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Chapter 9
Localization in GPS Denied Environment

Heng Zhang, Siwen Chen, Chee Kiat Seow and Soon Yim Tan

9.1. Introduction

Wireless localization is important in Emergency 911 subscriber safety service and sensor
network applications, such as indoor navigation and surveillance [1-3] as more people
spend more and more time in indoor environment. However, the Global Navigation
Satellite System (GNSS) is hard to achieve satisfactory localization accuracy in indoor
area due to the serious attenuation and multipath fading of the GPS (Global Positioning
System) signal by walls and furniture [4-6]. The design of indoor localization system
is required.

Such systems attempt to locate the mobile device (MD) by measuring the radio signals
travelling between the MD and a set of reference devices (RDs) with known positions.
The measured parameters can be related to the time of arrival (TOA) [7-9], angle of arrival
(AOA) [10] and signal strength of the received signal or combination of these [11].

TOA and AOA based techniques require at least three and two RDs in Line-of-Sight
(LOS) with MD respectively in a 2D environment. In our earlier work, we have proposed
various techniques to find the MD location by leveraging on LOS path between any RD
and MD pair [12-14]. However, in an indoor environment, LOS path may not exist and
the received signal will be dominated by many NLOS paths [15]. The location error will
be increased greatly if these NLOS paths are mistakenly used for localization. To solve
this issue, many localization algorithms have been proposed which can be divided mainly
into two categories. One category is focusing on mitigating the NLOS error by using
weight method to minimize the contribution of NLOS RDs which turns out not reliable
[16-18]. Another category is focusing on detecting the NLOS RDs then discarding them
which will result in insufficient RD issue [19, 20] in dense multipath environment.
Therefore, the indoor localization algorithms using LOS path only result in either low
accuracy or insufficient RD issue.

Heng Zhang
School of EEE, Nangyang Technological University, Singapore
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Recently, localization schemes that are able to locate MD by using NLOS paths directly
have been reported [21, 22]. In [21], Taylor series methodology is applied to find the MD
location by means of initial guess of MD location and single bounce paths. In [22], the
MD location can be determined if there exists at least two dominant NLOS paths without
the need for initial estimation of MD location.

The objective of this chapter is twofold. Firstly, a novel method is presented to
significantly improve the localization accuracy by using the concept of virtual RD (VRD)
to determine MD location. The position of virtual RD for a given NLOS path can be
determined by initial guess of the MD location [21]. Alternatively, the VRD location can
also be found if the MD transits from LOS to NLOS region. After the positions of all
VRDs are identified, the subsequent MD location can be determined by using just one
dominant NLOS path and its corresponding VRD. The second objective of this chapter is
to overcome the limitation of the earlier presented VRD based localization. The VRD
based localization [23] does not mention how to match the estimated VR with the
measured one-bound path and it requires both transceivers with the ability of measuring
TOA and AOA. Furthermore in [24-26], various VRD based indoor localization algorithm
with the knowledge of the layout map, where the location of VRs could be pre-calculated,
are also developed. The difference is in [24], the algorithm jointly using TOA and AOA
information measured at multiple RDs to reduce the multi-modal uncertainties of MD and
this research only give simulation result. On the other hand, in [25] and [26], these
algorithms either using tracking or measuring at multiple RDs to reduce the uncertainties
with TOA information only. In [27], a simultaneous target and multipath positioning
(STAMP) scheme based on joint TOA and AOA measurement is proposed. The multiple
bounds paths are discarded by using multi-hypothesis data association. However, in some
environment, like the enclosed meeting room, the multiple bounds will exist all the time
and cannot be discarded.

