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Abstract

A three-dimensional hierarchic finite element-based computational framework is developed for

the investigation of inter-laminar stresses and displacements in composite laminates of finite

width. As compared to the standard finite elements, hierarchic finite elements allow to change

the order of approximation both locally and globally without modifying the underlying finite

element mesh leading to very accurate results for relatively coarse meshes. In this paper, both

symmetric cross-ply and angle-ply laminates subjected to uniaxial tension are considered as test

cases. Tetrahedral elements are used for the discretisation of laminates and uniform or global

p-refinement is used to increase the order of approximation. Each ply within laminates is mod-

elled as a linear-elastic, homogenous and orthotropic material. With increasing the order of

approximation, the developed computational framework is able to capture the complex profiles

of inter-laminar stresses and displacements very accurately. Results are compared with reference

results from the literature and found in a very good agreement. The computational model is im-

plemented in our in-house finite element software library Mesh-Oriented Finite Element Method

(MoFEM). The computational framework has additional flexibly of high-performance comput-

ing and makes use of the state-of-the-art computational libraries including Portable, Extensible

Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB).

Keywords: Hierarchic finite elements, Composites laminates, Free-edge e↵ect, Inter-laminar

stresses, Orthotropic material
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1. Introduction

Due to their exceptional mechanical and chemical properties, fibre reinforced polymer (FRP)

composites are used in a variety of industrial applications such as aerospace, automotive, ma-

rine, rail, energy, civil structures, biomedical, and oil and gas [1–3]. The successive staking of

unidirectional fibrous layers or woven fabric in combination with resin is used for the manufac-

turing of composites structures. The choice of fibre orientation in an individual layer or ply and

the subsequent freedom in combining these layers provide designers with enormous flexibility

to tailor the material properties in the desired directions. On the other hand, discontinu-

ity/mismatch in the material properties across these layers leading to very large inter-laminar

stresses, especially on approaching the free edges of laminates. In literature ([4, 5]), this is re-

ferred as free-edge or boundary-layer e↵ect. The classical laminate theory (CLT) cannot predict

these stresses. Due to very low inter-laminar normal and shear strengths, the free-edge e↵ect

can lead to the initiation of delamination and subsequent failure of composite laminates. There-

fore, accurate calculations of the inter-laminar stresses are essential for the optimum design of

composite structures.

In the literature, dated back to 1967, a variety of analytical and numerical methods have been

proposed for the estimation of inter-laminar stresses and displacements in composite laminates

of finite width subjected to a variety of loading scenarios. Due to their computational e�ciency,

analytical methods are often the first choice in assessing composite laminates [5–12]. Analytical

methods make assumptions regarding the state of stress and strain in composite laminate and

therefore can lead to erroneous results. For the detailed and accurate analysis of composite

laminates, numerical methods are the obvious choice. Due to the numerical nature of this

paper, a detailed review is provided of some of the available methods in the following. The

scope of this paper allows to discuss a few methods from the literature and is therefore not

claiming to be exhaustive. For the detailed review, readers are referred to specialised references,

e.g. [5, 11, 12]. In [13], a finite di↵erence-based numerical procedure was proposed. Symmetric

laminates of finite width subjected to uniaxial tension were examined and inter-laminar stresses

and displacements were calculated. Results were validated against the reference results from the

literature. A two-dimensional finite element formulation was developed in [14] for the analysis of

composite laminates under uniaxial tension. Constant strain triangular elements were used and

Sky-line matrix storage was used to overcome the storage limitations. Inter-laminar normal and

shear stresses were calculated for [0/90]s, [±45]s and [±45/0/90]s laminates, and were validated

against the literature. A three-dimensional finite element formulation based on eight-node

hexahedral elements was developed in [15]. Both symmetric cross-ply [90/0]s and angle-ply

[±45]s laminates subjected to uniaxial tension were considered as test cases. Distribution of

inter-laminar stresses and displacements were calculated and compare with the results available

in the literature. In addition to the free-edge e↵ect, the severity of the end-edge e↵ect was also
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observed.

