

Wong, M. C.S., Chan, D. K.L., Wang, H. H.X., Tam, W. W.S., Cheung, C. S.K., Yan, B. P. and Coats, A. J.S. (2016) The incidence of all-cause, cardiovascular and respiratory disease admission among 20,252 users of lisinopril vs. perindopril: a cohort study. *International Journal of Cardiology*, 219, pp. 410-416. (doi:10.1016/j.ijcard.2016.06.053)

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/208840/

Deposited on: 03 February 2020

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u>

The incidence of all-cause, cardiovascular and respiratory disease admission among 20,252 users of lisinopril vs. perindopril: a cohort study

Martin CS Wong, MD, MPH^{1, 2, 3}; David KL Chan, BSc¹; Harry HX Wang, PhD^{4, 5}; Wilson WS Tam, PhD⁶; Clement SK Cheung, MBChB, FHKAM⁷; Bryan P Yan, FACC, FESC⁸; Andrew JS Coats, FRACP, FESC^{8, 9, 10}

1. JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

2. CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong

3. Department of Family Medicine, Hospital Authority, Hong Kong

4. School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P.R. China

5. General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, United Kingdom

6. Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

7. Hospital Authority Information Technology Services - Health Informatics Section, Hospital Authority, HKSAR China

8. Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

9. Monash University, Australia; 10. The University of Warwick, United Kingdom

#1-10: All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation

Running Title: Admission among lisinopril and perindopril users

Grant Support: This work was supported by Family Medicine Research and Services Project, led by M.C.S. Wong at The Chinese University of Hong Kong. H.H.X. Wang was supported by New Faculty Start-Up Research Fund (51000-31121405 and 51000-18821202) at Sun Yat-Sen University **Disclosures:** None declared

Key words: cardiovascular disease; respiratory disease; angiotensin converting enzyme inhibitor; lisinopril; perindopril; hospital admission

[†]Corresponding author: Harry HX Wang BS, MS, PhD

School of Public Health, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou 510080, P.R. China; General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, 1 Horselethill Road, Glasgow G12 9LX, UK Tel: +86 20 87330672, Email: haoxiangwang@163.com; Haoxiang.Wang@glasgow.ac.uk

1 Abstract

Background: Major international guidelines do not offer explicit recommendations on any specific
angiotensin-converting enzyme inhibitor (ACEI) agent over another within the same drug group.
This study compared the effectiveness of lisinopril vs. perindopril in reducing the incidence of
hospital admission due to all-cause, cardiovascular disease and respiratory disease.

6

Methods: Adult patients who received new prescriptions of lisinopril or perindopril from 2001 to
2005 in all public hospitals and clinics in Hong Kong were included, and followed up for ≥2 years.
The incidence of admissions due to all-cause, cardiovascular disease and respiratory disease was
evaluated, respectively, by using Cox proportional hazard regression models. The regression models
were constructed with propensity score matching to minimize indication biases.

12

Results: A total of 20,252 eligible patients with an average age of 64.5 years (standard deviation 13 14 15.0) were included. The admission rate at 24 months within the date of index prescription due to any cause, cardiovascular disease and respiratory disease among lisinopril vs. perindopril users was 15 16 24.8% vs. 24.8%, 13.7% vs. 14.0% and 6.9% vs. 6.3%, respectively. Lisinopril users were 17 significantly more likely to be admitted due to respiratory diseases (adjusted hazard ratios 18 [AHR]=1.25, 95% C.I. 1.08 to 1.43, p=0.002 at 12 months; AHR=1.17, 95% C.I. 1.04 to 1.31, 19 p=0.009 at 24 months) and all cause (AHR=1.12, 95% C.I. 1.05 to 1.19, p<0.001 at 24 months) than 20 perindopril users.

21

Conclusions: These findings support intra-class differences in the effectiveness of ACEIs, which
 could be considered by clinical guidelines when the preferred first-line antihypertensive drugs are
 recommended. (250 words)

25

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; PDC, proportion of days covered;
CI, confidence interval; AHR, adjusted hazard ratios

28 Introduction

29 Globally, hypertension is one of the most significant risk factors for cardiovascular disease and all-30 cause mortality. [1] The Task Force for the Management of Arterial Hypertension of the European 31 Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) have 32 recommended the prescription of angiotensin-converting enzyme inhibitors (ACEIs) for the 33 treatment of hypertension, heart failure and myocardial infarction. [2] The ESH/ESC guideline [3], the National Institute for Health and Care Excellence [4] and 8th Joint National Committee (JNC 34 8) [5] consistently recommend ACEIs as one of the first line drug classes for management of 35 36 arterial hypertension. In certain situations including diabetic nephropathy, post-myocardial 37 infarction, heart failure, and left ventricular dysfunction [6, 7], ACEIs are particularly preferred 38 owing to the ability to provide the greatest end-organ protection. [4] The enthusiasm to prescribe ACEIs extends beyond their effectiveness to reduce blood pressure (BP), since as a monotherapy 39 40 they are as effective as most other major antihypertensive drug classes. [8]