The second portion of this chapter presented an indoor VRD based TOA localization
algorithm with the knowledge of environment layout. With the help of the layout map of
the environment, the location of VRDs can be pre-calculated according to the multipath
propagation model. The first step of the proposed algorithm involves estimation of the
data association matrix through a least square (LS) estimator which is different with the
conventional maximum likelihood (ML) or maximum a posteriori (MAP) estimator. The
second step is using the associated observation data and paths to estimate the location of
MD through weighted least square (WLS) method mentioned in [16]. To solve the
multi-modal issue, the algorithm utilizes multiple RDs and centroid method. Due to some
modals of MD are symmetric with the perpendicular bisector of any two VRs, by using
multiple RDs placed unsymmetrically with the perpendicular bisector could mitigate the
multi-modal issue. Furthermore, using the centroid of the minimum H number of square
residual modals to estimate the data association matrix, the modals with very small square
residual but far away from the MD could be pushed nearer to the vicinity of MD to
mitigate the multi-modal issue.
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9.2. Estimation of Virtual Reference Device

Fig. 9.1(a) illustrates the geometrical relationship between RD, MD and a virtual RD
which is associated with a one bounce reflection path. RD has a known location (x,, y,)

with measured data AOA 6. MD has an unknown location (x,y) with measured data

AOA ¢. MD is the estimated MD position through the initial guess using Taylor Series
Methodology [21] or using the available LOS measurement metrics [11, 12, 18, 21, 22].
The measurement data TOA t is related to the propagation distance using d =ct where ¢
is the speed of wave propagation. The TOA (distance d) and AOA measurement values
are assumed to be perturbed by Gaussian noise:

0=0"+n,,¢=¢" +n,d=d"+n,, n,=NO,0,) f=0.4d, ©.1)

where ¢°, 4° and 4° are the true TOA and AOA values of signal path, and 7, n; and

n, denote the zero mean Gaussian random noise with standard deviation O, 5

Fig. 9.1(a). Position of virtual RD originated from RD.

As shown in Fig. 9.1(a), 1, is the true virtual RD of signal path RD-F-MD due to

~

reflection at surface RS. I, is the estimated value of 7, . The position of virtual RD can

be constructed from RD with the vector d[ :‘dl‘lﬂ where 77:(9 +¢)/ 2. M‘ is the

distance between RD and I, which can be written as:
2
|d,|" =a"a+b"b-2a"0, (9.2)

where GZ‘G‘Z¢ and b=RD - MD . M is the distance between MD and f] ,

approximately equal to the measured TOA (distance) due to the signal path RD-F-MD.
The position of virtual RD originated from RD can be constrained to an enclosed region,
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uvgp, with angle and distance measured from RD within [77—3077,774—30”] and

|:|d[|—3a‘dl‘,
Fig. 9.1(a)

d1|+3%,\]’ where o, =(0,+0,)/2 and o, =Ud|d1|/|a| as depicted in

Similarly, the position of virtual RD originated from MD can be constructed within
[¢—30¢, ¢+3a¢] , [|a| —-30,, a| +30‘d:| that is, eghi, as shown in Fig. 9.1(b).

Fig. 9.1 (b). Position of virtual RD originated from MD .

The estimated virtual RD is determined from the N vertices of the intersections of the two
earlier obtained virtual RD regions, abfimnr, as shown in Fig. 9.1(c). Without the loss of
generality, a is chosen as (x,, y,) andras (x,, y,) . The coordinates of the N (N = 6 in

this case) vertices are ordered clockwise from a, (x,, y,) tor, (x,,y,). To determine

Py

I, using weighted least square distance methodology [28], the intersection area is divided

into a set of N-2 triangles using a as a reference. In this case, there will be four triangles
namely abf, afm, amn and anr. J is the weighted least square distance to all the triangular
centroid points, which is defined as

N2 2 2
J= wj((xq.—x,) +(yq.—y,) ) (9.3)

where (XI,J/]) is the location of /; , (xq., yq) is the centroid of the j™ triangular. W, is the

weighting factor which is chosen to be proportional to the area of the j™ triangle. (9.3) can
be re-arranged in matrix form as

J:(Hi1 —C)Tw(Hi1 —C), (9.4)
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where C is the coordinate of all triangular centroids given as
T T H_[h T
C:[Cla"'cj>"'czv—2:| :[xcpycla"'xq'>ij»"'ch—zaycN—z] - T l’hza"'hj"'hx\f—z:l

and h; =L,,, a 2x2 identity matrix.