Due to its practical importance and industrial relevance, numerical modelling of composite

laminates is currently an active research area. Over the last few years, researchers from around

the globe have proposed a variety of new procedure for the e�cient and accurate modelling of

composite laminates. A finite element model based on the Multiparticle Model of Multilayered

Materials (M4) was developed in [16]. The developed eight-node multi-particle element with 5n

degrees of freedom per node where n is the number of plies in composite laminates. The model

was capable to capture the free-edge and other localised e↵ects. An e�cient and accurate pro-

cedure was presented for the recovery of inter-laminar stresses in composite laminates in [17].

The spurious oscillations were avoided by calculating these stresses directly at nodes without

extrapolation from the super-convergent points [18]. Elasticity-based finite element formula-

tion was developed in [19] and was used for the determination of free-edge e↵ect in [±25/90]s
T300/934 composite laminates. Numerical error estimation was used for the determination of

optimal mesh size. Numerical and experimental studies were performed on a [+45,�45, 0]s lam-

inate subjected to uniaxial tension and a good correlation was found. A mixed-field multi-term

extended Kantorovich method (MMEKM) was developed in [4] for the determination of the

inter-laminar stresses in composites laminates subjected to uniaxial tension, bending, twisting

and thermal loading. It was found that the solution accuracy increases with increasing the num-

ber of terms. In the case of laminated plain textile composites, a finite element-based approach

was used in [20] for the investigation of the e↵ect of layers’ shifting on the inter-laminar and

intra-laminar stresses. Two and four layer models with a variety of shifting configuration were

studied. The laminates were trimmed at di↵erent locations for the investigation of the e↵ect of

boundaries on the inter-laminar stresses. It was found that the inter-laminar stresses depends

on the layers’ stacking configuration and shifting. Laminated composite plate with a circular

hole in the middle subjected to compressive loading was modelled with both serial/parallel

mixing theory and continuum damage model in [21].

A multi-scale model was used in [22] for modelling composite laminates. A macro-level model

was used to capture the laminate stacking sequence and the global stress field for a given loading.

The micro-level model was used for the prediction of stresses at the fibre and matrix level. The

model was used to examine the [90/90] interface of a [25n/�25n/90n]s IM7/8552 carbon/epoxy

laminate. Another multi-scale model was developed in [23] for the investigation of the e↵ect

of heterogeneity in the micro-structure for [±45/0/90]s laminate subjected to uniaxial tension.

The 0o and 90o layers were modelled on the micro-level, i.e. random fibres within the polymer

matrix. On the other hand, the ±45o layers were modelled using homogenous and orthotropic

materials. In [24], a global-local approach was used. The available software packages were

used for the e�cient design and analysis of composite structures on the global-level and the

Carrera Unified Formulation (CUF) was used for the in-depth analysis of critical domains. In
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[25], it was found that the maximum value of the displacement gradient is dependent on the

orientation of the plies in the laminate. Symmetric laminates with varying stacking sequences

and ply orientation were analysed and the displacement gradient was related to the inter-

laminar stresses. In [26], a numerical approach was introduced to investigate generic laminated

composites with arbitrary geometries. The model used a higher-order beam theory with only

displacement unknown over the cross-section. Both conventional and wrap-around laminates

were investigated using finite element analysis and inter-laminar stresses were calculated [27].

In [28], commercial finite element software, ANSYS, was used to study hybrid and non-hybrid

composite laminates. Both carbon and glass fibres were used in the hybrid laminates. A coupled

stress and energy criteria using finite fracture mechanics was used in [29]. The scale-boundary

finite element technique was used as a numerical tool, which due to its semi-analytical nature

reduces the numerical e↵ort significantly as compared to standard finite element analysis.

In addition to mechanical loading, composite laminates subjected to temperature change were

also investigated and results were presented in the form of temperature, stress and displacement

distributions. For uniform temperature change, thermal stresses and displacements were cal-

culated in composite laminates in [30]. The laminate-level homogenised or e↵ective coe�cients

of thermal expansion were expressed in-term of the ply-level coe�cients of thermal expansion.

Similarly, a variational model was developed in [31] for the determination of the inter-laminar

stresses and displacements for symmetric laminates subjected to thermo-mechanical loads. The

stresses along the free-edge were divided into two parts, i.e. perturbed and unperturbed. The

principle of minimum complementary energy is used to obtained optimal stress and displace-

ment fields which exactly satisfy equilibrium, compatibility, boundary and continuity condi-

tions. A plane strain finite element-based Quasi-2D (Q-2D) formulation was developed in [32]

to determine the inter-laminar stresses and free-edge e↵ects in composite laminates subjected

to both uniaxial and thermal loading.

