𝐷𝑢𝑚𝑝		
15	 End	If		
16	 𝑆 ← 𝑄𝑜𝑆 𝐶𝑇,𝑇𝑇, 𝐿,𝐷,𝐹 		
17	 End	

Figure	6			The	QoS	algorithm	
1	 Input:	CT,	TT,	L,	D,	F	
2	 Output:	S	
3	 Begin	
4	 If 𝐶𝑇 < 𝑚!" ∩ 𝑇𝑇 < 𝑚!!  ∩ 𝐿 > 𝑚! ∩ 𝐷 < 𝑚! ∩  (𝐹 < 𝑚!) Then	//	If	CT	value	is	

/less	than	Gaussian	CT	PDF	median	value	AND	TT	value	is	less	than	Gaussian	TT	PDF					//	
median	value	AND	L	value	is	greater	than	Gaussian	L	PDF	median	value	AND	D	value	is	//	less	
than	Gaussian	D	PDF	median	value	AND	F	value	is	less	than	Gaussian	F	PDF	median	//	value	

	 //	less	than	Gaussian	CT	PDF	median	value	AND	TT	value	is	less	than	Gaussian	TT	PDF						
	 //	median	value	AND	L	value	is	greater	than	Gaussian	L	PDF	median	value	AND	D	value	is	
	 //	less	than	Gaussian	D	PDF	median	value	AND	F	value	is	less	than	Gaussian	F	PDF	median	value	

5	 				𝑆 ← 𝐻𝑖𝑔ℎ 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛	
6	 Else	
7	 				𝑆 ← 𝐿𝑜𝑤 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛	
8	 End	If	
9	 End	

	

Figure	7			Graphical	representation	of	WMS	workflow	
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Swap	algorithm	for	UC-3	Model:	In	UC-3	model	trucks	are	swapping	full	bins	with	empty	bins.	When	bins	of	the	trucks	
are	 full,	 trucks	swap	 the	 full	bins	with	empty	bins	 from	mobile	depots.	Subsequently,	 trucks	continue	 to	collect	waste	
from	the	bins	 in	 the	SC.	When	mobile	depots	bins	become	full	 they	 transport	waste	 to	dumps	or	recycling/processing	
units	according	to	IS-1/IS-2.	The	algorithm	for	the	UC-3	model	is	presented	in	Figure	5.	

Algorithm	Quality	of	Service	Assessment:	Quality	of	Service	(QoS)	Algorithm	assesses	the	S	metric,	which	defines	the	
impact	of	the	waste	management	service	to	the	SC	based	on	the	CT,	TT,	L,	D,	and	F	metrics.	Algorithm	for	the	Quality	of	
Service	assessment	 is	described	 in	Figure	6.	 It	should	be	noted	that	 the	discrete	values	of	S	metric	are	affected	by	the	
median	(𝑚)	of	 the	 CT,	 TT,	 L,	 D,	 and	 F	 metrics.	 Specifically,	𝑚	of	 the	 metrics	 is	 computed	 based	 on	 historical	 data	
observed	during	the	training	phase	operation	of	the	WMS.	Therefore,	to	compute	𝑚	and	make	an	assessment	to	S	metric	
we	computed	the	Gaussian	probability	density	functions	(i.e.,	Gaussian	PDF)	of	the	CT,	TT,	L,	D,	and	F	metrics	based	on	
the	historical	data.		

4.3				Graphical	Representation	of	WMS	Workflow	

Adopted	methodology	 is	presented	by	 incorporating	a	graphical	representation,	which	explains	the	proposed	dynamic	
WMS	workflow.	 In	 Figure	 7	we	 use	 a	 flowchart	 to	 present	 the	 significant	 steps	 of	 the	 adopted	WMS	workflow	 to	 be	
understood	 by	 greater	 audience	 and	 practitioners	 for	 implication.	In	 addition,	 notations	 and	 variables	 used	 in	 the	
proposed	algorithms	and	models	are	presented	in	Table	2.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Figure	8			Results	for	CT	metric	

	

	

5					Results	and	Discussion	

5.1				Results	

We	 evaluated	 our	 system	 with	 real	 and	 synthetic	 data	 generated	 in	 the	 SC	 of	 St.	 Petersburg,	 as	 assessed	 in	
(Anagnostopoulos	et	al.,	2015).	Specifically,	the	models	were	fed	with	data	captured	from	Google	Maps	and	are	covering	
a	spatial	area	of	31.42026	square	km,	consisting	of	1,214	GPS	coordinates’	points,	from	the	centre	of	St.	Petersburg	SC,	
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Table	2			Notations	and	variables	in	algorithms	and	models	
Description	 Notation	

𝑏	 Bin	
𝑐	 Truck	
𝑒	 Container	
𝑑	 Mobile	depot	
𝑔! 	