S

Fig. 9.1(c). Intersection of virtual RD regions.

1

w: N dia’g(Bl'“Bj'“BN—Z)’
det(P,) +
=1 N YN
XN
X
where P, ={ R } , B, =diag(det(S;,, xS,,,),det(S,,, xS, ,,)) ,
Xewt Vi

S, =[xj+1 —X Vi _J’J ,and S, = [xM —X Vi —yJ . Finally, the estimated
virtual RD I, corresponding to the NLOS path RD-F-MD can be calculated using

-1

I, =[x, y,]T =arg{minJ}=(HTWH) H'WC 9.5)

The virtual RDs for other NLOS paths can be determined similarly. When MD moves to
a new location, the virtual RD that corresponds to the dominant NLOS path at new
location can be identified by using measured TOA and AOA of that path. Based on the
measured TOA, AOA and the corresponding virtual RD, new MD position can be
determined as:

MD=[xy]' =i,+D=(H'"WH) H'"WC+D, (9.6)
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where D = [d cos([¢—6]/2+a) dsin(p—0]/2+ 0{)}T is the measured path vector due

to dominant NLOS path with a= tan"'[(y, - »,) / (x, — x,)] (see Fig. 9.1(b)). At each
MD location, all virtual RDs will be recalculated. It is noteworthy that (9.6) only requires
measured TOA and AOA to estimate the MD location. It does not require prior knowledge
of the location, orientation and nature of the obstacles in the environment.

9.3. Simulation and Experimental Results for VRD Based Localization

To check the accuracy and robustness of our proposed localization scheme, simulation
and experiment will be carried out in an indoor environment with dimension
16.4 m x 9.5 m along X and Y axis such that 0 <x <164 m and 0 <y < 9.5 m. This
dimension also corresponds to Internet of Things (IoT) laboratory at School of EEE,
Nanyang Technological University (NTU) as shown in Fig. 9.2. In this simulation, the
RD is fixed at (12.9 m, 0.7 m) with 5,000 uniformly distributed MD locations. The
obstacles are assumed to be randomly distributed with the probability of NLOS path
assumed to be 1 —e"'* [15] where r is the direct distance between RD and MD, while A
is the mean distance from RD to obstacles. A is chosen to be 5 m and 10 m [15] which
translates to NLOS path’s probability of 70 % and 45 % respectively. Distance standard
deviation is assumed to be 2 m. Angle standard deviations vary from 1° to 10° [22].

(9.5m, 0) Concrete wall
Table and Bench 53
Z =
£ :
S Table and Bench 18
=
Table and Bench
0.0)

LOS path Concrete wall (16.4m, 0)
—————————————————— Dominant NLOS path

Fig. 9.2. Geometry of 10T laboratory at School of EEE, NTU.

Fig. 9.3 depicts the average location error (ALE) performance by comparing our proposed
localization scheme with the existing NLOS localization schemes in [21] and [22].
Comparison is also made with conventional TOA/AOA and TOA localization schemes
with their NLOS mitigation techniques in [19] and [18], respectively. Because [18] and
[19] require at least two and three RDs respectively, another three RDs are placed
symmetrically at (3.5 m, 0.7 m), (3.5 m, 8.8 m) and (12.9 m, 8.8 m) near the other three
corners. In other word, [18] and [19] will use four RDs to perform localization. In our
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proposed localization scheme and [21], the initial MD location is assumed to be randomly
distributed within a circle centered at MD location with radius equal to 5 % of the distance
between RD and MD [21-22]. As shown, our proposed NLOS localization technique
based on one RD achieves an ALE of less than 2 m under both cases: A =5 m and 10 m,
outperforming all existing localization schemes. Cong and Zhuang [19] achieves the ALE
of 8.7 m and 6.5 m, while Jia and Buehrer [18] has the ALE 8.5 mand 6.1 m for =5 m
and 10 m, respectively. Seow and Tan [22] and Li et al. [21] are not shown as the ALE
are more than 15 m. The reason is that in [22], the accuracy will be seriously degraded
when the angle between the obstacles is very small whereas in [21] the Taylor series
methodology only works well when there is a good initial guess and small measured
parameters’ standard deviation.