41

42 Multiple studies have reported comparable antihypertensive efficacy between the multiple ACEIs 43 and angiotensin II receptor blockers (ARBs) with no consistent differences in clinical outcomes, 44 including death, cardiovascular events, quality of life, rate of single antihypertensive agent use, lipid levels, progression to diabetes, left ventricular mass or function, and kidney disease. [9] In 45 addition, evidence from the Blood Pressure Lowering Treatment Trialists' Collaboration showed the 46 47 existence of similar BP-dependent effects of ACEIs and ARBs for the risk of cardiovascular and 48 stroke events; yet the ACEI alone had an added BP-independent benefit in reducing risk of coronary 49 heart disease. [10] A more recent meta-analysis documented that ACEIs and ARBs were equally 50 protective against myocardial infarction and mortality. [11]

51

52 Nevertheless, there is an important knowledge gap to be addressed. Evidence from face-to-face 53 trials that directly compared the effectiveness of different entities of ACEIs were rare, and 54 meanwhile the major international guidelines [3-5] do not offer explicit recommendations on any specific ACEI agent over another within the same drug group. The perindopril and lisinopril are the 55 two most commonly prescribed ACEIs. A meta-analysis of randomized controlled trials showed 56 57 that perindopril resulted in significantly fewer patients reaching primary end-points, including 58 stroke, mortality, and myocardial infarction. [12] When these three endpoints were used as a 59 composite outcome, the effect size of perindopril alone was larger than that of the combined ACEI 60 analysis. Perindopril showed a significant risk reduction of the composite endpoints by 18% when compared with the overall ACEI effect. [12] Furthermore, in our recent analysis of a population-61 62 based study from 15,622 hypertensive patients, perindopril users were found to have lower all-cause 63 and cardiovascular mortality than lisinopril users. [13]

64

The objective of this study was to compare the effectiveness of perindopril and lisinopril, which were the two most commonly prescribed ACEIs, on reducing hospital admission due to any cause, cardiovascular disease and respiratory disease. We tested the *a priori* hypothesis that there was no difference in the incidence of admission between the two drug classes.

69 Methods

70 Data Source

71 Patient information was extracted from an electronic clinical database, covering the entire Hong 72 Kong population with more than 7 million people during the study period in the public health care 73 sector. Patients' medication history, sociodemographic characteristics, and clinical diagnoses coded 74 in the form of International Classification of Diseases (ICD-9) or International Classification of 75 Primary Care (ICPC-2) in each consultation at different clinic locations were documented by the 76 clinical management system. This computerized system is the only portal of information entry in all 77 public health care settings across all geographical regions of Hong Kong (i.e. the New Territories, Kowloon, and Hong Kong Island). In all clinical consultations, medical doctors entered the 78 79 prescription details as part of their routine practice. The details were subsequently sent to pharmacy 80 professionals for drug dispensing. This electronic patient record system captured all amendments of 81 prescriptions following the attending physicians' consultations. The database has been validated 82 previously, and we found a high level of completeness of patients' demographic profiles (100%) and 83 prescription details (99.8%). [14] We declared that this database has also been employed for 84 analysis in previous studies. [13, 15-22] The present study was performed in accordance with the 85 ethical guidelines of the Declaration of Helsinki. The study was approved by the Clinical Ethics 86 Research Committee of the Hospital Authority and the Survey and Behavioral Research Ethics Committee of The Chinese University of Hong Kong. 87

88

89 Patients

Patients were eligible if they: (1). visited any public inpatient and outpatient settings in the period
2001-2005; (2). were newly prescribed perindopril or lisinopril as their initial antihypertensive
agent; (3). did not receive antihypertensive drugs other than ACEIs before the index date, which
was defined as the date of the first prescription record. We excluded subjects whose ACEI
prescriptions lasted for less than 1 month; and whose antihypertensive agent was switched to

another medication for 2 years within the index date. Concomitant comorbidities of all patients
were represented by the corresponding ICD-9 or ICPC-2 codes documented in the computer, and all
patients were followed-up for 2 years.

98

99 Outcomes Variables and Covariates

100 The primary outcome measures consisted of the incidence of hospital admission due to any cause, 101 cardiovascular disease, and respiratory disease, respectively, based on physician diagnoses. The 102 incidence of admission due to cardiovascular diseases was identified with respect to coronary heart 103 disease or stroke (ICD-9: coronary heart diseases: 410-414, heart failure: 428, cerebrovascular disease: 430-435, 437, 438; ICPC-2: cardiovascular or cerebrovascular disease: K74-K77, K84, 104 105 K90, K91, K99). The respiratory diseases captured in the system included chronic obstructive 106 airway disease, asthma, pneumoconiosis and other lung diseases that are major complications of 107 pulmonary hypertension or complications that are commonly seen among patients on ACEIs (ICD-9: 108 491-493, 495, 496, 500-508, 510-513, 516, 517.1, 517.2, 517.8, 518.1, 518.2, 518.3, 518.5, 518.81, 109 518.82, 518.89, 519.1, 519.4, 519.8; ICPC-2: R79, R95, R96). The proportions of new-onset 110 cardiovascular and respiratory diseases were captured from the hospitalization information system

111 of the Hospital Authority.