This paper presents a hierarchic finite element-based computational framework for the e�cient

and accurate investigation of inter-laminar stresses and displacements in composite laminates

of finite width subjected to uniaxial tension. The hierarchic finite elements allow to change

the order of approximation locally or globally without changing the underlying finite element

mesh leading to very accurate results for relatively coarse meshes [33–38]. As compared to

the standard finite element, in hierarchic finite elements high order shape functions are calcu-

lated from low order shape functions recursively and therefore maintain the continuity in the

shape functions across the element in the case of localised p-refinement. The computational

model is implemented in our in-house finite element software library, Mesh-Oriented Finite

Element Method (MoFEM) [38]. MoFEM is tailored for the solution of multi-physics prob-

lems with arbitrary levels of approximation, di↵erent levels of mesh refinement and optimised

for high-performance computing. The computational framework make use of the state-of-the-
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art computational libraries including Portable, Extensible Toolkit for Scientific Computation

(PETSc) [39–42] and the Mesh-Oriented datABase (MOAB) [43]. MoFEM has already been

used for a variety of applications including multi-scale and multi-physics modelling of com-

posite materials [3, 44, 45], stochastic finite element analysis of composite materials [46] and

fracture modelling of nuclear graphite [47]. In this paper, tetrahedral elements are used for the

discretisation of composite laminates and global or uniform p-refinement is used to improve

the solution accuracy. Symmetric cross-ply [90/0]s and angle-ply [±45]s laminates subjected to

uniaxial tension are considered as test cases. Each ply within these laminates is modelled as a

linear-elastic, homogenised and orthotropic material. The inter-laminar stresses and displace-

ments are compared with the reference results from the literature.

This paper is organised as follows. A detailed description of the theoretical background and

mathematical formulation of composite laminates are given in §2. The finite element imple-

mentation aspects based on hierarchic basis function is given in §3. The detailed regarding

the finite element’s sti↵ness matrix, force vector, and displacement vector is given in §3.1.
Moreover, numerical integration procedure for hierarchic finite elements is given in §3.2. Two

numerical examples are given in §4 to validate the correct implementation and accuracy of

the computational framework. The first numerical example is given in §4.1 consisting of an

angle-ply [±45]s laminate while the second numerical example is given in §4.2 consisting of a

cross-ply laminate. Finally, concluding remarks are given in §5.

2. Composites laminates

Consider a square symmetric laminate [±✓]s consisting of four plies each of thickness h, sub-

jected to uniaxial strain ✏0 as shown in Figure 1. The global coordinate system xyz is also given

in the same figure, where x and y are the laminate’s in-plane directions and z is its out-of-plane

or through-the-thickness direction. 2l is the length and width of the laminate in the in-plane

direction. The strain ✏0 is applied to the two y faces. The local coordinate system of each ply is

represented by 123, where 1, 2 and 3 are fibre, transverse and through-the-thickness directions

respectively. ✓ is the angle between the local and global coordinate systems. Each lamina

within the laminate is modelled as a linear-elastic, homogenous and orthotropic material.

For each individual ply, the relationship between stresses and strains in Voigt notation is given
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Figure 1: Geometry, boundary conditions and coordinate systems for composite laminate

as follows: 8
>>>>>>>><
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"11
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9
>>>>>>>>=

>>>>>>>>;

= S123

8
>>>>>>>><

>>>>>>>>:
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�33

⌧12

⌧23

⌧31

9
>>>>>>>>=

>>>>>>>>;

, where S123 = C
�1
123, (1)

where �11, �22 and �33 are normal stresses in the fibre, transverse and thickness directions

respectively. Similarly, "11, "22 and "33 are normal strains in fibre, transverse and thickness

directions. Moreover, ⌧12, ⌧23, ⌧31 and �12, �23, �31 are shear stresses and strain respectively.