	

Bin	volume	capacity	
𝑡! 	 Bin	capacity	
𝑖! 	 Truck	volume	capacity	
𝑡! 	 Truck	capacity	
𝑗! 	

Volume	capacity	of	each	container	(Kg)	

Mobile	depot	volume	capacity	
𝑡! 	 Mobile	depot	capacity	
𝐶𝑇	 Collection	time	
𝑇𝑇	 Transport	time	
𝐿	 Load	
𝐷	 Distance	
𝐹	 Fuel	
𝑆	 Satisfaction	
𝑚!" 	 Gaussian	CT	PDF	median	value	
𝑚!! 	 Gaussian	TT	PDF	median	value	
𝑚! 	 Gaussian	L	PDF	median	value	
𝑚! 	 Gaussian	D	PDF	median	value	
𝑚! 	 Gaussian	F	PDF	median	value	
	 	



Russia.	MATLAB	software	was	used	to	evaluate	the	proposed	models.	To	compute	the	mean	and	standard	deviation	of	
the	 CT,	 TT,	 L,	 D,	 and	 F	metrics,	 which	 are	 used	 for	 the	 assessment	 of	 the	 S	metric,	 a	 training	 phase	 of	 30	 days	was	
accomplished.	During	that	period,	historical	operational	data	were	collected	which	enable	the	formation	of	distributions	
for	 the	 metrics.	 We	 assumed,	 without	 loss	 of	 generality,	 that	 the	 metrics	 are	 following	 a	 Gaussian	 distribution.	
Subsequently,	we	run	the	proposed	WMS	for	another	testing	phase	period	of	30	days.	During	that	period,	the	system	was	
evaluated	based	on	certain	models	and	metrics.	The	results	and	the	statistics	are	computed	per	waste	collection	route	for	
the	UC-1,	UC-2,	and	UC-3	models	 for	each	of	 IS-1	and	IS-2	scenarios.	Specifically,	 in	Figure	8	 it	presents	 the	CT	metric	
results.	Median	statistic	measures	of	the	CT	metric	distribution	are	presented	in	Table	3.	Figure	9	presents	the	TT	metric	
results.	Median	statistic	measures	of	 the	TT	metric	distribution	are	presented	 in	Table	4.	Results	 for	 the	L	metric	are	
presented	in	Figure	10.	Table	5	presents	the	median	statistics	measures,	of	the	L	metric	distribution.	Figure	11	presents	
the	 results	 of	 the	D	metric.	Median	 statistic	measures	of	 the	D	metric	distribution	are	presented	 in	Table	6.	 Similarly	
results	 for	 the	 F	 metric	 are	 presented	 in	 Figure	 12.	 Table	 7	 presents	 the	 median	 statistic	 measures	 of	 the	 F	 metric	
distribution.	S	metric	results	are	presented	 in	Table	8.	These	results	are	 inferred	 from	all	 the	values	of	CT,	TT,	L,	D,	F	
metrics.	Note	that	for	inferring	the	assessed	values	of	S	per	IS	and	UC	the	mode	statistic	measure	is	used.	

Table	3			Statistics	for	CT	metric	

CT	
IS-1	 IS-2	

UC-1	 UC-2	 UC-3	 UC-1	 UC-2	 UC-3	

𝒎	 2,58	 2,43	 2,02	 2,49	 2,51	 2,01	

Figure	9			Results	for	TT	metric	

	
Table	4			Statistics	for	TT	metric	

TT	
IS-1	 IS-2	

UC-1	 UC-2	 UC-3	 UC-1	 UC-2	 UC-3	

𝒎	 49,10	 25,00	 24,35	 47,70	 23,25	 23,65	

Figure	10			Results	for	L	metric	

	
	

Table	5			Statistics	for	L	metric	

L	
IS-1	 IS-2	

UC-1	 UC-2	 UC-3	 UC-1	 UC-2	 UC-3	

𝒎	 3069,50	 11180,05	 11126,95	 3089,85	 10875,95	 11296,05	
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Figure	11			Results	for	D	metric	

	
Table	6			Statistics	for	D	metric	

	D	
IS-1	 IS-2	

UC-1	 UC-2	 UC-3	 UC-1	 UC-2	 UC-3	

𝒎	 20,16	 10,58	 10,26	 18,30	 8,98	 8,89	

Figure	12			Results	for	F	metric	

	
Table	7			Statistics	for	F	metric	

F		
IS-1	 IS-2	

UC-1	 UC-2	 UC-3	 UC-1	 UC-2	 UC-3	

𝒎	 4,92	 4,32	 4,36	 4,77	 4,20	 4,11	

Table	8			Results	for	S	metric	

S	
IS-1	 IS-2	

UC-1	 UC-2	 UC-3	 UC-1	 UC-2	 UC-3	

mode	 𝐿𝑜𝑤		 𝐿𝑜𝑤	 𝐻𝑖𝑔ℎ	 𝐿𝑜𝑤	 𝐻𝑖𝑔ℎ	 𝐻𝑖𝑔ℎ	

	