112

113 The variable tested for association with the outcomes was the medication prescribed (lisinopril vs. perindopril). We controlled for age, sex, socioeconomic status (SES), service types (inpatient vs. 114 specialist outpatient vs. general outpatient), the Proportion of Days Covered (PDC) as a measure of 115 116 medication adherence, and the number of comorbidities. As a proxy measure of SES, we classified 117 patients into recipients and non-recipients of social security allowance. We categorized 118 comorbidities into "cardiovascular diseases", "respiratory diseases", "renal diseases" and "diabetes 119 or impaired glucose tolerance", based on the respective ICD-9 and ICPC-2 codes. [22] The 120 interval-based PDC has been recognized as an internationally accepted metric to evaluate

medication adherence in database research. [23-25] The PDC was derived from dividing the time
period with prescriptions by the total period of follow-up. For patients who died within 2 years
after the index prescription, the PDC was estimated by adopting the time period between the index
date and the death date. The medication adherence was regarded as high (PDC ≥0.80) or low (PDC
<0.80) according to international standard. [25-27]

126

127 Statistical Analysis

128 The demographic and clinical characteristics of patients prescribed lisinopril vs. perindopril were 129 compared by Pearson's Chi-square tests for categorical variables and Student's t-tests for 130 continuous variables. We tabulated the incidence of hospital admissions due to any cause, 131 cardiovascular disease and respiratory disease, respectively, across different independent variables. 132 The Kaplan-Meier method with the log-rank test was adopted to compare the difference between 133 lisinopril users vs. perindopril users in their incidence of cause-specific hospital admission. A Cox proportional hazard regression analysis [28] was modelled to compare the mortality rates of the two 134 135 drug groups, adjusting for age, sex, SES, service types, the PDC, and the number of comorbidities. 136 Three models were constructed for admissions due to any cause, cardiovascular disease and 137 respiratory diseases, respectively, where hazard ratios and the corresponding 95% confidence 138 intervals (95% CI) were evaluated. The medication dosages were controlled in additional 139 regression analyses to detect for differences in hazard ratios.

140

To minimize the influence of treatment indication bias caused by different baseline characteristics of the two drug groups, we performed propensity score matching which was incorporated into the Cox proportional hazard models. The score was estimated by a logistic regression model with ACEIs prescribed against age, sex, service types, and SES. The probability of prescribing lisinopril compared with perindopril was predicted according to the baseline characteristics of each patient. A propensity score was assigned for each patient. The Cox proportional hazard analyses adjusted for

- the propensity scores and other confounding factors. This standardized methodology to minimize
- indication bias has been utilized by other studies. [29-31] All tests of significance were two-tailed,
- 149 where *p* values less than 0.05 were regarded as statistically significant. We performed all statistical
- analyses with the Statistical Package for Social Sciences (version 16.0, Chicago, IL).

151 **Results**

152 Participant characteristics

153 The baseline characteristics of all patients were presented in Table 1. Their average age was 64.5 years (SD 15.0), and 49.2% were female subjects. There was no significant difference in age and 154 155 gender between users of perindopril and lisinopril. Slightly more patients who received lisinopril were recipients of public financial assistance (17.4% vs. 14.8%, p<0.001). Higher proportion of 156 157 lisinopril users attended specialist out-patient clinics (37.3% vs. 32.0%, p<0.001) when compared 158 with perindopril users. Patients prescribed lisinopril had higher medications adherence at 6 months 159 $(PDC \ge 0.80: 34.8\% \text{ vs. } 30.2\%), 1 \text{ year } (48.9\% \text{ vs. } 41.7\%) \text{ and } 2 \text{ years } (36.0\% \text{ vs. } 28.8\%, \text{ all } 10.0\% \text{ vs. } 28.8\%)$ p < 0.001). Lisinopril users were prescribed higher dosages (>5 mg/day: 14.8% vs. 7.2%, p < 0.001) 160

162

161

(Table 1).

163 *Profile of admissions due to any cause, cardiovascular disease and respiratory disease*

164 Table 2 shows the participant characteristics according to cause-specific hospital admissions. 165 Among patients who were still survived, the proportion of subjects admitted to hospitals 6 months 166 within the date of index prescription due to any cause, cardiovascular disease and respiratory 167 disease was 12.2%, 7.6% and 3.1%, respectively. Patients admitted due to any cause (age \geq 70 168 years; 58.5% vs. 36%), cardiovascular disease (65.9% vs. 36.5%), and respiratory disease (77.6% vs. 37.5%) were older than those not admitted. For all types of admissions, there was a higher 169 170 proportion of male patients and recipients of public financial assistance (Table 2). When compared 171 with patients who were not admitted, those admitted due to any cause (57.5% vs. 56.6%) and 172 respiratory disease (58.5% vs. 56.7%) had higher proportions taking lisinopril, as well as having 173 PDC ≥ 0.80 . At 12 months, the proportion of patients admitted due to any cause, cardiovascular and 174 respiratory disease was 20.4%, 11.3% and 4.9%. The corresponding figures at 24 months were 175 31.1%, 16.1% and 7.1% (Table 3). Among admissions due to any cause and respiratory diseases, 176 the majority were lisinopril users. The admission rate at 24 months within the date of index

- 177 prescription due to any cause, cardiovascular disease and respiratory disease among lisinopril vs.
- 178 perindopril users was 24.8% vs. 24.8%, 13.7% vs. 14.0% and 6.9% vs. 6.3%, respectively.
- 179

180 Comparison between lisinopril and perindopril

- 181 Unadjusted and adjusted Cox proportional hazard regression analyses with propensity score
- 182 matching were performed to compare the disease-specific admission rates between lisinopril and
- 183 perindopril (Table 4). From regression analysis, lisinopril users were significantly more likely to be
- admitted due to respiratory diseases (adjusted hazard ratios [AHR]=1.25, 95% C.I. 1.08 to 1.43,
- 185 *p*=0.002 at 12 months; AHR=1.17, 95% C.I. 1.04 to 1.31, *p*=0.009 at 24 months) and any cause
- 186 (AHR=1.12, 95% C.I. 1.05 to 1.19, *p*<0.001 at 24 months) than perindopril users.