Matrices S123 and C123 are ply-level compliance and sti↵ness matrices respectively. For an

orthotropic material the compliance matrix S123 is written as:

S123 =

2

666666664

1
E11

� ⌫21
E22

� ⌫31
E33

0 0 0

� ⌫12
E11

1
E22

� ⌫32
E33

0 0 0

� ⌫13
E11

� ⌫23
E22

1
E33

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G31

3

777777775

, (2)

where E11, E22 and E33 are the ply-level Young’s moduli in the fibre, transverse and through-

the-thickness directions respectively. ⌫ij and Gij are the ply-level Poison’s ratio and shear

6



modulus respectively. Due to the symmetry of the compliance matrix

⌫21

E22
=
⌫12

E11
,

⌫31

E33
=
⌫13

E11
,

⌫32

E33
=
⌫23

E22
(3)

For the finite element analysis, a global compliance/sti↵ness matrix is required in the xyz

coordinate system of laminate. The transformation of ply-level sti↵ness matrix C123 from its

local coordinate 123 to the laminate global coordinate xyz is given as:

Cxyz = T
�1
C123T

�T
, (4)

whereCxyz is a transformed sti↵ness matrix in global coordinates xyz and T is a transformation

matrix and is given as:

T =

2

666666664

cos2 ✓ sin2
✓ 0 0 0 sin 2✓

sin2
✓ cos2 ✓ 0 0 0 � sin 2✓

0 0 1 0 0 0

0 0 0 cos ✓ � sin ✓ 0

0 0 0 sin ✓ cos ✓ 0

�1
2 sin 2✓

1
2 sin 2✓ 0 0 0 cos 2✓

3

777777775

. (5)

3. Implementation aspects of the hierarchic finite elements

A brief theoretical background and implementation aspects of the hierarchic finite elements

is explained in the case of tetrahedral elements in this section. For further details and com-

prehensive review, readers are referred to specialised references, e.g. [33–38]. As compared to

standard finite element, hierarchic finite elements allow to change the order of approximation

both locally and globally without changing the underlying finite element mesh leading to very

accurate results for relatively coarse meshes. Due to their hierarchic nature, these elements are

considered as an ideal candidate for p-refinement. In the case of these elements, their high-order

shape functions are obtained recursively from their low order shape functions and therefore pre-

serving the continuity of the shape functions across the element boundaries. In addition to the

linear shape functions associated with the four vertices of the tetrahedron, high order shape

functions are added to its edges, faces and interior with increasing the order of approximation.

Due to these additional shape functions, virtual degrees of freedom are assigned to edges, faces

and interior for the approximation of the field variables. The continuity requirement for the

shape functions associated with di↵erent spaces, e.g. H1(⌦), H(curl;⌦), H(div;⌦), and L2(⌦)

are di↵erent which is explained in [33]. In the following, the procedure to construct the shape

functions for H1(⌦) space is discussed in detail.
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Consider a one-dimensional reference interval I = [�1, 1] for the construction of hierarchic

shape functions {�l : l = 0, 1, ...}. The shape functions associated with its vertices are the

standard linear finite element shape functions, shown in Figure 2(b). The high order shape

functions associated with increasing the order of approximation are constructed by combining

these linear shape functions and some arbitrary polynomials { l : l = 0, 1, ...} of degree l.

There is no restriction on the choice of polynomials but Legendre polynomials are often used.

Legendre polynomials of high order are obtained recursively from their low order counterparts.

The equation for Legendre polynomial Ll of degree l is given as ([33]):

L0(s) = 1, L1(s) = s,

Ll+1(s) =
2l + 1

l + 1
sLl(s)�

l

l + 1
Ll�1(s), l = 1, 2, ....

(6)

Legendre polynomials is a special case of Gegenbauer polynomials with ↵ = 1
2 , which is given

as:

 0(s) = 1,  1(s) = 2↵s,

 l+1(s) =
2(↵ + l)

l + 1
s l(s)�

2↵ + l � 1

l + 1
 l�1(s), l = 1, 2, ...

(7)

The first seven Legendre polynomials, i.e. for l = 0, 1, ..., 6 over the domain s = [�1, 1] are

shown in Figure 2(a). For a line, triangle and tetrahedron, the linear shape functions associated

with their vertices are given as:

No = 1� ⇠, Ni = ⇠, Edge

No = 1� ⇠ � ⌘, Ni = ⇠, Nj = ⌘, Triangle

No = 1� ⇠ � ⌘ � ⇣ Ni = ⇠, Nj = ⌘, Nk = ⇣, Tetrahedron

, (8)