e ) PR )
——a— S —a—a— 85— = —g———g

g o
-y

o -proposed 1RD TOAJAQA ; =10m

& —&—Congand Zhuang 4 RDs TOA/AOA 3=10m
£—Jia and Buehrer 4RDs TOA 3=10m

----- proposed 1RD TOA/ADA ; =5m

w@-+ Cong and Zhuang 4 RDs TOAJADA 3 =5m

++E++ Jia and Buehrer 4RDs TOA j=5m

root mean square error, m

1 2 3 4 5 6 7 8 9 10
angle standard deviation

Fig. 9.3. ALE performance comparisons.

To test the performance of our proposed localization scheme in a real environment,
experiment is conducted at [oT laboratory. There are glass windows, concrete walls and
five dominant metallic obstacles, namely S1, S2, S3, S4 and S5 as shown in Fig. 9.2. In
the experiment, RD is fixed at (12.9 m, 0.7 m) while MD moves from MD, to MD7. MD,
and MDy are in LOS and the rest are in NLOS condition. The experiment is carried out
using vector network analyzer (VNA) with frequency sweep from 2 to 3 GHz over
1601 frequency points. A 4x4 virtual antenna array with element spacing of 5 cm that
corresponds to half a wavelength at 3 GHz is used at both RD and MD. At each MD
location, 16 S21 measurement data for each frequency point is used to obtain the average.
Using the average data, TOA and AOA of two dominant paths at each MD location will
be calculated by parameter estimation EM algorithm [29]. The EM algorithm can extract
the TOA and AOA of the signal path as long as its signal is above the threshold. These
values are used to determine MD location using equation (9.6). Root mean square (RMS)

error pertains to the actual MD location is given as \/ (x=x") +(y-»")" ,where (x°, y°)
and (x, y) are the true and estimated MD location respectively.
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Based on the TOA and AOA data that obtained from the average of 16 measurement data
at each of the 7 location points, the angles standard deviation of the dominant paths at
both RD and MD are found to be 5.1° and 7.0° respectively. Distance standard deviation
is found to be 0.51 m. Table 9.1 shows the localization RMS error comparison of the
proposed localization scheme with existing NLOS localization schemes [21-22]. The
average RMS error of our proposed localization scheme for the 7 location points is
calculated to be 1.6 m as compared to the average RMS error of 21.3 m and 8.6 m in [21]
and [22] respectively. At each MD location, we can identify whether the dominant NLOS
path undergoes one or multiple reflections by checking the measured distance and angle
satisfy the triangular relationship of a single bounce path.

Table 9.1. Comparison of RMS error (m) from MD1 to MD7.

MD; | MD; | MD; | MD4 | MDs | MDs | MD,
Proposed scheme 0.34 0.26 0.48 2.87 3.05 3.66 0.84

Seow and Tan [22] | 0.62 0.4 0.57 | 4.04 149 | 38.7 1.22

Lietal. [21] 034 | 035 46.6 47 37 17 0.76

Table 9.2 shows the correlation of parametric estimation based on EM algorithm and ray
tracing methodology [30] at MD; and MD,. At MD, the dominant paths are LOS path
(Pros) and one reflected path from window (Pwin), whereas at MD; there are two one
reflected paths from window and S4 (Pywin and Ps4). As shown, the propagation paths
simulated using ray tracing are well correlated with measured paths in the experiment.
Thus, we can use the data metrics from the ray tracing methodology and add Gaussian
noise statistically to evaluate the performance of our proposed localization scheme. The
true TOA and AOA of each signal path between RD and MD are subjected to Gaussian
noise with zero mean and known standard deviation. RMS error is calculated for 5,000
simulation runs. To compare with [18] and [19], another three RDs are placed at the same
positions as the one in the ALE performance result.