187 **Discussion**

188 Statement of Major Findings

The present study included more than 20,000 patients newly prescribed ACEIs and compared the incidence of hospital admission between patients who received lisinopril and perindopril, where indication bias was controlled by propensity score matching. It was found that the odds of hospital admission was significantly higher among lisinopril users when compared with perindopril users at 24 months due to any cause (by 12%) and respiratory diseases (by 17%). These findings supported an intra-class difference in the pharmacological benefits within the ACEI drug group.

195

196 Relationship with Literature and Explanation of Findings

197 ACEIs are the only drug class recommended for all of the compelling indications listed in the JNC 198 7 guideline. Lisinopril and perindopril are commonly prescribed. They belong to the carboxyl-199 containing ACEIs with identical duration of action (24 hours), and both were eliminated via the 200 kidneys. [32] Lisinopril has a longer serum half-life (11-12 hours) than perindopril (3-10 hours). 201 There have been very few studies which directly compared the effectiveness of lisinopril and 202 perindopril on reducing the incidence of cardiovascular and respiratory disease-related admissions. 203 A meta-analysis of randomized controlled trials of ACEI therapy for any cardiovascular 204 outcomes [12] showed that the effect size of perindopril was higher than that of the combined ACEI 205 class. The risk reduction of composite cardiovascular endpoints was 18% for perindopril users but 206 was lowered to 5% only if perindopril was excluded from the analysis. The authors concluded that 207 the survival benefits differed according to different ACEIs prescribed. This statement was 208 corroborated by another study conducted by Comini and colleagues, who compared the 209 effectiveness of five ACEIs (enalapril, perindopril, quinapril, ramipril, and trandolapril) at 210 equihypotensive doses on increasing endothelial nitric oxide synthase protein expression and 211 activity in the aorta and cardiac myocytes. [33] A highly significant effect was observed with

212 perindopril when compared with other ACEIs, which provided further evidence in favor of the 213 differential effects of ACEI therapy. Hence, the clinical benefits associated with these medications 214 might not solely reflect a class effect extending their benefit beyond BP-lowering effect. In 215 addition, Pilote and colleagues performed two retrospective studies using linked hospital discharge 216 and prescription databases in Canada. They found that patients older than 65 years who suffered 217 from an acute myocardial infarction were significantly less likely to die if they were prescribed 218 ramipril compared with those on other ACEIs (enalapril, fosinopril, captopril, quinapril, and 219 lisinopril). [34] They also showed that elderly patients who had heart failure had higher mortality 220 rate 30 days after hospital discharge among those prescribed captopril or enalapril compared with 221 Ramipril. [35] Together with our previous studies which showed that hypertensive patients who 222 received lisinopril were more likely than perindopril users to die from cardiovascular disorders or 223 be admitted due to renal disease or diabetes, [13, 36] the conclusion of this study was compatible 224 with those from existing literature. The difference in their effectiveness to reduce respiratory 225 disease and all-cause admissions might be due to their different pharmacokinetic and 226 pharmacodynamics activities. Also, this study reported that patients prescribed perindopril had 227 lower medication adherence levels than lisinopril users. The exact mechanism where they confer 228 different effects is yet to be explored. Our study is unique as it included patients with ethnicities 229 that have not been previously studied. It is known that the pharmacological responses to different antihypertensive drugs differ according to different ethnicities [37] - hence our findings allow the 230 231 conclusions of previous studies to be more generalizable.

232

233 Strengths and Limitations

This is the first study of this scale which included a large number of patients newly prescribed two commonly used ACEIs in the whole territory of Hong Kong, using a validated and comprehensive database. [14] The standardized prescription and dispensing practices which were under regular 237 audit in the public healthcare system enhanced the robustness of the present analysis. The use of 238 ICD-9 and ICPC-2 as internationally recognized strategies for disease coding, and the ability of the 239 electronic pharmacy system to include medication details in all clinic visits at different geographical 240 regions provide an accurate source of data. However, some limitations should be addressed here. Firstly, the inherent assumption of database analysis where patients were actually taking the 241 prescribed medications needs to be taken into account. Hence we have also incorporated PDC as a 242 243 universally accepted metric into the Cox regression models. [23-25] Also, the follow-up period of 244 this study was up to two years – and it is unknown whether the observed differences in hospital 245 admission between the two groups could be sustained in the long term. Thirdly, there exist 246 heterogeneity in the baseline characteristics of patients between the two drug groups, and critics 247 might argue that indication bias could influence the results against the null hypothesis. Therefore 248 we have attempted to address this concern employing propensity score matching, which has been 249 widely used internationally for analyzing administrative databases. [30, 36] It should also be noted 250 that the two medications have exactly the same compelling indications and contraindications, and 251 both were available in all the public clinics where the choice of prescription was up to the 252 physicians-in-charge. Finally, due to the non-randomized nature of assigning subjects into the two 253 groups, some residual confounders that were not captured by the database might introduce bias, 254 including previous comorbidities, prior experience of hospital admission, lifestyle habits after 255 clinical consultations, and concomitant medications taken by the patients.