Where ⇠, ⌘ and ⇣ are the reference coordinates of the corresponding line, triangle and tetrahe-

dron elements. With known linear shape functions (Equation (8)) and Gegenbauer/Legendre

polynomials (Equaitons (6) and (7)), the high order shape functions for edges e = [o, i], faces

f = [o, i, j] and interior of the tetrahedron t = [o, i, j, k] are given as:

�
e
l = �oi l(⇣̂oi), 0  l  p� 2 Edge

�
f
lm = �oij l(⇣̂oi) m(⇣̂oj), 0  l,m, l +m  p� 3 Face

�
t
lmn = �oijk l(⇣̂oi) m(⇣̂oj) n(⇣̂ok), 0  l,m, n l +m+ n  p� 4 Tetrahedron Interior

(9)

where �oi = NoNi, �oij = NoNiNj, �oijk = NoNiNjNk, ⇣̂oi = Ni � No, ⇣̂oj = Nj � No and

⇣̂ok = Nk � No. Moreover, p is the user-defined order of approximation for the finite element

analysis. Linear (N0, N1) and high order shape functions (�e
l ) for an edge (e = oi) are given

in Figure 2(b). For the first order of approximation, i.e. p = 1, there will be only linear
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shape functions N0 and N1 associated with its vertices. For p = 2, in addition to the linear

shape functions N0 and N1, we will have one high order shape function, i.e. �oi
0 . All the shape

functions for p = 7 including linear and high order, i.e. �oi
l , l = 0, 1, ...., 5 are shown in Figure

2(b).

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Legendre polynomials and corresponding linear and high-order shape functions for an edge

For a triangular element, linear shape functions Ni, Nj and Nk for its vertices i, j and k are

shown in Figures 3(a), 3(b) and 3(c) respectively. These are standard linear shape functions for

a triangular element. For first order of approximation, i.e. p = 1, we will have only linear shape

functions and therefore degrees of freedom will be associated with vertices only. For second

order of approximation, i.e. p = 2, in addition to the linear shape functions, we will have one

quadratic shape function �
e
0 associated with each edge of the triangle. Therefore, degrees of

freedom will be associated with it vertices and edges. The quadratic shape functions, i.e. �oi
0 ,

�
oj
0 and �

ij
0 for the edges oi, oj and ij are shown in Figure 4(a), 4(b) and 4(c) respectively.

Similarly, for p = 7, six degrees of freedom will be associated with each edge of a triangle.

These high order shape functions �oi
l , l = 0, 1, ..., 5 for p = 7 are shown in Figure 5. For the

face of triangle oij, there are no shape functions and associated degrees of freedom for the first

two order of approximations, i.e. p = 1, 2. For p = 3, there will be only one shape function �oij
00

associated with the face oij and there will be only one associated degree of freedom. The ten

shape function associated with p = 6, i.e. �f
lm are shown in Figure 6. It is trivial exercise to

extend the aforementioned explanation for the construction of shape functions to a tetrahedron

element and is therefore omitted here.

The number of degrees of freedom associated with these high order shape functions for each

edge (DOFe), face (DOFf ) and interior of the tetrahedron (DOFt) depend on the order of
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approximation p and are given as:

DOFv = 1, DOFe = p� 1, DOFf =
(p� 2)(p� 1)

2
, DOFt =

(p� 3)(p� 2)(p� 1)

6
(10)

Figure 3: Linear shape functions N0, N1 and N3 for the vertices of a triangular element with p = 1

Figure 4: Quadratic shape functions �e
0 for the edges oi, oj and ij of a triangular element with p = 2

Figure 5: High order shape functions (�e
l ) for the edge oi of a triangular element with 2  p  7

3.1. Assembly of sti↵ness matrix

The final discretised system of equations in the case of finite element analysis is given as:

Ku = f , (11)
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Figure 6: High order shape functions (�f
lm) for the face oij of a triangular element with p = 6

where K is the global sti↵ness matrix, f is the right hand side force vector and u is the unknown

degrees of freedom. Matrix K is given as:

K =
neX

j=1

Z

⌦j

B
T
CxyzBd⌦j =

neX

j=1

Kj, (12)

Here Kj is the element sti↵ness matrix, Cxyz is the transformed 6 ⇥ 6 sti↵ness matrix for

the orthotropic material (fully explained in §2), ne is the total number of elements and
Pne

j=1

represents the standard finite element assembly operation. The size of matrix B and consequent

size of matrix Kj depends on the order of approximation. For the first order of approximation,

i.e. p = 1, matrix B for tetrahedral element consists of contribution from its four vertices only

and is given as:

B(6⇥12) =

2

6666666664

@N1
@x 0 0 · · · @N4

@x 0 0

0 @N1
@y 0 · · · 0 @N4

@y 0

0 0 @N1
@z · · · 0 0 @N4

@z
@N1
@y

@N1
@x 0 · · · @N4

@y
@N4
@x 0

0 @N1
@z

@N1
@y · · · 0 @N4

@z
@N4
@y

@N1
@z 0 @N1

@x · · · @N4
@z 0 @N4

@x

3

7777777775

, (13)

where the term (6 ⇥ 12) represents the size of matrix B for tetrahedral element. The sizes

of vectors f and u also dependent on the user-defined order of approximation. For p = 1,

element-level vectors fj and uj will consists of contribution of only vertices. Both fj and uj

will have size of (12⇥ 1). For the second order of approximation, i.e. p = 2, in addition to the

degrees of freedom associated with vertices, we will have three degrees of freedom associated
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with each edge. For p = 2, matrix B is written as:

B(6⇥30) =

2

66666666664

@N1
@x 0 0 · · · @N4

@x 0 0

0 @N1
@y 0 · · · 0 @N4

@y 0

0 0 @N1
@z · · · 0 0 @N4

@z
@N1
@y

@N1
@x 0 · · · @N4

@y
@N4
@x 0

0 @N1
@z

@N1
@y · · · 0 @N4

@z
@N4
@y

@N1
@z 0 @N1

@x · · · @N4
@z 0 @N4

@x

@�
e1
0

@x 0 0 · · · @�
e6
0

@x 0 0

0 @�
e1
0

@y 0 · · · 0 @�
e6
0

@y 0

0 0 @�
e1
0

@z · · · 0 0 @�
e6
0

@z
@�

e1
0

@y
@�

e1
0

@x 0 · · · @�
e6
0

@y
@�

e6
0

@x 0

0 @�
e1
0

@z
@�

e1
0

@y · · · 0 @�
e6
0

@z
@�

e6
0

@y
@�

e1
0

@z 0 @�
e1
0

@x · · · @�
e6
0

@z 0 @�
e6
0

@x

3

77777777775

,

(14)

where �ei
0 with i = 1, 2, ..., 6 are quadratic shape functions associated with each edge of the

tetrahedron. Similarly, the size of vectors fj and uj will change to be (30 ⇥ 1). For higher

order, i.e. p > 2, sizes of matrix Bj, and vectors fj and uj will change according to the addition

of new hierarchic shape functions.

3.2. Numerical Integration

The standard integration procedure of a function f over domain ⌦ is shown as:

Z

⌦

fd⌦ =
neX

j=1

Z

⌦j

fd⌦j =
neX

j=1

ngX

k=1

!kf (xk) |J|, (15)

where ⌦e is domain of an individual element and ne is the total number of element, i.e. ⌦ =
Pne

j=1 ⌦j. ng is the number of integration points in an element. Moreover, xk = [xk, yk, zk]T

are the spacial coordinate of integration point, !k and |J| are spacial positions, weight and

jacobian associated with an integration point k. The total number and their corresponding

position of integration points are essential for the accuracy of numerical results. For standard

finite elements, numerical integration is well documented but literature is very limited in the

case of hierarchic finite elements. The number of integration points and their corresponding

position are selected accordance to Grundmann and Moller integration rule [34], i.e.

ng =
n!

l! (n� 1)
, n = d+ l + 1, (16)

where l is the degree of polynomial and d = 1, 2, or 3 is the dimensionality of problem.

4. Numerical Examples

Two numerical examples are presented now to demonstrate the correct implementation and

performance of the developed computational framework. The first numerical example consists of
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a symmetric angle-ply laminate [±45]s and the second numerical example consists of symmetric

cross-ply laminate [90/0]s.

