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Abstract: The virtual actuator approach to bond graph based control is extended to use
virtual sensor inputs; this allows relative degree conditions on the controller to be relaxed.
Furthermore, the effect of the transfer system can be eliminated from the closed-loop system.
Illustrative examples are given.
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1 INTRODUCTION introduces virtual sensors in this context and
illustrates the advantages of the new approach using

The virtual actuator [1] approach to bond graph examples. Section 4 concludes the paper and suggests
based control was introduced by Gawthrop et al. [2], future research directions.
applied to an experimental ball and beam system
by Gawthrop [1] and to an inverted pendulum by

2 VIRTUAL ACTUATORSGawthrop and Ballance [3]. The approach has the
advantage that the physical controller can be designed

Figure 1(a) is an abstract version of Fig. 5(a) inas if a collocated source/sensor pair were available.
reference [1] and shows the basic ideas of virtualMoreover, it has been shown by Gawthrop et al. [4]

that the same approach can be applied to real-time actuator control. For simplicity, it is assumed that
numerical–experimental substructure-based testing the measured output y

s
is an effort and the input u

of structures under dynamic loading [5, 6]. is a flow. Obvious changes can be made if this is not
This technical note extends the results of reference the case.

[1] in two ways: the first relative degree constraint Reference [1] decomposes the controlled system
(s

y
�s) presented in Design rule 1 of reference [1] is into two subsystems with the rather unhelpful names

ameliorated and, optionally, the transfer system is ‘sub
1
’ and ‘sub

2
’. Following reference [4], this paper

eliminated from the closed-loop system. This tech- uses the name ‘transfer system’ in place of ‘sub
1
’ to

nical note is based on, and must be read in con- denote that part of the system between the system
junction with, reference [1]; the discussion is restricted input u and the junction to which the virtual junction
to linear, time-invariant single-input single-output is to be attached; this is denoted Tra in Fig. 1(a). The
systems. In parallel with the bond graph development, subsystem called ‘sub

2
’ in Fig. 5(a) in reference [1],

a transfer function/relative degree interpretation is representing that part of the system to be explicitly
provided to improve accessibility to those not expert controlled, is now called Sys in Fig. 1(a).
in bond graph methods and the concept of shortest In terms of this paper, Assumption 1 in reference [1]
causal path. The power of the methods discussed can be rephrased as follows.
in this paper can best be realized using symbolic
algebra-based bond graph tools such as model Assumption 1
transformation tools (MTT) [7] (http://mtt.sf.net). To

Tra and Sys have the transfer function representationsobtain readable transfer functions, however, symbols
are sometimes replaced by numbers in the examples. y

t
=T(s)u+T

y
(s)y
s

(1)
The outline of the paper is as follows. Section 2

y
s
=S(s)u

s
(2)

summarizes the results of reference [1] and discusses
the limitations using a simple example. Section 3 u

s
=y
t

(3)
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Fig. 1 Virtual actuator control

As in reference [1], PC represents the bond graph
of the physical controller with the transfer function
representation

Fig. 2 Desired closed-loop system
u
p
=C
w

(s)w−C
y
(s)y
p

(4)

The virtual junction component VJ is represented by C
w

(s) and the relative degree s
y

of C
y
(s) are related by

a bicausal bond graph in the Appendix of reference [1]
s
y
�s (8)and has the transfer function representation

s
w
�s (9)Aypu B=V(s)Aupy

s
B (5)

A shortest causal path (SCP) [8] interpretation is
given in reference [1].

In the version presented in reference [1]

2.1 Example: two coupled tanks
V(s)=A 0 1

T(s)−1 0B (6)
This example is discussed in section 3.3 in reference
[1]. In the notation of this paper

where T(s) is the transfer function of the transfer
system Tra relating u to y

t
.