256

257 Conclusions

This study reported intra-class difference of ACEIs with respect to their effectiveness to reduce allcause and respiratory disease admissions, among hypertensive patients who received their first-ever antihypertensive medications. The better outcomes seen in perindopril vs. lisinopril provide an important clinical implication to both researchers and physicians. Lisinopril alone may not be

262	adequate to represent the entire ACEI class in interpretation of existing trials, which almost
263	exclusively used lisinopril as "representative of ACEIs". Future studies should be performed to
264	compare the effectiveness of different drugs within the ACEI class on patient-oriented outcomes by
265	rigorously designed trials, preferably in patients of different races. The hypothesis where one ACEI
266	is superior to another should be further tested prospectively, as it also exerts an impact on the
267	formulation of future clinical guidelines on recommendation of antihypertensive treatments.
268	
269	
270	Source(s) of Funding: None
271	Competing interests : The author(s) declare that they have no competing interests.
272	Authors' contributions: MCSW (principal investigator) and HHXW conceived of the study design
272 273	Authors' contributions: MCSW (principal investigator) and HHXW conceived of the study design and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all
273	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all
273 274	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all authors contributed to literature search and interpretation of the data. MCSW wrote the first draft,
273 274 275	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all authors contributed to literature search and interpretation of the data. MCSW wrote the first draft, and DKLC and HHXW contributed to the subsequent revisions of the manuscript. All authors
273 274 275 276	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all authors contributed to literature search and interpretation of the data. MCSW wrote the first draft, and DKLC and HHXW contributed to the subsequent revisions of the manuscript. All authors contributed to the feedback on study results and writing of the final report. All authors, external and
273 274 275 276 277 278	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all authors contributed to literature search and interpretation of the data. MCSW wrote the first draft, and DKLC and HHXW contributed to the subsequent revisions of the manuscript. All authors contributed to the feedback on study results and writing of the final report. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis.
273 274 275 276 277 278 279	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all authors contributed to literature search and interpretation of the data. MCSW wrote the first draft, and DKLC and HHXW contributed to the subsequent revisions of the manuscript. All authors contributed to the feedback on study results and writing of the final report. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. Acknowledgments: We express our gratitude for all the healthcare professionals who entered the
273 274 275 276 277 278	and provided overall guidance. Data analysis was mainly done by WWST and CSKC, and all authors contributed to literature search and interpretation of the data. MCSW wrote the first draft, and DKLC and HHXW contributed to the subsequent revisions of the manuscript. All authors contributed to the feedback on study results and writing of the final report. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis.

References

[1] Lawes CMM, Vander Hoorn S, Rodgers A, Hypertens IS. Global burden of blood-pressure-related disease, 2001. *Lancet* 2008;371:1513-8.

[2] Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. The Task Force on ACE-inhibitors of the European Society of Cardiology. *Eur Heart J* 2004;25:1454-70.

[3] Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). *Eur Heart J* 2013;34:2159-219.

[4] James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). *JAMA* 2014;311:507-20.

[5] Hypertension : quick reference guide : clinical management of primary hypertension in adults. London: National Institute for Health and Clinical Excellence; 2011.

[6] Remme WJ, Swedberg K, European Society of C. Comprehensive guidelines for the diagnosis and treatment of chronic heart failure. Task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. *Eur J Heart Fail* 2002;4:11-22.

[7] Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. *Circulation* 2005;112:e154-235.

[8] Black HR, Elliott WJ. Hypertension a companion to Braunwald's heart disease. 2013.

[9] Matchar DB, McCrory DC, Orlando LA, Patel MR, Patel UD, Patwardhan MB, et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. *Ann Intern Med* 2008;148:16-29.

[10] Blood Pressure Lowering Treatment Trialists C, Turnbull F, Neal B, Pfeffer M, Kostis J, Algert C, et al. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. *J Hypertens* 2007;25:951-8.

[11] Reboldi G, Angeli F, Cavallini C, Gentile G, Mancia G, Verdecchia P. Comparison between angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on the risk of myocardial infarction, stroke and death: a meta-analysis. *J Hypertens* 2008;26:1282-9.

[12] Snyman JR, Wessels F. Perindopril: do randomised, controlled trials support an ACE inhibitor class effect? A meta-analysis of clinical trials. *Cardiovasc J Afr* 2009;20:127-34.

[13] Tsoi KK, Wong MC, Tam WW, Hirai HW, Lao XQ, Wang HH, et al. Cardiovascular mortality in hypertensive patients newly prescribed perindopril vs. lisinopril: a 5-year cohort study of 15,622 Chinese subjects. *Int J Cardiol* 2014;176:703-9.

[14] Wong MCS, Jiang JY, Tang JL, Lam A, Fung H, Mercer SW. Health services research in the public healthcare system in Hong Kong: An analysis of over 1 million antihypertensive prescriptions between 2004-2007 as an example of the potential and pitfalls of using routinely collected electronic patient data. *BMC Health Serv Res* 2008;8:138.