4.1. Angle-ply laminate

The geometry, boundary conditions and coordinate system for an angle-ply laminate is shown

in Figure 7. A strain of ✏0 is applied to its y-faces. The boundary conditions on faces z = ±2h is

represented as �zz = 0, �zx = 0, �zy = 0. On the faces x = 0 and x = 2l, boundary conditions

are represented as �xx = 0, �xy = 0, �xz = 0. Similarly, on the faces y = 0 and y = 2l,

boundary conditions are represented as �yx = 0, �yz = 0. Angle ply laminate is symmetric only

with respect to xy plane and therefore half of the laminate is modelled. In this case symmetry

boundary conditions, i.e. uz = 0 is applied to the face with z = 0. Displacement uy = 0 is

applied to face with y = 0 and uy = 2l✏0 is applied to face with y = 2l. Faces with x = 0 and

x = 2l are free-edges. In this paper, dimensions of the laminate is chosen as h = 0.25, l = 8h and

the applied strain is chosen to be ✏0 = 10�6. The material properties used are E11 = 20⇥ 106,

E22 = E33 = 2.1⇥ 106, G12 = G13 = G23 = 0.85⇥ 106, ⌫12 = ⌫13 = ⌫23 = 0.21 all in compatible

units. Here 1, 2 and 3 represent the fibre, transverse and through-the-thickness directions

respectively. Similar geometrical parameters and material properties were also used in [13–15].

Results are compared with the reference results from the above mentioned references. Mesh for

this problem is shown in Figure 8 consisting of 22,938 tetrahedral elements and 6,325 nodes.

Figure 7: Geometry, boundary conditions and coordinate system for the angle-ply laminate

Distribution of inter-laminar in-plane stresses, i.e. �xy and �yy at y = l, z = h versus x/l (along

the green arrow), are shown in Figure 9. Results obtained with the current computational

framework are compared with the ones from [15] and found in a very good agreement. Five

orders of approximation ranging from order-1 to order-5, i.e. p = 1, 2, ..., 5 are used in the

analysis. For both �xy and �yy, highest values of the stresses occur just before the free-edges

(faces with x = 0 and x = 2l) and then converge to finite values at free-edges. The highest
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Figure 8: Mesh for the angle-ply laminate

values of these stresses increase with increasing the order of approximation. The di↵erence is

very high between the first and second order of approximation but converge to fixed values with

further increasing the approximation order. The stress distribution is almost the same for the

fourth and fifth orders of approximation. For x/l < 0.6, both �xy and �yy converge to values

calculated by the classical laminate theory ([13]). Although, a very coarse mesh is used for

the laminate discretisation but very accurate results are obtained with higher approximation

orders.

Distribution for the inter-laminar out-of-plane stresses, i.e. �zz, �xz and �yz versus x/l at

y = l, z = h are shown in Figure 10. At x/l = 0 the out-of-plane stresses are zero but on

approaching the free-edges, i.e. x/l = 1, these stresses approaches singularity. In all these cases

increasing the order of approximation improves the solution accuracy. As expected, the higher

order of approximation lead to higher values of stresses at the free-edges. It is obvious from

these plots that the free-edge e↵ect is very localised. Finally, the distribution of displacement

ux versus y at z = h at three di↵erent locations, i.e. x = 0, x = 2 and x = 4 are shown in Figure

11. The profile for ux at x = 0 is the mirror image of the ux profile at x = 4. Displacement

ux are validated against the results from [15]. Displacement profiles at all three locations are

in a very good agreement with the reference results. It is interesting to see that ux versus y is

not constant but give very complicated profiles. By changing the order of approximation from

first order to second order, there is a big di↵erence in the ux versus y profile but the results

converge with increasing the order of approximation. Results obtained with fourth and fifth

orders of approximation almost coincide with each other.

4.2. Cross-ply laminate

In this numerical example, boundary conditions and material properties are the same as in the

previous numerical example. Due to symmetry about x-, y- and z-axis, only one-eighth of the
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Figure 9: Inter-laminar in-plane stresses, i.e. �xy and �yy versus x/l at y = l, z = h for the angle-ply laminate

laminate is analysed as shown in Figure 12. For this numerical example, the global coordinate

system is also shown in the same figure. Symmetry boundary conditions are applied to the

three faces at x = 0, y = 0 and z = 0. Displacement of uy = l✏0 is applied to face with y = l

and face with x = l is a free edge. Mesh for this problem is shown in Figure 13 consisting of

24,105 tetrahedral elements and 5,252 nodes.

Distribution of the inter-laminar out-of-plane stresses, i.e. �zz and �yz versus x/l are shown

in Figure 14. At y = 0 and z = 0, �zz is shown in Figure 14(b). Two laminate types, i.e.