Table 9.2. Correlation between EM Algorithm [29] and Ray Tracing [30].

Extracted path from measured data Ray traced path
(d, 46) @ 46)
MD 6m 302° 122.9° Pros (5.7 m, 302°, 122°)
I 11.1m 334° 25° Pwin (11 m, 334°, 26°)
12m 335° 21° Pwin (12 m, 336°, 24°)
MD,
11.7m 359° 61° Ps4 (11.7 m, 358°, 62°)

Fig. 9.4 depicts the accuracy of proposed localization scheme and makes comparison with
existing localization schemes in terms of cumulative distribution function when MD
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transits from LOS condition at MD; (9.9 m, 5.5 m) to NLOS at MD, (8.8 m, 5.5 m). At
MD;, first dominant LOS path is exploited to estimate the MD [9]. After MD location has
been estimated, the virtual RD corresponding to the NLOS path Py, can be determined.
When MD moves to the next position MD,, based on equation (9.6), we are able to use
the calculated virtual RD associated with Pyi, and the new measured data (TOA and AOA)
at MD: to estimate MD, location. As shown in Fig. 9.4, our proposed localization scheme
using one reflection path outperforms the existing localization schemes. For example,

under o, =1 m, Oy =0y = 5° our proposed localization scheme achieves the accuracy of

2.3 m for 90 % of the time as compared with 3.6 m and 4.5 m in [22] and [19] respectively.
The margin of improvement are 36 % and 49 % respectively.

- e -
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~ 4 e 50
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Fig. 9.4. Comparison of cumulative distribution function (CDF) performance for MD,
at(8.8m,5.5m)under 6, =0, =1m, ¢, =0, = 5°

9.4. Theory and Formulation for VRD TOA Localization Algorithm

9.4.1. Environment, Channel Response and Multipath Model

Previous section presented a NLOS localization scheme based on the concept of VRD.
Simulation and experimental results have shown that the proposed NLOS localization
scheme using one RD outperforms the existing localization schemes by significant margin
at all measured and simulated locations. However, the VRD based localization does not
mention how to match the estimated VRD with the measured one-bound path and it
requires both transceivers with the ability of measuring TOA and AOA which is an
expensive approach. This section presents a VRD based TOA localization algorithm with
the knowledge of environment layout that overcomes above limitation.

The layout map of the environment is shown in Fig. 9.5, where the solid line is the
boundary of the enclosed room and VRD/ represents the ;* VRD of RD,. The star

represents one of the MD locations in experiment. In this proposed scheme, the VRD
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under one-bound and two-bounds are taken into account and higher reflections
are neglected.

Suppose in a cooperative manner, the time synchronization issue has been solved. The
measured TOA at RD, and traced to ¥RD,/ can be represented as

R =d/+g,-.":\/(x—xj)2+(y—y{)2 +el 9.7)

where p = (x, y) and p/ = (xl’ , y! ) represent the position of RD and VRD, respectively.

And ¢/ represents the Gaussian distributed ranging error with zero mean and standard
deviation (std) of &/ .

OVRD}
OrD, | RD; O
-4
MD
vrD? O | ORD, rRD,O VRD{ O

VRD; O QOVRD}

Fig. 9.5. Layout map of the environment, where yrRD’ represents the ;* VRD of RD, .