[15] Wong MCS, Wang HHX, Cheung CSK, Tong ELH, Sek ACH, Cheung NT, et al. Factors associated with multimorbidity and its link with poor blood pressure control among 223,286 hypertensive patients. *Int J Cardiol* 2014;177:202-8.

[16] Wong MC, Tam WW, Wang HH, Cheung CS, Tong EL, Cheung NT, et al. Duration of initial antihypertensive prescription and medication adherence: a cohort study among 203,259 newly diagnosed hypertensive patients. *Int J Cardiol* 2015;182:503-8.

[17] Wong MC, Tam WW, Lao XQ, Wang HH, Kwan MW, Cheung CS, et al. The incidence of cancer deaths among hypertensive patients in a large Chinese population: a cohort study. *Int J Cardiol* 2015;179:178-85.

[18] Wong MC, Tam WW, Lao XQ, Wang HH, Kwan MW, Cheung CS, et al. The effectiveness of metoprolol versus atenolol on prevention of all-cause and cardiovascular mortality in a large Chinese population: a cohort study. *Int J Cardiol* 2014;175:425-32.

[19] Wong MC, Tam WW, Wang HH, Cheung CS, Tong EL, Sek AC, et al. Predictors of the incidence of all-cause mortality and deaths due to diabetes and renal diseases among patients newly prescribed antihypertensive agents: a cohort study. *Int J Cardiol* 2013;168:4705-10.

[20] Wong MCS, Tam WWS, Cheung CSK, Tong ELH, Sek ACH, Cheung NT, et al. Antihypertensive Prescriptions Over a 10-Year Period in a Large Chinese Population. *Am J Hypertens* 2013;26:931-8.
[21] Wong MCS, Tam WWS, Cheung CSK, Wang HHX, Tong ELH, Sek ACH, et al. Drug adherence and the incidence of coronary heart disease- and stroke-specific mortality among 218,047 patients newly prescribed an antihypertensive medication: A five-year cohort study. *Int J Cardiol* 2013;168:928-33.
[22] Wong MCS, Tam WWS, Cheung CSK, Tong ELH, Sek ACH, Cheung NT, et al. Medication adherence to first-line antihypertensive drug class in a large Chinese population. *Int J Cardiol* 2013;167:1438-42.

[23] Choudhry NK, Shrank WH, Levin RL, Lee JL, Jan SA, Brookhart MA, et al. Measuring concurrent adherence to multiple related medications. *Am J Manag Care* 2009;15:457-64.

[24] Martin BC, Wiley-Exley EK, Richards S, Domino ME, Carey TS, Sleath BL. Contrasting measures of adherence with simple drug use, medication switching, and therapeutic duplication. *Ann Pharmacother* 2009;43:36-44.

[25] Andrade SE, Kahler KH, Frech F, Chan KA. Methods for evaluation of medication adherence and persistence using automated databases. *Pharmacoepidemiol Drug Saf* 2006;15:565-77.

[26] Mazzaglia G, Ambrosioni E, Alacqua M, Filippi A, Sessa E, Immordino V, et al. Adherence to antihypertensive medications and cardiovascular morbidity among newly diagnosed hypertensive patients. *Circulation* 2009;120:1598-605.

[27] Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. *Jama-J Am Med Assoc* 2007;297:177-86.

[28] Cox DR. Regression models and life-tables. *Journal of the Royal Statistical Society Series B* (*Methodological*) 1972:187-220.

[29] Dhalla IA, Gomes T, Yao Z, Nagge J, Persaud N, Hellings C, et al. Chlorthalidone versus hydrochlorothiazide for the treatment of hypertension in older adults: a population-based cohort study. *Ann Intern Med* 2013;158:447-55.

[30] Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional Propensity Score Adjustment in Studies of Treatment Effects Using Health Care Claims Data. *Epidemiology* 2009;20:512-22.

[31] Gomes T, Juurlink DN, Ho JM, Schneeweiss S, Mamdani MM. Risk of serious falls associated with oxybutynin and tolterodine: a population based study. *J Urol* 2011;186:1340-4.

[32] Lip GYH, Hall JE. Comprehensive hypertension. Philadelphia, Pa.: Mosby Elsevier; 2007.

[33] Comini L, Bachetti T, Cargnoni A, Bastianon D, Gitti GL, Ceconi C, et al. Therapeutic modulation of the nitric oxide: all ace inhibitors are not equivalent. *Pharmacol Res* 2007;56:42-8.

[34] Pilote L, Abrahamowicz M, Rodrigues E, Eisenberg MJ, Rahme E. Mortality rates in elderly patients who take different angiotensin-converting enzyme inhibitors after acute myocardial infarction: a class effect? *Ann Intern Med* 2004;141:102-12.

[35] Pilote L, Abrahamowicz M, Eisenberg M, Humphries K, Behlouli H, Tu JV. Effect of different angiotensin-converting-enzyme inhibitors on mortality among elderly patients with congestive heart failure. *CMAJ* 2008;178:1303-11.