T(s)=
1

1+r
1
c
1
s

(10)Combining equations (5) and (4) gives the controller
explicitly as

T
y
(s)=

−c
1
s

1+r
1
c
1
s

(11)u=T(s)−1C
w

(s)w+T(s)−1C
y
(s)y
p

(7)

This controller leads to a closed-loop system
C
y
(s)=C

w
(s)=

1

r
c
+ i
c
s

(12)equivalent to that of Fig. 2(a).
As discussed previously in Design rule 1 of reference

[1], the requirement that the two transfer functions If i
c
≠0, s

y
=s

w
=s=1, thus satisfying equations (8)

and (9). However, if i
c
=0, then s

y
=s

w
=0 and bothin equation (7) be proper leads to the conclusion that

the relative degree s of T(s), the relative degree s
w

of equations (8) and (9) are violated.
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The virtual junction equation (6) becomes

V(s)=A 0 1

1+r
1
c
1
s 0B (13)

The controller equation (14) becomes

u=
1+r

1
c
1
s

r
c
+ i
c
s

(w−y
p
) (14)

As predicted by equations (8) and (9), the controller
equation (14) is proper as long as i

c
≠0; however,

if i
c
=0 it is improper. The closed-loop system

corresponding to Fig. 1(a) is given in equation (8) of
Fig. 3 System inversionreference [1] as

y
s
=

s+1

(s2+3s+1)(r
c
+ i
c
s)+s+1

w (15)

Thus the controller equation (17) contains the term
where the substitutions r

1
=c

1
=r

2
=c

2
=1 have c

1
sy

p
, which cannot be implemented.

been made for clarity. Equation (14) also corresponds Section 3 shows how this particular problem can
to the desired closed-loop sytem of Fig. 2(a). The be overcome in general.
problem arising when i

c
=0 is solved in section 3.

2.2 Removing the transfer system 3 VIRTUAL SENSORS
As discussed by Gawthrop et al. [4], it is sometimes

In essence, the virtual actuator approach of Fig. 1(a)of interest to remove the effect of Tra from the
moves the actuation signal u

p
from the physicaldesired closed-loop system of Fig. 2(a) to give that of

controller PC to the input of the transfer systemFig. 2(b). In view of equation (1), this can be achieved
Tra using the VJ component. In this section, theby replacing V(s) in equation (5) by
measurement signal y

p
acting on PC is also moved

to another output z of Tra again using an extendedV(s)=A 0 1

T(s)−1 −T(s)−1T
y
(s)B (16)

VJ component as in Fig. 1(b). Thus the virtual actuator
approach is combined with a virtual sensor approach.

thus replacing equation (7) by However, the following assumption is required.

u=T(s)−1C
w

(s)w+T(s)−1 [C
y
(s)−T

y
(s)]y
p

(17)
Assumption 2

The term T(s)−1T
y
(s) must also be proper. In view of

equations (10) and (11), this is not the case for the The transfer system output y
t

can be expressed in
example of section 2.1. terms of the auxiliary measurement z as

The virtual junction, represented in transfer
y
t
=T̃(s)z+T̃

y
(s)y
s

(19)function form by equations (5) and (16), corresponds
to system inversion. As discussed in references [9–12]

Note that Assumption 2 implies that y
t

can be
and the Appendix in reference [1], such inversion can

expressed in terms of z without explicit dependency
be accomplished using the bicausal bond graph of

on u. If Assumption 2 is correct, it follows from
Fig. 3(a).

equations (19) and (1) to (3) that the measured signal
y

p
imposed on PC can be expressed in terms of z

2.3 Example: two coupled tanks (continued) (only) as

The transfer function T(s) of equation (1) is given by
y
p
=y
s
=Z(s)z (20)

equation (10) and T
y
(s) is given by equation (11). It

follows from equation (16) that Z(s)= [1−T̃
y
(s)S(s)]−1S(s)T̃(s)z (21)

The partial inversion implied by equation (21) hasV(s)=A 0 1

(1+r
1
c
1
s) c

1
sB (18)

the bond graph interpretation of Fig. 3(b).
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The virtual junction equations (5), (6), and (16) can 3.1 Example: two coupled tanks (continued)
then be replaced by

Choosing z to be the pressure in the first coupled tank
of Fig. 4 in reference [1], that is the effort associatedAypu B=V

z
(s)Aupz B (22) with C:c_1 of Fig. 5(a) in reference [1], gives

and T̃=
1

r
1
=−T̃

y
(28)

S(s)=
r
2

1+r
2
c
2
s

(29)

V
z
(s)=GA 0 Z(s)

T(s)−1 0 B if Tra is to remain

A 0 Z(s)

T(s)−1 −T(s)−1T
y
(s)Z(s)B

if Tra is to be removed

Z(s)=
r
2

(r
1
+r
2
)+r
1
r
2
c
2
s

(30)

Therefore s
z
=1 and, from equations (10) and (11),

(23) s=1 and s∞=0. From Design rule 1, it is required
that s

y
�0 and s

w
�1. The former is weaker than theThe corresponding controller is

equivalent condition in Example 2.1, but the latter is
u=T(s)−1C

w
(s)w the same. From equation (12)

+(T(s)−1C
y
(s)−T(s)−1T

y
(s))Z(s)z (24)

s
y
=s
w
=G0 if i

c
=0

1 if i
c
≠0

(31)Comparing equations (17) and (24) reveals that y
s

is
replaced by Z(s)z.