5.2				Discussion	

In	this	section,	we	discuss	the	accuracy	and	validity	of	the	results.	Figure	8	and	Table	3	present	results	and	statistics	for	
CT	metric.	 Values	 for	UC-1	 and	UC-2	 are	higher	 than	UC-3.	 In	 addition,	 the	 value	of	UC-1	 is	 higher	 than	UC-2.	This	 is	
explained	due	to	CT	process.	Specifically,	simulation	parameter,	used	in	UC-1,	for	the	average	time	required	tipping	a	bin	
(k)	is	2.5	minutes,	which	leads	to	higher	value	of	CT.	In	UC-2	the	k	parameter	is	used,as	in	UC-1,	but	also	the	l	parameter,	
which	is	the	average	time	required	to	swap	a	container	with	value	1.5	minutes.	Although	UC-2	uses	both	parameters	it	is	
more	CT	efficient	than	UC-1	since	there	is	a	fusion	on	the	values	due	to	the	capacity	of	bins	and	containers	incorporated.	
UC-3	 is	more	 CT	 efficient	 than	 UC-1	 and	 UC-2	 since	 it	 is	 affected	 only	 by	 the	 average	 time	 required	 swapping	 a	 bin	
parameter	(n),	which	is	1	minute.	All	the	CT	values	are	not	affected	by	the	number	of	the	dumps	in	the	SC,	so	there	are	
not	biased	by	IS-1	and	IS-2,	since	CT	metric	is	affected	only	by	the	waste	collection	process	between	the	bins,	trucks	and	
mobile	depots.	
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TT	results	and	statistics	presented	in	Figure	9	and	Table	4.	Values	of	UC-2	and	UC-3	are	lower	than	value	of	UC-1.	This	
is	explained	due	to	the	use	of	mobile	depots	on	both	UC-2	and	UC-3.	Specifically,	there	is	a	fusion	of	TT	values	when	both	
trucks	and	mobile	depots	are	used.	This	 is	not	 the	case	 in	UC-1	where	 the	 trucks	have	 to	 transport	waste	solely	 from	
collection	points	to	dumps.	In	addition,	TT	values	are	higher	for	IS-1	than	IS-2.	This	is	explained	due	to	longer	distance	
have	to	be	covered	in	the	case	of	a	single	dump,	like	in	IS-1,	than	the	lower	average	distance	has	to	be	covered	in	the	case	
of	multiple	dumps,	which	is	the	case	of	IS-2.	For	this	reason,	in	IS-1	the	case	of	UC-3	has	lower	values	than	the	UC-1	and	
UC-2,	while	in	IS-2	both	UC-2	and	UC-3	have	lower	values	than	UC-1	for	the	TT	metric.	

In	the	case	of	L	metric	results	and	statistics	are	obtained	in	Figure	10	and	Table	5.	L	metric	values	are	higher	for	UC-2	
and	UC-3	 than	UC-1	 in	both	cases	of	 IS-1	and	 IS-2.	This	 is	explained	due	 to	 the	 fact	 that	 in	UC-2	and	UC-3	 the	volume	
capacity	of	the	mobile	depots	is	well	aligned	with	the	(j)	simulation	parameter,	which	is	12000	kilograms.	In	the	case	of	
UC-1,	the	distribution	of	L	metric	is	based	on	the	volume	capacity	of	trucks	parameter	(i),	which	is	4000	kilograms.		

Figure	11	and	Table	6	present	the	results	and	the	statistics	for	D	metric.	Value	for	UC-1	is	higher	than	values	of	UC-2	
and	UC-3.	This	is	explained	since	in	the	case	of	UC-1	trucks	cover	the	whole	distance	between	the	location	of	the	bins	and	
the	dumps.	In	the	case	of	UC-2	and	UC-3	trucks	and	mobile	depots	fuse	the	distance	covered	thus	leading	to	a	lower	D	
metric	values.	In	addition,	in	the	case	of	IS-1	distance	covered	is	on	average	higher	than	the	distance	covered	in	IS-2.	This	
is	because	 trucks	and	mobile	depots	 in	 the	case	of	 IS-2	distribute	 the	effort	of	 the	distance	covered	between	multiple	
dumps.	

F	results	and	statistics	are	presented	in	Figure	12	and	Table	7.	F	metric	values	are	higher	for	UC-1	than	for	UC-2	and	
UC-3	since	in	the	case	of	UC-2	and	UC-3	trucks	and	mobile	depots	fuse	the	F	metric	distribution,	while	 in	case	of	UC-1	
trucks	consume	more	 fuel	 to	handle	 the	waste	collection	process.	 In	addition,	 in	 the	case	of	 IS-2,	 the	F	metric	value	 is	
lower	than	the	case	IS-1.	This	 is	explained	since	in	IS-2	there	are	multiple	dumps	distributed	to	the	SC,	which	leads	to	
less	fuel	consumption	than	with	a	single	dump	in	the	case	of	IS-1.			