[36] Wong MC, Tam WW, Wang HH, Zhang D, Cheung CS, Yan BP, et al. The effectiveness of perindopril vs. lisinopril on reducing the incidence of diabetes and renal diseases: A cohort study of 20,252 patients. *Int J Cardiol* 2015;190:384-8.

[37] Brown MJ. Hypertension and ethnic group. BMJ 2006;332:833-6B.

Table Legends

Table 1: Characteristics of study participants (N=20,252)

Table 2: Profiles of patient admission at 6 months

Table 3: Incidence of hospital admission at 12 months and 24 months according antihypertensive agents and medication adherence

Table 4: Hospital admissions due to any cause, cardiovascular disease and respiratory disease at 6 months, 12 months and 24 months after the index prescription date with propensity score matching

Table 1 Characteristics of study participants (N=20,252)

	Overall	Perindopril users	Lisinopril users	р
	(n=20,252)	(n=8,731)	(n=11,521)	
Age				
<49	3,523 (17.4%)	1,460 (16.7%)	2,063 (17.9%)	0.177
49-59	3,986 (19.7%)	1,729 (19.8%)	2,257 (19.6%)	
60-69	4,340 (21.4%)	1,881 (21.5%)	2,459 (21.3%)	
≥ 70	8,403 (41.5%)	3,661 (41.9%)	4,742 (41.2%)	
Sex				
Male	10,292 (50.8%)	4,430 (50.7%)	5,862 (50.9%)	0.841
Female	9,960 (49.2%)	4,301 (49.3%)	5,659 (49.1%)	
Public financial assistance				
Non-recipients	16,952 (83.7%)	7,436 (85.2%)	9,516 (82.6%)	< 0.001
Recipients	3,300 (16.3%)	1,295 (14.8%)	2,005 (17.4%)	
Service type				
In-patient	6,553 (32.4%)	2,907 (33.3%)	3,646 (31.6%)	< 0.001
Specialist outpatient	7,091 (35.0%)	2,798 (32.0%)	4,293 (37.3%)	
Accident & Emergency	128 (0.6%)	63 (0.7%)	65 (0.6%)	
General outpatient	5,739 (28.3%)	2,731 (31.3%)	3,008 (26.1%)	
Others	741 (3.7%)	232 (2.7%)	509 (4.4%)	

Drug adherence (PDC at 6 months)				
<0.80	13,610 (67.2%)	6,097 (69.8%)	7,513 (65.2%)	< 0.001
≥ 0.80	6,642 (32.8%)	2,634 (30.2%)	4,008 (34.8%)	
Drug adherence (PDC at 1 year)				
<0.80	10,970 (54.2%)	5,086 (58.3%)	5,884 (51.1%)	< 0.001
≥ 0.80	9,282 (45.8%)	3,645 (41.7%)	5,637 (48.9%)	
Drug adherence (PDC at 2 years)				
<0.80	13,591 (67.1%)	6,214 (71.2%)	7,377 (64.0%)	< 0.001
≥ 0.80	6,661 (32.9%)	2,517 (28.8%)	4,144 (36.0%)	
Drug dosage (mg/day)				
0-2.5	12,389 (61.2%)	5,798 (66.4%)	6,591 (57.2%)	< 0.001
>2.5-5.0	5,526 (27.3%)	2,300 (26.3%)	3,226 (28.0%)	
>5.0-7.5	240 (1.2%)	148 (1.7%)	92 (0.8%)	
>7.5-10	1,069 (5.3%)	151 (1.7%)	918 (8.0%)	
>10	1,028 (5.1%)	334 (3.8%)	694 (6.0%)	

PDC: Proportion days covered with the lisinopril and perindopril. The percentages are across rows. The p values represent the comparison between the perindopril and lisinopril groups using Pearson chi-square tests.

Table 2 Profiles of patient admission at 6 months

	All-c	ause	Cardiovascu	lar disease	Respiratory disease		
	Not Admitted	Admitted	Not Admitted	Admitted	Not Admitted	Admitted	
Mean Age (S.D.)	63.3	66.2	63.3	67.6	63.5	68.8	
Age	n=16664	n=2323	n=17539	n=1448	n=18393	n=594	
≤ 49	3,249 (19.5%)	239 (10.3%)	3,417 (19.5%)	71 (4.9%)	3,472 (18.9%)	16 (2.7%)	
50-59	3,636 (21.8%)	297 (12.8%)	3,774 (21.5%)	159 (11%)	3,905 (21.2%)	28 (4.7%)	
60-69	3,779 (22.7%)	428 (18.4%)	3,943 (22.5%)	264 (18.2%)	4,118 (22.4%)	89 (15%)	
≥70	6,000 (36%)	1,359 (58.5%)	6,405 (36.5%)	954 (65.9%)	6,898 (37.5%)	461 (77.6%)	
Sex							
Male	8346 (50.1%)	1244 (53.6%)	8796 (50.2%)	794 (54.8%)	9259 (50.3%)	331 (55.7%)	
Female	8318 (49.9%)	1079 (46.4%)	8743 (49.8%)	654 (45.2%)	9134 (49.7%)	263 (44.3%)	
Public financial assistance							
Non-recipients	14355 (86.1%)	1667 (71.8%)	15010 (85.6%)	1012 (69.9%)	15652 (85.1%)	370 (62.3%)	
Recipients	2309 (13.9%)	656 (28.2%)	2529 (14.4%)	436 (30.1%)	2741 (14.9%)	224 (37.7%)	
Service type							
In-patient	3779 (22.7%)	1652 (71.1%)	4234 (24.1%)	1197 (82.7%)	4934 (26.8%)	497 (83.7%)	
Specialist outpatient	6493 (39%)	506 (21.8%)	6812 (38.8%)	187 (12.9%)	6932 (37.7%)	67 (11.3%)	
Accident & Emergency	113 (0.7%)	10 (0.4%)	120 (0.7%)	3 (0.2%)	121 (0.7%)	2 (0.3%)	
General outpatient	5589 (33.5%)	122 (5.3%)	5670 (32.3%)	41 (2.8%)	5689 (30.9%)	22 (3.7%)	
Others (e.g. day hospital, community	690 (4.1%)	33 (1.4%)	703 (4%)	20 (1.4%)	717 (3.9%)	6 (1%)	