The transfer function T(s)−1 T
y
(s)Z(s) must be However, as mentioned previously, a first-order low-

proper. This is a property of the system, not the pass filter could be used to increase the relative degree
controller, and so is expressed as follows. of C

w
(s). The virtual junction equations are

Assumption 3

Let s, s∞, and s
z

be the relative degrees of the transfer
functions T(s), T

y
(s), and Z(s) respectively. Then

s∞�s−s
z

(25) V
z
(s)=

M
N
N
N
N
O
N
N
N
N
P

A 0
1

s+2

(1+s) 0 B if Tra is to remain

A 0
1

s+2

(1+s)
s

s+2B if Tra is to be removed
Similarly, the transfer functions T(s)−1C

y
(s)Z(s) and

T(s)−1C
w

(s)Z(s) must also be proper. These transfer
functions are dependent on the transfer functions
C

y
(s) and C

w
(s) of the (user-chosen) physical con-

troller PC. It follows that Design rule 1 in reference [1] (32)
is replaced by the following.

where the substitutions r
1
=c

1
= r

2
=c

2
=1 have

been made for clarity. The corresponding controllerDesign rule 1
is given by

The relative degrees s and s
z

are defined in
Assumption 3. Let s

y
and s

w
be the relative degrees

u=
s+1

i
c
s+r
c
w−

(i
c
s+r
c
)s−(s+1)

(i
c
s+r
c
)(s+2)

z (33)of the transfer functions C
y
(s) and C

w
(s) respectively.

Then
The relative degrees of the transfer functions in

s
y
�s−s

z
(26) equation (33) are as predicted by equation (31).

The closed-loop system corresponding to Fig. 1(b) iss
w
�s (27)

Inequality (26) differs from that of Design rule 1 in
y
s
=

1

1+(i
c
s+r
c
)(s+1)

w (34)reference [1] due to the presence of the term s
z

and
is therefore more readily satisfied, whereas inequality
(27) is the same as before. However, inequality (27) Unlike equation (15), equation (34) does not con-

tain the effect of Tra but corresponds to the desiredis readily satisfied by filtering the setpoint w by a
low-pass filter of sufficient relative degree. system of Fig. 2(b).
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3.2 Example: mass–spring–damper system reference [4], the servomechanism driving the test
substructure (Tra) is represented by the bond graph

Figure 4 illustrates a simple mass–spring–damper
of Fig. 4(b).

system similar to that previously used as a sub-
In this example, the parameters are chosen as

structuring example (section 4 in reference [4]).
c

s
=r

s
=m

s
=c

p1
=r

p1
=m

p1
=c

p2
=r

p2
=m

p2
=1, c

t
=r

t
=5,

Figure 2(b) gives the desired closed-loop system where
and m

t
=2. This gives

Sys and PC are as shown in Figs 4(c) and (d); Sys
comprises a single copy of the mass–spring–damper T(s)=

1

10s2+25s+1
(35)

system of Fig. 4(a) (with the addition of the measure-
ment z of the spring force) and PC comprises two

T
y
(s)=

−5s

10s2+25s+1
(36)copies of the mass–spring–damper system of Fig. 4(a).

In the context of substructuring [4], Sys represents a
physical test substructure and PC a numerical simu- Z(s)=

s+1

2s3+7s2+8s+6
(37)

lation of the remainder of the structure. Following

Fig. 4 Mass–spring–damper substructuring

JSCE118 © IMechE 2005 Proc. IMechE Vol. 219 Part I: J. Systems and Control Engineering
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Vink [17] has shown that the virtual actuator version
C
y
(s)=

s(s2+s+2)

s4+2s3+4s2+3s+1
(38) of reference [1] does not correspond to backstepping

in general. It is believed that combining the virtual
actuator approach with the virtual sensor approachC

w
(s)=

1

s4+2s3+4s2+3s+1
(39)

of this paper does lead to a closer match with
backstepping, but this has yet to be shown.giving the virtual junction equations
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