Furthermore, some measurements for each RD cannot be traced to any VRD and may
come from other scatterers such as ceilings and floors. These scatterers are not considered
in the model, and the generated measurements are treated as clutter, which is denoted as
R; for clutter received at RD,. The Ry follows a uniform distribution [31]

R ~U[O,R,.], (9.8)

where R, is the maximum value for the range measurement, which is selected to be

sufficiently greater than the maximum possible distance to any VRD. It should also be
noted that some LOS or reflection paths in the real environment may be blocked by
obstructers, which means that some VRDs cannot be assigned any measurement.
Therefore, the TOA measured at RD, , denoted as R, , contains two types of

measurements: effective measurements (unblocked LOS and reflection paths) and clutter.
To localize the MD, the data association process should be performed to filter out the
clutter and estimate the correct association between the measurements and the
corresponding VRDs.
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9.4.2. Two-step Weighted Least Squares Localization

Suppose that the data association has been performed, the clutter has been filtered out,
and the correct association result is estimated. The MD can be localized with a two-step
weighted least squares algorithm using associated paths, which will be summarized as
follows. Square both side of (9.7) we can get

(R/) =K/ -2x/x-2y/y+x*+y?, 9.9)

where K/ = (xl.f )2 + (y/ )2 . By introducing R? = x? + y?, (9.9) can be linearized as

-2x/x-2y/y+R*+ K/ =(R/) (9.10)

By defining p, = [x, y,Rz]T , and assuming R’ is independent of » and J, (9.10) can be

arranged in matrix form as

Ap, +K, =b,, (9.11)
where
=2x) =2y) 1 (K!) (R)’
P e B R
2 ) @y

where M is the number of VRDs taken into account. It should be noted that (9.11)
considers perfect data association. To incoporate the data association, the data association
matrix is introduced and (9.11) can be expressed as

0, =P'Z, _Piz(Aipa +K,)» 9.12)
11 1\?
(R'Y 2R ¢, +(8,-)
~i 2
(R} 2R g + (&
z,=| E |y, - )|
(R)

2
! 2R,.L‘ gl.L‘ + (gf‘ )

where p! and p? are ,xN, and L x(1+M,) data association matrix, respectively,

where L, :rnin(Ni, (1+M)) The process of determination of data association matrix

p' and p’ is the data association process which would be illustrated later. The ¢,
represents the noise term. Then the p, can be estimated as
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p, =arg min ZE[gaT‘I”I;oJ , (9.13)
Pas P By

where (p=[¢1, 0,, 0, (p4]T and ‘I’=diag{‘l’1,...,‘l’4} where
¥, =E[p0 |=4BOB,. B, =diag{R},...R}"}, @, =diag{(c)),....(c]"}.

And the covariance matrix of p, can be given as cov(p,)=(G"¥'G)"' , where

G =(G1 G, G, G, )T and G, = P 4, . It should be noted that the data association
matrix P! and P’ should be estimated simultaneously with p, due to the system does
not have any prior knowledge about MD. After estimated p,, the final position of MD

can be estimated followed as [32]. In the next section, we focused on how to estimate the
data association matrix p,' and p?.

9.4.3. Proposed Grid-based Data Association

In this section, the grid-based data association algorithm is proposed to estimate the data
association matrix. A given accurate floor plan can be divided into grid points. At each
grid point, a set of noiseless path lengths to each RD and VRD can be calculated denoted
as R, . Suppose the measured data set denoted as R, , the element in R, , denoted as R/,

and element in R, denoted as R’. Then, at each grid point, the data association process
is to assign the elements in R, to the elements in R, and make the overall difference
minimum. Then this data association process can be expressed as

(ﬁf‘,Rij) = arg m%{nmf - Rij|, subject to: ‘le —Rf‘ <d,, (9.14)
J,

where (R, Rij ) represents the k" observation is associated with the ;* path. And d, is

a threshold used to reject the observation-to-path pair with large distance difference. The
threshold d, called cut-off distance, usually selected as two to three times of & [33]. To

determine the data association matrix P and p’ at each grid point, the data association
process should be iterative performed L, times. For [ iteration, if there is a set R*, R/
satisfies (9.14) which means associated, then the k" column of /" row of p! and ;"
column of /" row of P> would be assigned to ‘1°. Otherwise, the /" row of both p!
and p’ are zeros. It should be noted that each measurement and path can only be

associated once, then each row and column in both data association matrices have at most
a single 1. Some rows in both data association matrices may contain only 0. A row of all
zeros in P? means that the corresponding path is blocked so that no measurement is

associated with it. Similarly, a row of all zeros in p,' indicates that the corresponding
measurement is a clutter, so no path is associated with it.