program)						
ACE Inhibitor						
Perindopril	7225 (43.4%)	987 (42.5%)	7541 (43%)	671 (46.3%)	7967 (43.3%)	245 (41.2%)
Lisinopril	9439 (56.6%)	1336 (57.5%)	9998 (57%)	777 (53.7%)	10426 (56.7%)	349 (58.8%)
Drug adherence (PDC at 6 months)						
<0.80	11229 (67.4%)	1238 (53.3%)	11702 (66.7%)	765 (52.8%)	12151 (66.1%)	316 (53.2%)
≥ 0.80	5435 (32.6%)	1085 (46.7%)	5837 (33.3%)	683 (47.2%)	6242 (33.9%)	278 (46.8%)

PDC: Proportion of Days Covered as a measure of medication adherence

Table 3 Incidence of hospital admission at 12 months and 24 months according antihypertensive agents and medication	
adherence	

	All-ca	use	Cardiovascu	ılar disease	Respiratory disease		
	Not Admitted	Admitted	Not Admitted	Admitted	Not Admitted	Admitted	
12 months							
Medication	15764	3223	17054	1933	18106	881	
Perindopril	6870 (43.6%)	1342 (41.6%)	7345 (43.1%)	867 (44.9%)	7864 (43.4%)	348 (39.5%)	
Lisinopril	8894 (56.4%)	1881 (58.4%)	9709 (56.9%)	1066 (55.1%)	10242 (56.6%)	533 (60.5%)	
Drug adherence (PDC) at 12 months	_					
<0.80	8094 (51.3%)	1620 (50.3%)	8741 (51.3%)	973 (50.3%)	9241 (51%)	473 (53.7%)	
≥ 0.80	7670 (48.7%)	1603 (49.7%)	8313 (48.7%)	960 (49.7%)	8865 (49%)	408 (46.3%)	
24 months							
Medication	14488	4499	16358	2629	17730	1257	
Perindopril	6384 (44.1%)	1828 (40.6%)	7064 (43.2%)	1148 (43.7%)	7697 (43.4%)	515 (41%)	
Lisinopril	8104 (55.9%)	2671 (59.4%)	9294 (56.8%)	1481 (56.3%)	10033 (56.6%)	742 (59%)	
Drug adherence (PDC) at 24 months						
<0.80	9352 (64.5%)	2974 (66.1%)	10567 (64.6%)	1759 (66.9%)	11443 (64.5%)	883 (70.2%)	
≥ 0.80	5136 (35.5%)	1525 (33.9%)	5791 (35.4%)	870 (33.1%)	6287 (35.5%)	374 (29.8%)	

PDC: Proportion Days Covered as a measure of medication adherence

Table 4 Hospital admissions due to any cause, cardiovascular disease and respiratory disease at 6 months, 12 months and 24 months after the index prescription date with propensity score matching

	Cardiovascular disease				R	Respiratory disease				All cause		
	Crude HR	Р	Adjusted HR	Р	Crude HR	Р	Adjusted HR	Р	Crude HR	Р	Adjusted HR	Р
	(95% C.I.)		(95% C.I.)		(95% C.I.)		(95% C.I.)		(95% C.I.)		(95% C.I.)	
12-												
months												
Perindopril	1.000 (referent)		1.000 (referent)		1.000 (referent)		1.000 (referent)		1.000 (referent)		1.000 (referent)	
Lisinopril	0.926	0.092	0.925	0.091	1.169	0.024	1.245	0.002	1.064	0.083	1.058	0.120
	(0.847, 1.013)		(0.845, 1.013)		(1.021, 1.338)		(1.084, 1.429)		(0.992, 1.141)		(0.986, 1.135)	
24-												
months												
Perindopril	1.000 (referent)		1.000 (referent)		1.000 (referent)		1.000 (referent)		1.000 (referent)		1.000 (referent)	
Lisinopril	0.973	0.493	0.977	0.56	1.101	0.092	1.166	0.009	1.118	< 0.001	1.116	<0.001
	(0.901, 1.051)		(0.904, 1.056)		(0.984, 1.232)		(1.040, 1.307)		(1.054, 1.187)		(1.051, 1.185)	

Crude HR, Crude Hazard Ratios; Adjusted HR, Adjusted Hazard Ratios

* The propensity scores were matched for age, sex, public financial assistance, service type, initial dosage, and Proportion Days Covered (PDC).