Results	of	S	metric	are	presented	in	Table	8.	Specifically,	applying	QoS	algorithm	to	the	distributions	of	the	CT,	TT,	L,	D,	
and	F	metrics	leads	to	the	S	metric	results.	In	the	case	of	IS-1,	UC-3	is	inferred	to	have	high	satisfaction	level	while	UC-1	
and	UC-2	are	of	 low	satisfaction	 level.	Similarly,	 in	 the	case	of	 IS-2,	both	UC-2	and	UC-3	reach	higher	satisfaction	 level	
than	UC-1,	which	reaches	a	low	satisfaction	level.	Qualitatively	this	means	that	IS-2	is	an	infrastructure	scenario,	which	
uses	the	dynamics	of	multiple	dumps	to	achieve	efficient	results	for	the	CT,	TT,	L,	D	and	F	metrics.	In	addition,	UC-3	in	
both	IS-1	and	IS-2	achieves	high	satisfaction,	which	quantitatively	means	that	UC-3	is	more	robust	than	UC-2	and	more	
satisfactory	than	both	UC-1	and	UC-2.	

We	focused	on	the	incorporation	of	an	effective	IoT-enabled	model	for	waste	collection,	which	is	based	on	the	adoption	
of	 high	 capacity	 waste	 trucks	 as	mobile	 depots.	 Bin	 connectivity	 constraints	 are	 the	 limitations	 of	 the	 current	 study	
because	they	may	affect	the	bin	placement;	for	example,	the	output	power	of	a	communicating	sensor	would	need	to	be	
set	too	high	which	may	drain	the	battery	faster.	To	overcome	this	limitation,	the	bin	may	be	placed	somewhere	where	
energy	consumption	is	more	efficient	to	optimize	comfort	of	residents.	

6				Conclusion	and	Future	Work	

This	 research	 paper	 proposes	 a	WMS,	which	 incorporates	 certain	waste	 collection	 swapping	 and	 tipping	models.	We	
prove	that	swapping	models	are	more	cost	efficient	than	tipping	models.	Specifically,	we	introduced	two	infrastructure	
scenarios,	IS-1	and	IS-2,	based	on	the	number	of	dumps	and	recycling/processing	units	in	the	SC.	In	each	IS	we	separate	
three	 use	 cases,	 UC-1,	 UC-2	 and	 UC-3,	 to	 study	 efficient	waste	management.	We	 treat	waste	management	 as	 an	 IoT-
enabled	 system,	which	 incorporates	mobile	depots	 as	 sustainable	proxies.	We	also	proposed	 three	 algorithms	 for	 the	
UCs,	namely	the	tip	algorithm	for	the	UC-1	model,	tip-swap	algorithm	for	the	UC-2	model	and	swap	algorithm	for	the	UC-
3	model.		

We	defined	certain	metrics	to	evaluate	the	proposed	system	with	synthetic	data	from	the	SC	of	St.	Petersburg,	Russia.	
Specifically,	we	introduce	the	CT,	TT,	L,	D	and	F	quantitative	metrics	and	the	S	qualitative	metric.	The	S	metric	takes	as	
input	 the	values	of	 the	quantitative	metrics	 and	gives	 an	output	of	high	or	 low	satisfaction.	 It	 is	 inferred	 that	UC-3	 is	
more	robust	 than	UC-1	and	UC-2	and	achieves	high	satisfaction	 for	both	IS-1	and	IS-2.	 In	addition,	UC-2	achieves	high	
satisfaction	only	for	IS-2,	while	UC-1	has	low	satisfaction	for	both	IS-1	and	IS-2.		

We	also	 focused	on	 the	 limitations	of	 the	current	 study,	which	are	 that	bin	connectivity	constraints	may	affect	 their	
placement.	To	overcome	this	limitation	we	proposed	that	the	bin	may	be	placed	somewhere	where	energy	consumption	
is	more	efficient	 to	 improve	comfort	of	 residents.	Our	 future	work	 focuses	on	optimizing	 the	 inference	process	of	 the	
proposed	models	by	adopting	a	set	of	fuzzy	logic	inference	controllers	for	each	metric.		In	addition,	we	aim	to	perform	a	
comparative	study	between	a	SC	adopting	such	a	model	and	the	SC	of	St.	Petersburg	in	Russia.	Another	interesting	issue	
for	further	research	is	to	incorporate	the	degree	of	consumer	acceptance	of	the	proposed	models	in	future	studies.	
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