220



Chapter 9. Localization in GPS Denied Environment

At each grid point, we can perform data association and calculate the mean square residual
E[(or‘l”l(o] using (9.13). The possible MD position will then be considered near the

grids with the minimum square residual. The final estimation of p, and P’ can then be

determined by performing data association at the centroid of H grids with the minimum
square residual. After estimated the data association matrix, the MD can be localized using
the two-step weighted least square method introduced above.

9.5. Simulation Result for VRD Based TOA Localization

To evaluate the performance of our proposed VRD based TOA localization algorithm,
simulation and experiment were performed in the environment as shown in Fig. 9.5. The
environment was a closed meeting room environment with dimensions of 8.3 m x 7.3 m
in the INFINITUS laboratory at the School of EEE, Nanyang Technological University
(NTU). Four RDs are placed at the corners of the meeting room with coordinates of
(1.4, 1), (1.4, 6.3), (7.1, 6.1), and (7.3, 1) respectively. The MD is placed at a 4 x 4
rectangular grids with 1 m intervals between each grid, for a total of 16 positions, with
coordinates from (2.4, 2) to (5.4, 5).

We considered four situations to compare. The first situation, which considers only LOS
paths with perfect data association results, is called LOS- PDA. The second situation,
which considers both LOS and NLOS paths with perfect data association results, is called
multipath-PDA. The LOS-PDA and the multipath- PDA are both used as benchmarks.
The third situation, which considers only the LOS path but assumes that the shortest path
is the LOS path, is called LOS-DA. The fourth situation, which considers both LOS and
NLOS paths but requires data association to associate multipath components with their
corresponding VRDs, is called multipath-DA. The number of grids, H, with the minimum
square residual used to estimate the final association matrices is set to 6.

06

|8~ LOS-PDA 6~ Multipath-PDA —A— LOS-DA —*— Multipath-DA |

04

03

Average localization error (m)

I
0.1 0.2 0.3 0.4

Measurement noise <? (m)

Fig. 9.6. Comparison of average localization error (ALE) with different levels
of measurement noise & .
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The performance comparison of the proposed algorithms with different levels of
measurement noise ¢/ was given. The measurement noise of LOS path & varied from
0.1 mto 0.4 m. To account for the reflection loss, the measurement noises of the reflection
paths are doubled for each reflection, which means that the measurement noises of the

single and double reflection paths were 25" and 45, respectively. Each algorithm was

reiterated 25 times using different random sequences to generate measurements. The
probability for a path been blocked is set as 0.9. The pillar shown in Fig. 9.5 was
considered to be a point scatterer that generates clutter. The average localization error
(ALE) of the MD are presented in Fig. 9.6. The multipath-DA achieved ALE between
0.15 m and 0.4 m when & was varied from 0.1 m to 0.4 m. The multipath-DA performs
even better than the LOS-PDA because the number of LOS paths is insufficient to localize
the MD at some points. This result shows the ability of the proposed multipath-DA to

work in situations with an insufficient number of LOS paths.

9.6. Conclusion

We have presented a novel NLOS localization scheme based on the concept of virtual RD.
Simulation and experimental results have shown that our proposed NLOS localization
scheme using one RD outperforms the existing localization schemes by significant margin
at all measured and simulated locations. Furthermore, to overcome the expensive
methodology of using both TOA and AOA, another TOA-based indoor localization
algorithm is presented that uses multipath components with accurate knowledge of the
floor plan. The NLOS paths are associated with their corresponding VRDs with the
proposed grid-based data association method. The data association process is integrated
with the two-step weighted least squares method by the proposed data association matrix.
The simulation result show that the proposed TOA-based indoor localization algorithm
using multipath components outperformed the conventional TOA-based indoor
localization algorithm using LOS only in terms of localization accuracy.
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