(90/0)s and (0/90)s are considered in this case. These stresses increase rapidly on approaching

the free-edge (at x/l = 1) of the laminate. Results were compared with reference results from

[14] and found in a very good agreement. Due to a very dense mesh near the free edge, results

almost coincide with each other for all orders of approximation. For both (90/0)s and (0/90)s,

�zz converges to a finite value at the free-edge. In addition to the opposite sign of �zz for both

(90/0)s and (0/90)s, there is also a noticeable di↵erence in their magnitude at the free-edge.

The �zz versus x/l at y = 0 and z = h for both (90/0)s and (0/90)s laminates are shown in
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Figure 10: Inter-laminar out-of-plane stresses, i.e. �zz, �xz and �yz versus x/l at y = l, z = h for the angle-ply

laminate

Figure 14(c). Current results are compared with the reference results from [14] and are in a very

good agreement. In this case, for (0/90)s laminate, �zz behave very di↵erently as compared to

the (90/0)s laminate. The �zz for (0/90)s changes very rapidly on approaching the free-edge

and leads to stress singularity. On the other hand, the stress �zz for (90/0)s is relatively low.

Although, the distribution of �zz predicted by the three orders of approximation, i.e. p = 1, 2, 3

are in a very good agreement, but their magnitudes at the free-edges increase with increasing

the order of approximation.

The distribution of inter-laminar out-of-plane shear stress �yz versus x/l at y = 0, z = h is

shown in Figure 14(c) for both (90/0)s and (0/90)s laminates. This stress is also considered

to be significant and can initiate delamination ([14]). For both (90/0)s and (0/90)s laminates,
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Figure 11: Displacement ux versus y at z = h at locations x = 0, x = 2 and x = 4 for the angle-ply laminate

the values of �yz increase initially and then decreases on approaching the free-edges. In this

case, the e↵ect of changing the order of approximation is clearly visible. For the first order of

approximation, i.e. p = 1, �yz fluctuate and is not in a very good agreement with the reference

results from [14], especially at 0.8  x/l  1. At the centre of the laminate, these stresses

approach zero.

5. Concluding remarks

A three-dimensional computational framework based on hierarchic finite elements is presented

for the analysis composite laminates. These elements allow changing the order of approxima-

tion globally or locally without changing the underlying finite element mesh leading to very
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Figure 12: Geometry, boundary conditions and coordinate system for the cross-ply laminate

Figure 13: Mesh for the cross-ply laminate

accurate results for relatively coarse meshes. The correct implementation of the computational

framework is validated with symmetric cross-ply [90/0]s and angle-ply [±45]s composite lami-

nates. Each ply within the laminate is modelled as a linear-elastic, homogenous and orthotropic

material. Due to its symmetry about the z-axis, half of the laminate is modelled in the case

of angle-ply laminate while only one-eighth of the laminate is modelled in the case of cross-ply

laminate due to its symmetry about x, y and z-axis. For the angle-ply laminate, five orders of

approximation, i.e. p = 1, 2, ..., 5 are used while three orders of approximation are used for the

cross-ply laminate. Both in-plane and out-of-plane inter-laminar stresses are plotted from the

centre of laminates to their free-edges. For the angle-ply laminate, displacement ux at z = h is

also plotted against y at three di↵erent locations along x-axis, i.e. x = 0, x = 2 and x = 4. For

the angle-ply laminate, in-plane stresses �xy and �yy are finite at its centre and approaches the

values predicted by the classical laminate theory. The maximum values for these stresses occur

just before the free edges and then converge to finite values at the free-edges. The out-of-plane

normal (�zz) and shear (�xz and �yz) inter-laminar stresses are zero at the centre of the lami-

nate but approach singularity at the free-edges. These results of the inter-laminar stresses and
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Figure 14: Inter-laminar out-of-plane stresses, i.e. �zz and �yz versus x/l at y = 0 and z = 0, h for the cross-ply

laminate

displacements are compared with the available results from the literature. At the centre of the

laminates, all the approximation orders used in this paper give very accurate results due to the

smoothness of stresses but start to deviate on approaching the free edges. At the free-edges,

the use of lower orders of approximation leads to inaccurate stresses and displacements. The

accuracy of the results increases with increasing the order of approximation.
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